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Abstract

genotoxic effects in human leukemia cells.

Background: Acute promyelocytic leukemia (APL) is a blood cancer that affects people of all ages and strikes
about 1,500 patients in the United States each year. The standard treatment of APL has been based on the
combined administration of all-trans retinoic acid and chemotherapy including anthracyclins and cytarabine.
However, 10-20% of patients relapse, with their disease becoming resistant to conventional treatment. Recently the
Food and Drug Administration has approved the use of arsenic trioxide (ATO) or Trisenox for the treatment of APL,
based on clinical studies showing a complete remission, especially in relapsed patients. In a recently published
study we demonstrated that ATO pharmacology as an anti-cancer drug is associated with its cytotoxic and

Methods: In the present study, we further investigated the apoptotic mechanisms of ATO toxicity using the HL-60
cell line as a test model. Apoptosis was measured by flow cytometry analysis of phosphatidylserine externalization
(Annexin V assay) and caspase 3 activity, and by DNA laddering assay.

Results: Flow cytometry data showed a strong dose-response relationship between ATO exposure and Annexin-V
positive HL-60 cells. Similarly, a statistically significant and dose-dependent increase (p <0.05) was recorded with
regard to caspase 3 activity in HL60 cells undergoing late apoptosis. These results were confirmed by data of DNA
laddering assay showing a clear evidence of nucleosomal DNA fragmentation in ATO-treated cells.

Conclusion: Taken together, our research demonstrated that ATO represents an apoptosis-inducing agent and its

fragmentation.

apoptotic mechanisms involve phosphatidylserine externalization, caspase 3 activation and nucleosomal DNA

Introduction

Arsenic based drugs have been used as effective che-
motherapeutic agents to treat several diseases and some
tumors [1]. In recent years, arsenic trioxide (ATO) has
been found to have a very potent anti leukemic efficacy,
especially against acute promyelocytic leukemia (APL).
It has been found to produce clinical remission in a
high proportion of patients with APL [2]. The Chinese
first discovered that a Chinese herb was effective against
APL, about 100 years ago. Workers in a university in
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New York City, New York, fractionated this herb, tested
the fractions, and found that one fraction was active
against APL. When analyzed chemically, this fraction
turned out to consist of ATO [2]. The origin of this
ATO is believed to be the massive pollution of the rivers
in China with arsenic-laden mine tailings, that the Chi-
nese military, who administers the mines in China, dis-
cards into the rivers while mining for valuable metals.
Medical reports from China have also revealed that
ATO induces clinical and hematologic responses in
patients with de novo and relapsed APL [2-4]. Several
studies have reported that ATO induces apoptosis in
malignant cells including APL, non-Hodgkin’s lym-
phoma, multiple myeloma, and chronic lymphocytic leu-
kemia cells [5-7]. In addition, ATO has been found to
induce apoptosis in myeloid leukemia cells such as
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U937 and KG-1 [8,9]. Scientific data have demonstrated
that ATO induced apoptosis is associated with down-
regulation of Bcl-2 gene expression, up-regulation of the
expression of the proenzymes of caspase 2 and 3 and
activation of both caspase 1 and 3 [5,8,9]. ATO induced
apoptosis is also associated with the generation of reac-
tive oxygen species that contribute significantly to cell
killing [10-12], and inhibition of growth [13]. Previous
researches have indicated that the apoptosis-inducing
properties of ATO are not restricted to APL, since the
viability of different cancer cell lines that originate from
the same lymphoid lineage vary when exposed to var-
ious concentrations of ATO [6,14,15].

Studies with APL cell lines have shown that ATO
treatment activates caspases [16], down-regulates Bcl-2
protein and up-regulates of p53 expression [17]. A
recent study from our laboratory has indicated that
ATO induces transcription of specific genes that modu-
late mitogen response, cell cycle progression, pro-
grammed cell death, and cellular function in cultured
HL-60 promyelocytic leukemia cells. Among these cellu-
lar responses of HL-60 cells to ATO are up-regulation
of p53 tumor suppressor protein and repression of the
c-fos transcription factor involved in cell cycle arrest or
apoptosis, and modulation of cyclin D1 and cyclin A
involved in cell cycle progression [18]. Preclinical studies
from our laboratory have also indicated that ascorbic
acid (AA), co-administrated with ATO in vitro,
enhances ATO activity effect against human leukemia
HL-60 cells [19,20], suggesting a possible future role of
AA/ATO combination therapy in patients with APL. At
pharmacologic doses, ATO inhibits survival and growth
of several different human cancer cells in a dose- and
time-dependent fashion [6,21,22]. Figure 1 shows the
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Figure 1 Toxicity of arsenic trioxide to human leukemia
(HL-60) cells. HL-60 cells were cultured with different doses of
arsenic trioxide for 24 hr as indicated in the Materials and Methods.
Cell viability was determined based on the MTT assay. Each point
represents a mean + SD of 3 experiments with 6 replicates per
dose. *Significantly different (p <0.05) from the control, according to
the Dunnett’s test [22].
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in vitro cytotoxic efficacy of ATO on human leukemia
(HL-60) cells [22]. However, the specific mechanisms
under which ATO exerts its therapeutic effect in cancer
cells remain to be elucidated. Therefore, the aim of the
present study was to elucidate the apoptotic mechanism
of ATO toxicity using HL-60, a promyelocytic leukemia
cell line, as a test model.

Materials and methods

Chemicals and test media

Arsenic trioxide (ATO), CASRN 1327-53-3, MW 197.84,
with an active ingredient of 100% (w/v) arsenic in 10%
nitric acid was purchased from Fisher Scientific (Houston,
Texas). Growth medium RMPI 1640 containing 1 mmol/L
L-glutamine was purchased from Gibco BRL products
(Grand Island, NY). Fetal bovine serum (FBS), and phos-
phate buffered saline (PBS) were obtained from Sigma
Chemical Company (St. Louis, MO). Annexin V fluores-
cein isothiocyanale (FITC) kit (contains annexin V FITC,
binding buffer and propidium iodide [PI]), and active cas-
pase-3 kit were obtained from BD Biosciences (Pharmin-
gen, Becton Dickinson Co., San Diego, CA, USA).

Cell culture

The HL-60 promyelocytic leukemia cell line was pur-
chased from American Type Culture Collection -ATCC
(Manassas, VA). This cell line has been derived from
peripheral blood cells of a 36-year old Caucasian female
with acute promyelocytic leukemia (APL). In the labora-
tory, cells were stored in the liquid nitrogen until use.
They were next thawed by gentle agitation of their con-
tainers (vials) for 2 min in a water bath at 37°C. After
thawing, the content of each vial of cells was transferred
to a 25 cm? tissue culture flask, diluted with up to 10
mL of RPMI 1640 containing 1 mmol/L L-glutamine
(GIBCO/BRL, Gaithersburg, MD) and supplemented
with 10% (v/v) fetal bovine serum (FBS), 1% (w/v) peni-
cillin/streptomycin. The 25 cm? culture flasks (2 x 10°
viable cells) were observed under the microscope, fol-
lowed by incubation in a humidified 5% CO, incubator
at 37°C. Three times a week, they were diluted under
same conditions to maintain a density of 5 x 10° cells/
mL, and harvested in the exponential phase of growth.
The cell viability was assessed by the trypan blue exclu-
sion test (Life Technologies Corperation, Carlsbad, CA,
USA), and manually counted using a hemocytometer.

Annexin V FITC/PI assay by flow cytometry

Annexin V FITC/PI assay for estimating early cells
undergoing apoptosis was performed as described pre-
viously [20]. Briefly, 2 mL of cells (1 x 10°cells/mL)
were added to each well of 24 plates and treated with 2,
4, 6 and 8 pg/mL of arsenic trioxide (ATO) for 24 h.
Control cells were processed exactly as ATO-treated
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cells, except ATO treatment of these cells was elimi-
nated. These doses were selected based on the results of
previous experiments in our laboratory indicating that
ATO is highly cytotoxic to HL-60 cells, showing a 24 h
LDsg of 6.4 + 0.7 pg/mL [22]. After 24 h of incubation,
1 x 10° cells/mL were counted and washed in PBS, re-
suspended in binding buffer (10 mM Hepes/NaOH pH
7.4, 140 mM NaCl, 2.5 mM CacCl,), and stained with
FITC-conjugated annexin V (Pharmingen, Becton Dick-
inson Co., San Diego, CA, USA). After staining, the cells
were incubated for 15 min in the dark at room tempera-
ture. Cells were re-washed with binding buffer and
analysed by flow cytometry (FACS Calibar; Becton-
Dickinson) using CellQuest software [23,24].

Active caspase-3 assay by flow cytometry

Caspase-3 assays were carried out using a commercially
available kit (Phycoerythrin-Conjugated Polyclonal
Active Caspase-3 Antibody Apoptosis Kits, Pharmingen).
HL-60 cells were grown in RPMI 1640 containing 1
mmol/L L-glutamine (GIBCO/BRL, Gaithersburg, MD)
and supplemented with 10% (v/v) fetal bovine serum
(FBS), 1% (w/v) penicillin/streptomycin. Two mL of cells
(1 x 10°cells/mL) were added to each well of 24 wells
and treated with 2, 4, 6 and 8 pg/mL of arsenic trioxide
(ATO) for 24 h. Control cells were processed exactly as
ATO-treated cells, except ATO treatment of these cells
was eliminated. Control and ATO-treated cells were
assayed for caspase-3-like protease according to a pre-
viously described protocol [25]. Briefly, 1 x 10°cells/mL
were washed per concentration with cold PBS (pH 7.4).
Washed cells were suspended in Cytofix/Cytoperm solu-
tions and incubated for 20 min on ice. Cells were pel-
leted and washed with Perm/Wash buffer. Cells were
then centrifuged at 3000 rpm for 5 min and re-sus-
pended in 0.2 mL Perm/Wash, 20 uL PE- conjugaled
polyclonal rabbit anti-active caspase-3 antibody and
incubated at room temperature for 30 min. Cells were
re-suspended in 0.5 mL of perm/wash buffer and analy-
sis by a flow cytometer (FACS Calibar; Becton-Dickin-
son) using CellQuest software.

DNA fragmentation analysis by agarose gel
electrophoresis

DNA fragmentation analysis was conducted to confirm
the apoptotic mechanism of arsenic trioxide (ATO).
Briefly, 2mL of cells (1 x 10°cells/mL) were added to
each well of 24 wells and treated with 2, 4, 6 and 8 pg/
mL of arsenic trioxide (ATO) for 24 h. Control cells
were processed exactly as ATO-treated cells, except
ATO treatment of these cells was eliminated. After the
incubation period, cellular DNA was extracted from
whole cultured cells using genomic DNA isolation
reagents from Roche Molecular Biochemicals
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(Indianapolis, IN) according to the manufacturer’s pro-
tocol. Extracted DNA samples were placed into the well
of agarose gel. The agarose gels were run at 75 volts
until the purple tracer marker migrated to approxi-
mately 2 cm before the end of the gel. After electro-
phoresis, the gel was stained with ethidium bromide,
and photographed under UV light [26].

Data analysis

Data were presented as means + SDs. Statistical analysis
was done using one way analysis of variance (ANOVA
Dunnett’s test) for multiple samples. Student’s paired t-
test was used to analyze the difference between the con-
trol and arsenic trioxide-treated cells. All p-values <0.05
were considered to be significant. Tables were con-
structed to illustrate the dose-response relationship with
respect to annevin V and caspase-3 positive cells.

Results

Modulation of phosphatidylserine externalization by
arsenic trioxide

The response of HL-60 promyelocytic leukemia cells
exposed to arsenic trioxide (ATO) was assessed by flow
cytometry using Annexin V FITC/PI assay kit. As seen in
Figure 2, there was a gradual increase in annexin V posi-
tive cells (apoptotic cells) in ATO-treated cells compared
to the control. However, a marked and dose-dependent
decrease in annexin V-positive cells was detected at 8 pg/
ml of ATO, probably due to high level of cell death. The
percentages of annexin V-positive cells in ATO-treated
HL-60 populations were statistically significantly different
compared to the percentages of annexin V cells in con-
trol group populations (Table 1). ATO-treated HL-60
cells were significantly different (p < 0.05) compared to
the control group according to ANOVA Dunnett’s test.

Activation of caspase-3 by arsenic trioxide

The activity of caspase-3 in HL-60 promyelocytic leuke-
mia cells exposed to arsenic trioxide (ATO) was
assessed by flow cytometry. As seen in Figure 3, there
was a strong dose-response relationship between cas-
pase-3 activation in HL-60 cells and ATO exposure.
After 24 h of exposure, the percentages of caspase-3
positive cells (apoptotic cells) were 1.1 + 0.3%, 17.5 +
8.9%, 27.0 + 2.4%, 62.5 £ 8.8%, and 63.1 + 9.7% in 0, 2,
4, 6, and 8 pg/mL of ATO, respectively (Table 2). We
observed significant differences (p < 0.05) between the
control and AT-treated cells within the range of 4-8 g/
mL of ATO.

Induction of nucleosomal DNA fragmentation by arsenic
trioxide

Agarose gel electrophoresis of DNA extracted from con-
trol and arsenic trioxide (ATO)-treated cells is presented
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Figure 2 Representative flow cytometry analysis data from Annexin V-FITC/PI assay. The histograms show a comparison of the
distribution of annexin V negative cells (M1) and annexin V positive cells (M2) after 24 h exposure to ATO. A-control; B-2 ug/mL; C-4 ug/Ml; D-6
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Table 1 Summary data of annexin V assay obtained from the flow cytometry analysis

ATO Concentrations Annexin-V Negative Cells or Viable Cells Annexin-V Positive Cells or Apoptotic Cells
(Mean * SD)% (Mean * SD)%
0 pg/mL 99.0 + 0.0 1.0 £ 00
2 ug/mL 885 + 07 115+07
4 ug/mL 804 + 5.7* 196 + 5.7*
6 pg/mL 642 + 5.3* 358 + 5.3*
8 pg/mL 824 + 0.5* 176 £ 0.5%

HL-60 promyelocytic leukemia cells were cultured in the absence or presence of ATO for 24 h as indicated in the Materials and Methods. Values are shown as
means * SDs of 3 replicates per experiment. *Significantly different at p < 0.05 to the control group.
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Figure 3 Representative flow cytometry analysis data from active caspase-3 assay. The histograms show the distribution of caspase-3
negative cells (M1) and caspase-3 positive cells (M2) after 24 h exposure to ATO. A-control; B-2 pg/mL; C-4 pg/Ml; D-6 ug/mL; E-8 pg/mL.
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Table 2 Summary data of caspase-3 assay obtained from the flow cytometry analysis

ATO Concentrations
(Mean + SD)%

Caspase-3 Negative Cells or Viable Cells

Caspase-3 Positive Cells or Apoptotic Cells
(Mean + SD)%

0 pg/mL 98.7 + 0.6
2 pg/mL 82.5 + 89*
4 pg/mL 63.0 £ 24*
6 ug/mL 375 + 88*
8 ug/mL 369 + 9.7%

1.1+£03
175 + 89%
270 £ 24*
62.5 + 8.8*
63.1 £ 9.7%

HL-60 promyelocytic leukemia cells were cultured in the absence or presence of ATO for 24 h as indicated in the Materials and Methods. Values are shown as
means + SDs of 3 replicates per experiment. *Significantly different at p < 0.05 to the control group.

in (Figure 4). As shown on this figure, our result showed
a positive nucleosomal DNA fragmentation in nuclei
isolated from HL-60 promyelocytic leukemia cells. A
small fragment of DNA double-strand breaks was
detected in cells incubated in the absence of ATO.
Overall, the present observation demonstrates that ATO
exposure induced nucleosomal DNA fragmentation in
HL-60 promyelocytic leukemia cells.

-

M O 2 4 68

Figure 4 Arsenic trioxide (ATO)-induced DNA fragmentation in
HL-60 promyelocytic leukemia cells. Lane 1: M-molecular weight
marker; lane 2: control with no ATO treatment; lane 3: 2 pg/mL;
lane 4: 4 ug/mL; lane 5: 6 pg/mL; and lane 6: 8 ug/mL ATO. Twelve
(12) pL of each sample was electrophoresed on a 1.2% agarose.
DNA was stained with ethidium bromide and then visualized under
UV light.

Discission

Cell death is thought to take place at least by two pro-
cesses that include apoptosis and necrosis. Apoptosis is
an active and physiological mode of cell death. It is gen-
erally believed to be mediated by active intrinsic
mechanisms, although extrinsic factors can contribute
[27-30]. Apoptosis is genetically controlled and is
defined by cytoplasmic and nuclear shrinkage, chroma-
tin margination and fragmentation, and breakdown of
the cell into multiple spherical bodies that retain mem-
brane integrity [31,32]. In contrast, necrosis is an
uncontrolled cell death that is characterized by progres-
sive loss of cytoplasmic membrane integrity, rapid influx
of Na*, Ca®*, and water, resulting in cytoplasmic swel-
ling and nuclear pyknosis [33-35]. The latter feature
leads to cellular fragmentation and release of lysosomal
and granular contents into the surrounding extracellular
space, with subsequent inflammation [30-32].

To gain insight into the mechanism of arsenic trioxide
(ATO)-induced apoptosis, we examined the modulation
of phosphatidylserine externalization in HL-60 promye-
locytic leukemia cells. We observed that ATO induces
cellular apoptosis in HL-60 promyelocytic leukemia cells
in a dose-dependent manner, showing an increase
expression of annexin positive cells in ATO-treated cells
compared to the control. Annexin-V is a specific phos-
phatidylserine-binding protein used to detect apoptotic
cells by providing an assessment of the progression
from living cells (annexin-/PI-) towards apoptotic stage
(annexin+/PI-) and postapoptotic cell death (annexin
+/PI+). The effect of ATO was more pronounced at 6
pug/mL (p < 0.05) compared to the control cells. We
observed that the percentage of annexin positive cells
(apoptotic cells) increased gradually (p < 0.05) in a
dose-dependent manner with increasing ATO concen-
trations and reached a maximum of (35.8 + 5.3)% cell
death after 24.h of exposure. Above 6 ug/mL exposure,
ATO failed to further increase apoptosis, probably due
to the high level of necrotic cell death at 8 pg/mL of
exposure. From a recently published study (Figure 1),
we reported that ATO is highly cytotoxic to HL-60 pro-
myelocytic leukemia cells, showing a 24 h-LDs, of
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6.4 £ 0.7 pg/mL [13]. Consistent with our result, pre-
vious studies have indicated that low concentrations
ATO (2 pM) induces apoptosis in HPV 16 DNA-
immortalized human cervical epithelial cells and its
molecular pathways leading to apoptosis may be asso-
ciated with down-regulation of viral oncogene expres-
sion [36].

To further gain insight into the mechanism of arsenic
trioxide (ATO)-induced apoptosis, we examined cas-
pase-3 activation in HL-60 promyelocytic leukemia cells.
Caspase-3 is known as a key component of the apopto-
tic machinery and appears to be the most executant,
which can be activated during the early and late stages
of apoptosis [37]. It also a protein which has been
shown to play a pivotal role in the execution phase of
apoptosis induced by diverse stimuli [38]. As shown on
Figure 3, we have demonstrated that ATO significantly
induces apoptosis of HL-60 cells in a dose-dependent
manner, at least in part, through activation of caspase-3.
We have found that the percentage of caspase-3 positive
cells (apoptotic cells) increases gradually with increasing
ATO concentrations and reached a maximum cell death
of 63.1 £ 9.7% at 8 ug/mL after 24.h of exposure. This
study suggests that active caspase-3 plays an important
role in executing apoptosis in ATO-treated HL-60 cells.
Consistent with our results, ATO-induced apoptosis and
related caspase activation have also been studied in HL-
60 cells although different approaches to detect
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apoptosis were adopted in that study [39]. Recent stu-
dies have reported that low concentrations of ATO, in
the range of clinically effective concentrations (1-5 uM),
induce partial apoptosis of T lymphocytes by increasing
oxidative stress and caspase activation [40]. ATO has
also been shown to induce apoptosis in NB4 and mouse
B cell leukemia cells [5]. One report has also indicated
that arsenic-induced apoptosis in B-cell leukemia cell
lines occurred through the involvement of caspases such
as caspase 1 and caspase 3, and the down regulation of
Bcl-2 [41]. Overall, our results indicate that active cas-
pase-3 is involved in ATO-induced apoptosis in HL-60
cells. However, further investigations are needed to
determine whether or not specific activators of caspace-
3 may be directly associated with the induction of cell
death.

To confirm the apoptotic mechanism of arsenic tri-
oxide (ATO) for the above results, we further examined
the apoptotic response, as judged by the appearance of a
DNA ladder through agarose gel electrophoresis. We
observed DNA ladders in extracts from HL-60 cells
treated with ATO at concentrations of 2, 4, 6, and 8 pg/
mL for 24 h. DNA Laddering is a characteristic pattern
of nucleosomal DNA fragmentation, which is the hall-
mark of apoptosis. DNA fragmentation is one of the
later stages of apoptosis [42]. Previous researches have
indicated that ATO triggers apoptosis in APL cells by
degrading promyelocytic leukemia and retinoic acid
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Figure 5 Schematic representation of the apoptotic mechanisms of arsenic trioxide (ATO) as a therapeutic agent in the treatment of
acute promyelocytic leukemia. ATO exerts a dual effect on HL-60 cells by inducing partial differentiation and apoptosis. As shown on Figure 5,
the mechanisms by which ATO induces apoptosis is mediated through oxidative stress [13] that leads to DNA damage and cell death [44], up-
regulation of p53 tumor suppressor protein and repression of the c¢-fos transcription factor [18], induction of phosphatidylserine externalization,
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receptor-a fusion protein [5,43]. In vitro, ATO induces
apoptosis in hematological malignancies and several
solid tumor cells at lower concentrations [6,15,44], and
causes acute necrosis in various cell lines at higher con-
centrations [6]. As shown in Figure 5, a series of
recently published studies in our laboratory have
demonstrated that the apoptotic mechanism of ATO as
an anti-cancer drug may be associated with DNA
damage and cell death [45], up-regulation of p53 tumor
suppressor protein and repression of the c¢-fos transcrip-
tion factor [18] as result of oxidative stress [13]. A
recent publication by Platanias has reported that ATO-
induced cell death or apoptosis is associated with the
depredation of oncoproteins, activation and suppression
of pro-apoptotic and anti-apoptotic proteins respec-
tively, generation of reactive oxygen species (ROS)
which leads to the decrease in mitochondrial potential
and activation of caspases in leukemia cells [46].
Together, data from annexin V assay, caspase-3 assay,
and DNA fragmentation analysis collectively show that
ATO induces apoptosis in HL-60 promyelocytic leuke-
mia cells. Consistently, a recent report has indicated
that ATO activates the intrinsic (mitochondrial) path-
way of apoptosis, which involves the disruption of mito-
chondrial membrane potential, increased Bax/Bcl-2 ratio
and caspase-9 activation, as well as the extrinsic death
receptor pathway mediated by Fas and caspase-8 activa-
tion in acute megakaryocytic leukemia [47]. Our result
is in support of previous findings indicating that ATO
induces clinical remission in a high proportion of
patients with APL by inducing apoptosis [2,9].

Conclusions

We have demonstrated in the present in vitro study that
relevant concentrations of arsenic trioxide (ATO) induce
apoptosis of HL-60 promyelocytic leukemia cells.
Although the exact mechanisms under which ATO
exerts its therapeutic effect in APL cancer are not well
elucidated, we have shown in the present study that
ATO represents an apoptosis-inducing agent in HL-60
promyelocytic leukemia cells. Its apoptotic mechanisms
involve the induction of phosphatidylserine externaliza-
tion, caspase-3 activation, and nucleosomal DNA
fragmentation.
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