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Abstract

Studies of complex diseases collect panels of disease-related traits, also known as secondary
phenotypes or endophenotypes. They reflect intermediate responses to environment exposures,
and as such, are likely to contain hidden information of gene-environment (G × E) interactions. The
information can be extracted and used in genetic association studies via latent-components analysis.
We present such a method that extracts G × E information in longitudinal data of endophenotypes,
and apply the method to repeated measures of multiple phenotypes related to coronary heart
disease in Genetic Analysis Workshop 16 Problem 2. The new method identified many genes,
including SCNN1B (sodium channel nonvoltage-gated 1 beta) and PKP2 (plakophilin 2), with
potential time-dependent G × E interactions; and several others including a novel cardiac-specific
kinase gene (TNNI3K), with potential G × E interactions independent of time and marginal effects.

Background
“Endophenotypes” refer to the host of measurements
representing physiologic indicators, biochemical assays,
and responses to challenges, or the latent components
extracted from such data [1]. When derived properly, the
latent traits lay more proximal to the causal genotypes

than do clinical phenotypes, and thus, provide poten-
tially meaningful but otherwise unobserved context of
gene-environment (G × E) interaction. Several recent
studies report positive findings with endophenotypes in
genetic analysis of complex diseases [2,3]. Our group
recently developed a supervised statistical learning
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approach for multivariate analysis (SLAM) that uses
latent component methods to extract meaningful latent
traits for association studies. We have applied this
method to the study of hypertension and hypertensive
heart disease [4]. The method worked well to identify
meaningful latent traits of hypertensive heart disease
that led to detection of significant genotype × phenotype
associations that were missed by analyses of measured
clinical phenotypes.

The repeated measures of multiple coronary heart
disease (CHD)-related phenotypes from Genetic Analy-
sis Workshop (GAW) 16 Problem 2 are ideal for testing
this approach to identify genetic variants that interact
with the environment in the development of CHD. For
example, systolic and diastolic blood pressure represent
continuous and independent risk factors for CHD events
[5], and increased blood pressure was associated with
pathologic remodeling of the left ventricle [6]. Studies
have identified dyslipidemia as a major cause of CHD;
therapies that lower serum low-density lipoprotein
cholesterol reduce CHD risk [7]. Indeed, metabolic
syndrome, which represents a constellation of major
risk factors including abdominal obesity, atherogenic
dyslipidemia, elevated blood pressure, insulin resistance,
and prothrombotic and proinflammatory states, has
been shown to increase risk of CHD [8]. Repeated
measures on these CHD endophenotypes and their
environmental risks (e.g., cigarette smoking) contain
valuable information about underlying mechanisms of
G × E interactions that is biologically relevant to the
development and/or modulation of CHD.

In the present study, we explore such underlying
mechanisms using latent components (referred to as
“G × E context”) extracted by an extension of the SLAM
approach to analyze the multivariate longitudinal data
in GAW 16 Problem 2.

Methods
Data adjustment and quality control
Samples in the “Offspring Cohort” (of the Framingham
Heart Study) and data from Visits 1, 3, 5, and 7 were
used in this study. The primary phenotype of interest was
CHD event, and the data on ten variables including CHD
endophenotypes (body mass index, three lipids, blood
pressures, and glucose) and environmental covariates
(age at visit, cigarette smoking, and alcohol use) were
used for latent component analysis. The endopheno-
types were checked for normality and outliers, and log-
transformed when necessary; this was followed by
centering the variables by sex to remove unwanted
confounding. The residuals were used as input for all
downstream analyses. We used the genome-wide dense

single-nucleotide polymorphisms (SNPs) dataset pro-
vided for Problem 2 (~550,000 SNPs typed by Affyme-
trix GeneChip® Human Mapping 500 k Array Set).
Quality of each SNP array was checked first for low call
rate (<95%) and/or abnormal heterozygosity (<0.25 or
>0.3); then each SNP on the array was checked for its
minor allele frequency (MAF < 0.05), missing rate in the
sample (>5%), and deviation from Hardy-Weinberg
equilibrium (p < 10-6). Problematic individuals and
SNPs were moved from further analysis.

Identifying latent G × E context
Latent component analysis (also known as factor
analysis) aims to effectively reduce the number of
dimensions (variables) for analysis while minimizing
the loss of information. Conventional factor analysis, of
which the well known principal-component analysis is a
special case, seeks to reduce the dimensionality by
expressing the original variables as linear combinations
of a smaller number of independent, Gaussian, latent
variables (components). However, it tends to neglect
meaningful structural information such as clustering in
data, which often requires non-Gaussian components
and proper treatment of higher order of moments than
covariance and correlations. The method of indepen-
dent-component analysis (ICA) overcomes this problem
by treating observed traits as a mixture of underlying
components that are more likely independent, non-
Gaussian, and with less complexity than observed ones.
It identifies such latent components by maximizing a
measure of multivariate non-Gaussianity of linear
combinations of original variables [9]. The SLAM
approach is built on ICA using supervised validation of
extracted components followed by consensus analysis of
validated components to identify robust and biologi-
cally-meaningful latent traits [4]. For the present study,
we extend SLAM by applying multi-level ICA to facilitate
analysis of longitudinal multivariate data.

Time-dependent longitudinal G × E context
We first applied a four-component ICA at each visit on
the ten selected variables to identify latent components
that define potentially meaningful underlying G × E
context for CHD. Then, correlations between the derived
independent components (ICs) at consecutive visits were
examined and those with strongest correlations were
concatenated to form four longitudinal latent compo-
nents (LLCs). We hypothesized that each (most) of the
derived LLCs represents a particular G × E mechanism
(context) for the development of the disease, and can be
used as a derived “environment” variable for teasing out
potential G × E interactions. This was verified by logistic
regression of CHD on each extracted LLC at every time
point (adjusted for age at visit) to evaluate LLCs as a

BMC Proceedings 2009, 3(Suppl 7):S86 http://www.biomedcentral.com/1753-6561/3/S7/S86

Page 2 of 5
(page number not for citation purposes)



predictor of CHD, followed by regression of each LLC on
genome-wide SNP genotypes to assess its genetic
content.

Summary time-independent G × E context
A second-level two-component ICA was then performed
on each LLC over the four time points (i.e., visits). For
each LLC, we anticipated that one such derived
component will capture the main signal of the time-
course, while the other absorbs remaining signal and
noise. Identification of the signal component was
assisted by a clinical expert knowledgeable in the
component’s capacity in predicting CHD risks. In the
end, this procedure derives time-independent compo-
nents (TICs) to capture the time course of G × E
interactions in the context defined by each LLC. Note
that familial relationship is ignored during ICA extrac-
tion and is accounted for in the downstream association
analysis.

Profiling G × E interactions
The identified latent components provide different G × E
context useful for teasing out potential G × E interac-
tions. The LLCs have repeated measures at each visit, and
can be used to facilitate a focused search for SNPs with
potential time-dependent G × E interactions. Logistic
regression of CHD status was carried out first against
SNP genotypes and LLC values, then by an expanded
model including the term for SNP × LLC interaction.
These analyses were done for each visit, and results were
aggregated to spot trends of time-dependent interac-
tions. Finally, the TICs represent summary profiling of
time-course of G × E interactions for CHD. The detection
of SNPs with potential time-independent G × E interac-
tions for CHD was then achieved by testing for
significant SNP × TIC interactions using logistic regres-
sion. In all regression analyses, the generalized estimat-
ing equation approach was used to adjust for
correlations among family members in the sample.

Results
Samples of 2584 individuals in the “Offspring Cohort”
were used in this study. After removing samples missing
at least 1 visit (n=403) and those without GWAS data
(n=187), we performed genotype quality control and
excluded 33 samples due to low call rate (n=22),
abnormal heterozygosity (n=5) and population outliers
(n=6). A total of 1961 individuals were used in the
analyses reported below. To achieve normality, log-
transformations were applied to triglyceride, blood
glucose, cigarettes smoked per day, and alcohol use per
week.

Time-dependent G × E interactions
Repeated measures from Visits 1, 3, 5, and 7 were used to
extract time-dependent G × E context, the LLCs for CHD.
The extended SLAM procedure was used to extract four
LLCs as described previously.

We first tested each LLC as a predictor of CHD. Table 1
shows the results by logistic regression of CHD on LLC at
each visit. With the exception of LLC1, the derived
components LLC2-LLC4 were all significant predictors of
CHD. Both LLC2 and LLC3 are highly significant
predictors of CHD at the early two visits, while LLC2
was also fairly significant at Visit 7. LLC4 seemed to have
captured a complementary axis that became significant
predictor of CHD at later visits when the average age of
the Offspring Cohort reaches 53 to 60 years old. Note
that LLC1 absorbs remaining variation in the data, and
may still contain some G × E information (as confirmed
below). We then examined genetic association of SNPs
with each LLC by longitudinal regression. There were a
number of SNPs with p ≤ 0.05, but few achieved high
significance. Most notable ones were all associated with
LLC3 (21 SNPs in 9 genes with p ≤ 1 × 10-4, data not
shown). These results supported the idea that the LLCs
may be used as a derived “environment” variable for
teasing out potential G × E interactions.

We then tested for SNP × LLC interactions in an
expanded model including the interaction terms
(CHD~age+LLC+SNP+SNP*LLC). A total of 76 SNPs in
59 genes were found having 96 significant interactions
with various LLCs at different time points, at a
significance level of a = 1 × 10-6. A majority of these
SNP × LLC interactions (63/96 ≈ 66%) were detected in
the middle two visits, and close to half were interacting
with LLC1. Many of the genes detected are relevant to
CHD. In Table 2, we displayed some representatives in
details. Some of them, including SCNN1B and PKP2, are
well known candidate genes of CHD.

Time-independent G × E Interactions
As described previously, we then performed second-level
ICA on each LLC to extract the component that captures
main signal of the time-course underlying the LLC. These
components are denoted TIC1 to TIC4. Note that we

Table 1: Logistic regression of CHD on LLCs

LLC Visit 1 Visit 3 Visit 5 Visit 7

1 0.093742 0.128905 0.189618 0.073004
2 0.000056a 0.000023 0.375683 0.010654
3 0.000115 0.007251 0.140016 0.466008
4 0.333980 0.040160 0.000080 0.007423

aBold font indicates p-values ≤ 0.05.
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include LLC1 in the second-level ICA analysis, assuming
that there may still be G × E information hidden in this
“noise” component. Results of validation analyses of the
derived TICs are shown in Figure 1, where their capacity
in predicting CHD risks are evident in eight clinical
indicators of CHD including blood pressures, lipids,
blood sugar, body mass index, and age. It is interesting
to note that both of the two components (denoted as
TIC3-1 and TIC3-2 in Figure 1) derived from LLC3 may
qualify as a “signal” component, although TIC3-2 did
better in predicting CHD events.

To study effects of potential interactions between SNPs
and so-derived TICs, we carried out logistic regression of
CHD status on SNP genotypes and an interaction term for
SNP × TIC, using two types of models: ones that include
main effect of TICs and ones without. We hypothesized
that SNPs for which the two models produced similar
significance levels imply possibility of “pure” SNP × TIC
effects. At a significance level of a = 10-5, we displayed in
Table 3 genes containing such SNPs, for which the
inclusion of main effects of TICs did not substantially
change the significance level of detected interactions
between the SNPs and the time-independent latent
components. The maximum of the p-values of the two
models were shown for the most significant SNPs in each
gene. Among these, the cardiac-specific kinase TNNI3K
interacts specifically with cardiac troponin I and has
been found to protect the myocardium from ischemic
injury [10].

Discussion
In this study, we showed that the SLAM approach can be
extended by including a novel method of two-level
latent component analysis to address the challenge of
analyzing multivariate longitudinal data of the

correlated phenotypes, endophenotypes, covariates,
and environmental factors typically found in genome-
wide association studies of complex diseases such as
CHD. Repeated measures from Visits 1, 3, 5, and 7 from
GAW16 Problem 2 were used to extract LLCs (long-
itudinal latent components) that represents differential
age- (visit-) dependent risks. The second-level analysis of
LLCs extracted time-independent components (TICs)
and captured variants with “pure” SNP × TIC interac-
tions. The method seemed to have worked well in
teasing out variants with promising G × E interactions in
CHD, by analyses in derived context that potentially
homogenize samples according underlying G × E
mechanisms. Note that medication uses were not
directly modeled because their effects should be reflected
in the measured endophenotypes. The derivation of the
longitudinal latent components (LLC) may benefit from

Figure 1
Validation of selected TICs. Displayed are mean values of
eight clinical indicators of CHD and prevalence of hard CHD
in “high-risk” (H) and “low-risk” (L) groups as defined by the
TIC in question. sbp, systolic blood pressure; DBP, diastolic
blood pressure; CHL, cholesterol; HDL, high-density
lipoprotein; TG, triglyceride; Bsug, blood sugar; BMI, body
mass index. The component that distinguishes the two
groups well are selected as the “signal” component that
captures the time-course of LLC relevant to CHD. Bright
red colors indicate higher risk for CHD and darker green
colors indicate lower risk.

Table 2: Representative candidate genes and SNPs that were
detected with significant SNP × LLC interactions (p ≤ 10-6)

Visit

SNP ID Chr MAF Gene 1 3 5 7

SNP_A-4199078 2 0.07 IL1RN LLC1
SNP_A-1788738 4 0.06 KLF3 LLC4
SNP_A-1978322 4 0.06 TACR3 LLC3
SNP_A-2260338 5 0.06 FTMT LLC2
SNP_A-2031704 5 0.15 NSD1 LLC4
SNP_A-1987480 6 0.15 TRDN LLC4
SNP_A-2090526 6 0.06 CITED2 LLC2
SNP_A-4217972 10 0.07 KCNMA1 LLC2
SNP_A-4272586 12 0.05 PIK3C2G LLC1
SNP_A-1961226 12 0.10 PKP2 LLC1 LLC1
SNP_A-4222134 13 0.15 IRS2 LLC2
SNP_A-2306682 16 0.07 SCNN1B LLC4
SNP_A-2019383 21 0.07 PSMG1 LLC1 LLC1
SNP_A-2051756 22 0.07 MB LLC3
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more rigorous mathematical treatment, e.g., survival
analysis of time to events of CHD. Finally, further
characterization of G × E mechanisms will require
identifying the right environment variables after the
extended SLAM analysis, followed by explicit modeling
of G × E interactions, and will be the topic of our future
studies.
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