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Kinetic modelling of phospholipid synthesis in
Plasmodium knowlesi unravels crucial steps
and relative importance of multiple pathways
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Abstract

Background: Plasmodium is the causal parasite of malaria, infectious disease responsible for the death of up to one
million people each year. Glycerophospholipid and consequently membrane biosynthesis are essential for the survival
of the parasite and are targeted by a new class of antimalarial drugs developed in our lab. In order to understand the
highly redundant phospholipid synthethic pathways and eventual mechanism of resistance to various drugs, an
organism specific kinetic model of these metabolic pathways need to be developed in Plasmodium species.

Results: Fluxomic data were used to build a quantitative kinetic model of glycerophospholipid pathways in
Plasmodium knowlesi. In vitro incorporation dynamics of phospholipids unravels multiple synthetic pathways. A
detailed metabolic network with values of the kinetic parameters (maximum rates and Michaelis constants) has been
built. In order to obtain a global search in the parameter space, we have designed a hybrid, discrete and continuous,
optimization method. Discrete parameters were used to sample the cone of admissible fluxes, whereas the
continuous Michaelis and maximum rates constants were obtained by local minimization of an objective function.The
model was used to predict the distribution of fluxes within the network of various metabolic precursors.

The quantitative analysis was used to understand eventual links between different pathways. The major source of
phosphatidylcholine (PC) is the CDP-choline Kennedy pathway.

In silico knock-out experiments showed comparable importance of phosphoethanolamine-N-methyltransferase (PMT)
and phosphatidylethanolamine-N-methyltransferase (PEMT) for PC synthesis.

The flux values indicate that, major part of serine derived phosphatidylethanolamine (PE) is formed via serine
decarboxylation, whereas major part of phosphatidylserine (PS) is formed by base-exchange reactions.

Sensitivity analysis of CDP-choline pathway shows that the carrier-mediated choline entry into the parasite and the
phosphocholine cytidylyltransferase reaction have the largest sensitivity coefficients in this pathway, but does not
distinguish a reaction as an unique rate-limiting step.

Conclusion: We provide a fully parametrized kinetic model for the multiple phospholipid synthetic pathways in

P. knowlesi. This model has been used to clarify the relative importance of the various reactions in these metabolic
pathways. Future work extensions of this modelling strategy will serve to elucidate the regulatory mechanisms
governing the development of Plasmodium during its blood stages, as well as the mechanisms of action of drugs on
membrane biosynthetic pathways and eventual mechanisms of resistance.
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Background

Malaria, caused by protozoan parasites of the genus
Plasmodium, is one of the most prevalent diseases in the
world, with approximately 50% of the world’s population
at risk with several cases of malaria worldwide causing a
million deaths, mostly children under 5 years old [1]. Four
species of Plasmodium, P. falciparum, P. vivax, P. ovale
and P. malariae commonly infect humans, and a fifth,
P, knowlesi, has recently been identified as being responsi-
ble for a significant number of human cases in South-East
Asia [2]. There are increasing reports that natural inci-
dence of the primate P knowlesi parasite among humans,
can cause severe cases [3].

Malaria parasites have a complex lifecycle involving
stages in humans and mosquitoes, with the human blood
stage of the infection responsible for much of the dis-
ease pathology. During this stage, the parasite develops
through the “ring” and “trophozoite” stages, and then
divides inside the red blood cells of its host to form an
average of ~ 20 daughter cells in the “schizont” stage.
This requires temporally controlled metabolic programs
which are co-ordinated, leading to the duplication of
the structural components [4]. Transcription and post-
transcriptional control of specific mRNAs, as well as
translation regulation modulate the gene expression pro-
gram, such that practically all the genes show some regu-
lation over the course of development [5,6].

The malarial lipid composition has been substantially
documented for P falciparum and P. knowlesi at their
blood stages [7-9].

Glycerophospholipids(PL) are the main Plasmodium
membrane constituents, with a preponderance of PC
and PE and with an increase in phosphatidylinositol (PI)
involved in signaling. Upon P. falciparum or P. knowlesi
infection the phospholipid content in the erythrocytes
increases to 6-fold. In purified parasites, the main PLs are
PC (40-50%), PE (35-45%), PI (4—11%), and SM and PS
(< 5%). Interestingly, the PE content is unusually high
compared with its level in other eukaryotes [10-12]. A
major increase in neutral lipids is also detected, but the
final amount of these neutral PLs remain very low as
compared to the total PLs [13,14].

These lipids mostly originate from the parasite enzy-
matic machinery, which relies on scavenging and down-
stream metabolism of polar heads and fatty acids serving
as building units throughout a bewildering number of
pathways. The PL synthesis machinery in Plasmodium is
of prime importance since the parasite membranes are
almost exclusively composed of PE and PC with quasi-
absence of others structural lipids such as cholesterol.
Besides, the lipid-derived signaling molecules phospho-
inositide exert crucial function regulating parasite devel-
opment and proliferation that are currently deciphered
[15-18].
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Phospholipid biogenesis is crucial for the intracellular
development of the parasite and constitutes a potential
area for therapeutic intervention that has already been
validated leading to a novel and promising pharmaceutical
approach for the treatment of malaria [19,20].

At the blood stage, Plasmodium species thus display a
puzzling number of metabolic pathways that are rarely
found together in a single organism [21]: (i) the ances-
tral prokaryotic-type CDP- diacylglycerol dependent
pathway; (ii) the eukaryotic-type de novo CDP-choline
and CDP-ethanolamine (Kennedy) pathways; (iii) P
falciparum and P. knowlesi exhibit additional reactions
that bridge some of these routes. A plant-like pathway
that relies on serine to provide additional PC and PE,
is named the serine decarboxylase-phosphoethanolamine
methyltransferase (SDPM) pathway. This route is of great
interest as it involves serine decarboxylase (SD) that
has been characterized in plants and is distributed spo-
radically throughout animal genomes [21,22]. In addi-
tion, base-exchange mechanisms are largely unexplored in
Plasmodium but are currently explored in our laboratory.

Thus, the malaria parasite possesses a panoply of com-
plex metabolic pathways and at least some of them are of
vital importance for the parasite [21]. Based on quantita-
tive biochemical studies available on P. knowlesi parasites,
we establish here the comprehensive network of metabolic
pathways, synthesizing phospholipids at the blood devel-
opmental stage [23]. This gives insights on the relative
contributions of the different metabolic branches and as
to how metabolite levels and metabolic fluxes are mod-
ulated and lead to identification of key regulatory steps,
resulting in a global view of regulations and metabolic
schemes in Plasmodium.

Methods

Finding parameters and stationary flux profiles from
radiolabelled metabolites profiles

In the last decades, isotope labelling became a major tool
for studying metabolic activity of many organisms from
bacteria to human [24,25]. Such experimental techniques
have as primary aim the quantification of intracellular
metabolic fluxes. The mathematical analysis of the data
can be intricate and depends on the technique (radioactive
precursor incorporation, isotopomers distribution) and
on the type of experimental measurement (steady state,
transient data), therefore there is no unique equation
or algorithm allowing to extract information from any
fluxomic data. We have based our modelling work on a
series of experimental studies designed to elucidate the
synthetic pathways of phospholipids in the malaria para-
site [8]. The experimental protocol in these studies uses
incorporation of PL radiolabelled precursors and mea-
surement of concentration of end products and interme-
diate labelled metabolites in the metabolic network. Most
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of the available data consist of concentrations of metabo-
lites after a relatively long incorporation time, for various
external concentrations of the precursors.

In order to model the incorporation of precursors we
use a kinetic metabolic network model. The time depen-
dent variables of this model are the concentrations of
various metabolites inside the parasite. We gather these
concentrations in a column vector ¢ = (¢, ¥, ..., ¢,
where cf”, i €1, n] denote concentrations of metabolites
i. Some metabolites, namely the scavenged precursors, are
considered to be kept at constant concentrations outside
the parasites. The corresponding concentration vector is
¢t = (¢, ¢85, ..., )T, where ¢, i € [1,m] are the
fixed, external concentrations of metabolites i. In a typ-
ical experiment, concentrations ¢ are measured after a
given time, for several values of ¢?**. The list of metabo-
lites for our PL metabolic network is given in the Table 1.
There are three types of external precursors (serine,
ethanolamine, and choline), therefore for the study pre-
sented in this paper, m = 3. The model is a network
of biochemical reactions. To simplify, all the reactions of
the network are modelled as single substrate enzymatic
reactions. By doing this, we implicitly assume that cofac-
tors are either not limiting or not time dependent. This
constraint could be released in more realistic models,
for instance when studying the crosstalk between sev-
eral pathways. We also consider that all the enzymatic
reactions have Henri-Michaelis-Menten kinetics [26,27]:

R(e) = s M
K, +c
where R is the reaction rate, V,,,, is the maximum reac-
tion rate, K, is the Michaelis constant, and c is the
concentration of the substrate.

The only exception from this kinetics law, is the passive
transport of ethanolamine across the parasite membrane.
This process has been modelled as a first order mass
action law reaction as follows:

R(Cext, Cin) — 1<fcext _ I(bcin (2)

where R is the ethanolamine influx, Ky, Kp are first order
kinetic constants and ¢, ¢, are the external and internal
concentrations of ethanolamine, respectively.

The topology of the metabolic network is summarized
by the stoichiometric matrix S. The columns of § are the
stoichiometric vectors, and the elements S;; are integers
representing the numbers of molecules of the species i
that are consumed (in which case S;; < 0) or produced (in
which case S;; > 0) by the reaction j. The ordinary differ-
ential equations describing the kinetics of the model read:

d in )
S = SR, ) 3)
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where R = (Rl,Rz,...,R,)T is the column vector of
reaction rates, in other words the vector of fluxes.

Given the external concentrations of precursors, ¢
the model can predict the intracellular distribution of
fluxes, and the concentrations of metabolites, ¢, as func-
tions of time. These predictions are solutions of the
Eq. (3) and depend on the kinetic parameters k =
(Kin1s Vinax1s - - - Krs Vinaxrs Kp, Kp) and on the external
concentrations ¢®*, Rather generally, parameter fitting is
a least-square optimisation problem. In our situation, the
least-square objective function is

ext
)

d
®(k) = Y IFtk, ™) — o'lI, (4)
j=1

where the index j € [1, d] denotes several external concen-
tration values c]?xt of the precursors, c]‘:" are the measured
concentrations of metabolites after a long incorporation
time (at steady state) and the vector function F gives the
predicted metabolite concentrations. Here ||x|| stands for
the Euclidean norm of the vector x.

Of course, steady state data do not uniquely determine
steady state parameters. Indeed, multiplying all the flux
parameters (Vj,,x in Michaelis-Menten kinetics) by the
same constant, does not change the steady state and pre-
serves the value of the objective function ®. In order to
fix this multiplicative constant, we used the values of the
influxes, that were estimated by dividing the cumulated
quantity of end products by the time needed for their
accumulation.

Another, more difficult, problem is how to avoid local
minima of ®. In order to solve this problem we use a
hybrid method combining discrete sampling of flux val-
ues, inversion of the smooth flux-concentration relation,
and a final smooth local optimization. The main idea of
this method can be summarized as follows. If for each
reaction, we can determine the flux for various substrate
concentrations, then we can invert the flux-concentration
relation for the Michaelis-Menten mechanism and obtain
Vinax and K,,. The optimisation of V,,,, and K,, has
an unique solution, as can be shown by the well-known
Lineweaver-Burk plot [43]. However, even though the sub-
strate concentrations are readily available from the data,
the flux profiles are unknown. A global optimum will be
found by sampling the discretized space of admissible flux
profiles.

From (3) we find that the steady state fluxes satisfy the
equation

SR = 0. (5)

Although it constrains the flux values, Eq. (5) has not
an unique solution. The number of independent steady
state flux profiles is equal to the dimension of the ker-
nel Ker(S) of the stoichiometric matrix S. The rank-nullity
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Table 1 List of reactions and metabolites in the network
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ReactionID  Substrates & products Enzyme (E.C number) ORF (P.falciparum/P.knowlesi) References
R1 SerE — Ser ? ? [28]
(Serine transport)
R2 Ser — PS PSS (MAL8P1.58) /(PKH_051100) Vial (unpublished data).
(Phosphatidylserine synthesis) predicted
R3 Ser — Etn SD ? [28]
(Serine decarboxylation) 411
R4 Etn — PEtn EK PfEK [29]
(Ethanolamine phosphorylation) 27.182 (PF11_0257) /(PKH_092210)
R5 PEtn — PCho PMT PPMT [30,31]
(Phosphoethanolamine methylation)  2.1.1.103 (MAL13P1.214) / (PKH_121150)
R6 PS — PE PSD PfPSD [32]
(Phosphatidylserine decarboxylation) — 4.1.1.65 (PFI1370c) /(PKH_072580)
R7 PEtn — PE ECT PFECT [28,33]
2.77.14 (PF13_0253)/ (PKH_120620)
CEPT/EPT PfCEPT
2.7.8.1 (PFF1375¢)/(PKH_112100)
R8 PCho — PC ccT PFCCT [33-35]
27715 (MAL13P1.86)/(PKH_141580)
CEPT/CPT PFCEPT
2782 (PFF1375¢)/(PKH_112100)
R9 PE — PC PEMT/PLMT ? [28,36,37]
(Methylation) 21.1.17/210.71
R10 PC— PS PSSbe (MAL13P1.335) /(PKH_110380)
(base exchange) 278
R11 PE — PS PSSbe (MAL13P1.335) /(PKH_110380)
(base exchange) 278 Berry and Vial (unpublished data)
R12 PC — ? ?
(Phosphatidylcholine efflux)
R13 PS — ? ?
(Phosphatidylserine efflux)
R14 PE — ? ?
(Phosphatidylethanolamine efflux)
R15 ChokE — Cho NPP/OCT/CTL (PFE0825w) /(PKH_101630) [20,38-40]
(Choline transport)
R16 Cho — PCho CK PfCK [2941]
(Choline phosphorylation) 27132
R17 EtnE — Etn ?

(Ethanolamine diffusion)

We have used the following abbreviations. SerE = exogenous serine, Ser = intracellular serine, PS = phosphatidylserine, EtnE = exogenous ethanolamine,

Etn = intracellullar ethanolamine, PEtn = phosphoethanolamine, PE = phosphatidylethanolamine, ChoE = exogenous choline, Cho = intracellular choline,

PCho = phosphocholine, PC = phosphatidylcholine, DAG = diacylglycerol, SD = serine decarboxylase, PSSbe = phosphatidylserine synthase I,

PMT = phosphoethanolamine-N-methyltransferase, PEMT = phosphophatidylethanolamine-N-methyltransferase, CCT = cholinephosphate cytidylyl transferase,
ECT = ethanolaminephosphate cytidylyl transferase, CEPT = choline/ethanolamine phosphotransferase, CK = choline kinase, EK = ethanolamine kinase, NPP = New
permeation pathway, OCT = Organic cationic transporter, ? = putative genes found.
This model was deposited in BioModels Database [42] and assigned the identifier MODEL1310130000.
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theorem provides the number of independent steady state
flux profiles, dim(Ker(S)) = n — rank(S), where n is the
number of reactions in the network, and rank(S) is the
rank of the matrix S, i.e. the number of reactions that
have linearly independent stoichiometries. According to
the rank-nullity theorem, if there are # reactions in the
network, there are n — rank(S) linearly independent, dis-
tinct flux profiles, compatible with the constraints. We call
admissible fluxes, the solutions of Eq. (5) such that R; > 0,
for any irreversible reaction.

In order to sample the set of admissible fluxes, we need
a convenient parametrization of the admissible flux val-
ues. For simplicity, we present such a parametrisation for
the case when the network contains only monomolec-
ular reactions, i.e. each reaction has only one substrate
and only one product. Our kinetic model satisfies this
condition, because we chose not to represent cofactors.
We also consider that all reactions are irreversible and
impose R; > 0 for all fluxes. This condition is fulfilled
by all reactions in our model, with the exception of the
passive ethanolamine influx that is reversible. The later
does not represent a problem, because in our data there
is no ethanolamine incorporation and the corresponding
reaction functions unidirectionally to evacuate internal
ethanolamine excess. The generalization of the method to
networks with reversible reactions is straightforward. In
this case a bidirectional reaction can be replaced by two
unidirectional reactions, each one having positive rate.

{R]’:”}je [1,,;] denotes the influxes,the fluxes that enter
the network (in our case n; = 3, there are three dif-
ferent PL precursors). Similarly, {R;’”t }j e [1,n,) denotes the
effluxes, namely the fluxes that leave the network (in our
case 1 = 3, the model produces three main PLs, namely
PC, PE and PS). Given the influxes, the steady state flux
distribution depends on a number of branching parame-
ters a;, satisfying the relations ) ; ozf = 1,0 < ocf <1
and defined as follows. For each metabolite j, let us denote

by {R?Mt,}}z e[1, 1
and by (R},

lite. The correspondmg stoichiometries (the numbers of
molecules of metabolite j produced or consumed by the

out the fluxes that consume the metabolite

i (L] the fluxes that produce the metabo-

out,j

reaction i) are denoted by v; > 0,v; 7 > 0, respectively.
The positive integers n]"”t, n]‘.” will be called flux outdegree
and indegree, respectively. For each metabolite j whose

flux outdegree satisfies n]"'” > 1, we define the positive

nj

out .
parameters o/ such that Z i1 o/ 1. Then, any admis-
sible solution can be computed from the influxes by the
following relations (see Additional file 1 for the proof):

Vlm

ZRm,] m,]/ out,/] (6)

k=1

out,/
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This reasoning also leads to the following formula for
the nullity of a monomolecular network, which is the
number of independent admissible flux profiles:

dim(Ker(S)) = m + Y (" — 1), @)
j

where 73 is the number of influxes. Egs. (6), (7) show that
in a network without branching (when all 7% = 1), all
the fluxes can be uniquely calculated from the influxes.
Relations (6) are also applicable to non-monomolecular
networks. However, the nullity formula (7) should be
modified in general. Indeed, the same flux can consume
several metabolites, which introduce further constraints
in the system (6); the result will be a decrease of the nullity
with respect to the monomolecular value (7).

For networks with branching, the parametrization (6) is
used to sample admissible fluxes by choosing values of the
branching parameters o/ p/ /N, where p/ N are posi-
tive integers satisfying ) ; p/ =N,0 = p/ < N. For each
choice of branching parameters a the reaction fluxes are

computed for all the available Concentratlons, resulting
from changing the external concentrations of the incor-
porated precursors. Then, the Michaelis-Menten flux-
concentration relations are inverted for all the reactions
independently, providing kinetic parameters. Because of
the fitting errors, admissibility of the predicted fluxes
is only approximate. Therefore, a second optimization
step is needed, this time for all the reactions together.
The kinetic parameters resulting from the inversion of
Michaelis-Menten relations are used as initial guesses for
a Levenberg-Marquardt local optimizer, minimizing the
objective function ® (4). This algorithm outputs optimal
values of the kinetic parameters, for each initial choice of
the branching parameters af Each of the resulting kinetic
parameters k is a local minimum of the objective function
®. By comparing these values of ® one can find the global
minimum.

In our method, the sampling of admissible fluxes can be
exhaustive (for simple networks this is doable), or stochas-
tic, using, for instance, simulated annealing in the dis-
cretized simplex of branching parameters. The flowchart
of our optimisation procedure is represented in Figure 1.

Multi-objective optimization

In order to analyse complex metabolic networks with
a large number of parallel pathways one needs several
types of fluxomic datasets, obtained in various conditions.
In this paper we use two types of data corresponding
each to incorporating only one PL precursor, either ser-
ine or choline. This leads to two datasets and least-squares
objective functions. For simplicity of the calculations we
combine the two objective functions by summing them.
Because of the small overlap of the two datasets, more
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Sampling
branching

> Admissible
parameters

fluxes, SR=0 ™

Reaction
fit, Km,Vm

Network fit,

> Refinement

optimisation step leads to refined parameters for the full network.

Figure 1 Flowchart illustrating the hybrid optimisation method used for modeling. Branching parameters are discretized and sampled to
calculate admissible fluxes. For each individual reaction, Michaelis-Menten formula is inverted to obtain the parameters K, Vnax. A final

sophisticated analysis using Pareto optimality would lead
to similar results.

Flux balance analysis

Flux Balance analysis (FBA) is an alternate method to
compute fluxes, given the reaction network and the
biomass definition. It is based on the steady state con-
straint (5) and optimality of biomass production [44].
Throughout this paper we have used the following
equation for the Biomass rate: 45% efflux PE + 50% efflux
PC + 5% efflux PS is maximal [12,21]. FBA does not
determine influxes, that can be arbitrarily normalized by
multiplication with a constant. In order to compare FBA
fluxes and values resulting from another method, the mul-
tiplicative constant should be chosen such that the influx,
or, in the case of several influxes, the average input flux is
the same in both methods.

Limiting step determination

Although very popular among biochemists, the limiting
step concept surprisingly lacks a clear definition [45].
Citing IUPAC Compendium of Chemical Terminology,
rate-controlling, or rate-determining, or rate-limiting step
in a reaction mechanism is an elementary reaction which
exerts a strong effect - stronger than any rate constant - on
the overall rate. The quantitative expression of this effect
could be given by a sensitivity coefficient, defined as the
derivative of the logarithm of the flux F with respect to the
logarithm of the rate constant k:

i« 0log(F)

= . 8
Cr dlogk ®)

In our study, the parameter k can be either Vj,,, or Ky,.
Also the flux value can be the steady state value, or, if
steady state conditions can not be reached, the value at
a given time, suggested by experiment. Let us notice that
our sensitivity coefficients become the flux control coeffi-
cients from metabolic control theory, only when k = V4,
and F is the steady state flux. In this case only, F is homo-
geneous in the parameters and the corresponding control
coefficients satisfy the usual summation theorems [46].

As discussed by Ray [47], the use of sensitivity analysis in
this context can lead to existence of many important reac-
tions instead of just one limiting step. In other words, one
can speak of limiting steps when sensitivities are concen-
trated (there is one or a few important reactions) instead
of dispersed (all the reactions are equally important) [48].
The concept of limiting step is often assimilated to a slow
step or narrow place in a chain of transformations. This
choice has a meaning for linear pathways, but has to be
revised for pathways with branching and cycles [45]. Fur-
thermore, in a simple chain of transformations, the steady
state flux, common to all the reactions in the chain, is con-
trolled by the rate constant of the first reaction and does
not depend on parameters of other reactions. Metabolic
control leads to a trivial result in this case : irrespec-
tively of the presence or not of a narrow place, the flux
control coefficients are all zero, excepting for the first
step that has control coefficient one. However, a narrow
place in a chain of transformations is limiting in the sense
that it provides an upper bound to the steady state flux.
One gets unlimited accumulation of downstream metabo-
lites, if the narrow place is not the first step of the chain
and if the conduction capacity of the narrow place is
exceeded.

Results and discussion

Modeling the structural phospholipid (PL) synthetic
pathways in Plasmodium knowlesi

Phospholipid synthesis in P knowlesi parasite at its blood
stage is one of the most characterized metabolic network,
due to the availability of infected erythrocyte collected
from Macaca mulatta or M. fascicularis monkeys and
several thorough fluxomic studies [28,49,50]. Figure 2 rep-
resents the network of reactions that are supported by
biochemical findings. It provides a global overview of
the pathways present in P knowlesi. The availability of
the genome sequence of P. knowlesi and the subsequent
genomic annotations brought a considerable amount of
information for the existence of biological processes and
existing biochemical pathways, offering a global view of
the parasite biology.
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Figure 2 Schematic overview of P. knowlesi reactions in structural phospholipid biosynthesis as demonstrated by experimental work.
Solid lines correspond to metabolite transport or biochemical reactions with an identified enzyme whereas dotted line correspond to reaction
identified with unidentified enzyme. Squares represent the phospholipid end products. Hexagons represent the enzymes. R1 to R17 denote the
reaction rates/fluxes. List of species : SerE = exogenous serine, Ser = intracellular serine, PS = phosphatidylserine, EtnE = exogenous ethanolamine,
Etn = intracellullar ethanolamine, PEtn = phosphoethanolamine, PE = phosphatidylethanolamine, ChoE = exogenous choline, Cho = intracellular
choline, PCho = phosphocholine, PC = phosphatidylcholine, DAG = diacylglycerol, SD = serine decarboxylase, PSSbe = phosphatidylserine synthase
I, PMT = phosphoethanolamine-N-methyltransferase, PEMT = phosphophatidylethanolamine-N-methyltransferase, CCT = cholinephosphate
cytidylyl transferase, ECT = ethanolaminephosphate cytidylyl transferase, CEPT = choline/ethanolamine phosphotransferase, CK = choline kinase,
EK = ethanolamine kinase, NPP = New permeation pathway, OCT = Organic cationic transporter, ? = putative genes found.

Lipid metabolism in Plasmodium knowlesi takes place to
a higher extent in late trophozoite and early schizont stage
of asexual (erythrocytic) phase [28,49].

The intra-erythrocytic proliferation of P knowlesi
requires large amount of PC and PE that together con-
stitute the bulk of the malaria membrane lipids [12].
The very high biosynthetic capacity of Plasmodium oper-
ates at the expense of the fatty acids mainly originat-
ing from the plasma and polar heads building units.
Choline entry into infected red blood cells (IRBC) involves
the erythrocytic choline carrier [38,51] and parasite-
induced new permeation pathways (NPP) [20,38-40].
Choline is provided to the parasite by a characterized
and very efficient organic-cation transporter (OCT/CTL)
[20,38-40].

Ethanolamine can be supplied from the poorly available
plasmatic ethanolamine, which can cross the membrane

by passive diffusion, and from serine. Serine is diverted
from the serum, host RBC or from hemoglobin degrada-
tion in food vacuoles [40].

Kennedy pathways

Both PC and PE may be synthesized denovo by the
CDP-choline or CDP-ethanolamine-dependent Kennedy
pathways. In the so-called Kennedy pathway, choline is
phosphorylated into phosphocholine (PCho), which is
subsequently coupled to CTP, thus generating CDP-
choline, which is further converted to PC by a parasite
CDP-diacylglycerol-cholinephosphotransferase (CEPT).
A similar de novo pathway allows the synthesis of PE from
ethanolamine. The final stage of both branches of the
Kennedy pathway involves the same CEPT enzyme, cat-
alyzing the formation of PC and PE from CDP-choline and
CDP-ethanolamine, respectively [21,23,33].
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CDP-DAG pathways

Additionally, Plasmodium possesses the CDP-DAG-
dependent ancestral pathway, which provides the anionic
phospholipids PI, PG, cardiolipid and eventually PS [9].
Biosynthesized PS is converted into PE via the activity of
PS decarboxylase (PSD) [32].

SDPM plant-like horizontal pathways

P knowlesi also possess a plant-like pathway that relies
on serine to provide additional PC and PE, which is
named the serine decarboxylase-phosphoethanolamine
methyltransferase (SDPM) pathway. Hereby, serine is
first decarboxylated to form ethanolamine, which is
then phosphorylated to lead to phosphoethanolamine
(PEtn). Serine decarboxylase (SD) enzymatic activity
was first described by our group in P knowlesi and P,
falciparum [28]. The gene and related SD catalytic activi-
ties were subsequently identified in plants [52]. The result-
ing phosphoethanolamine is either incorporated into PE
via the CDP-ethanolamine pathway or converted into
phosphocholine by SAM-dependent triple methylation,
which is carried out by a plant-like phosphoethanolamine
N-methyltransferase (PfPMT) (EC 2.1.1.103) [30,31]. In
the Apicomplexa phylum, the SDPM-pathway is only
conserved in Plasmodia with the exception of rodent
parasites, where the PMT activity is absent [53].

Base-exchange reactions
Base-exchange reactions (PSSbe) between serine and
PE or PC were initially not detected in Plasmodium.
However, parasite genomes suggest corresponding hypo-
thetic gene and recent biochemical studies have revealed
calcium-dependent base exchanges between serine and
PLs in P, falciparum (Berry and Vial, unpublished data).
There is no data measuring their quantitative importance
but they would be operational at the erythrocytic stage. In
some plants species, in which both CDP-DAG-dependent
and base-exchange PS synthesis take place, it has been
shown that, these enzymatic reactions have different pref-
erential molecular species as substrates [54].
Glycerophospholipid model (PL model) shown in
Figure 2 represents a rather exhaustive scheme encom-
passing the phospholipid synthesis and metabolic reac-
tions in Plasmodium, including 17 reactions and enzymes.
Biochemical experimental data and quantification experi-
ments, supports that this parasite machinery can provide
the bulk of PL composing the P knowlesi membranes.
Genomic studies have confirmed that malaria parasites
possess most of the panoply of corresponding genes
(see Table 1). Some of the genes, such as those cod-
ing for the base exchange and for PS synthase (PSS)
enzymes, remain hypothetical in Plasmodium. One of
the aims of our quantitative modelling is to test the
relative importance of various reactions in the model
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and, eventually, the absence for activity of some of
them.

Model simplification

In CDP-choline pathway, PC is produced from PCho in
two steps. First, PCho gives CDP-choline and then CDP-
choline transforms to PC. The intermediate CDP-choline
was produced in minute quantity which was difficult to
measure experimentally [28,53]. Again the yield of labelled
PCho was found to be 35 times more as compared to CDP-
choline. Thus, the formation of PC from CDP-Choline is
very rapid relative to the formation of CDP-choline from
PCho [28] and CDP-choline is a quasi-steady state species.
So, we have ignored this fast intermediate and combined
the 2 reactions into a single reaction (labelled R8 in the
model).

Similarly, in CDP-ethanolamine pathway formation of
PE from PEtn takes place in two steps. PEtn forms
CDP-ethanolamine and in turn produces PE. Again CDP-
ethanolamine is produced in minute quantity which is not
possible to quantify experimentally. Formation of PE from
CDP-ethanolamine is very rapid with respect to the rate
limiting formation of CDP-ethanolamine from PCho [50].
So, we have combined these two reactions into a single
reaction (labelled R7).

Training the model

The glycerophospholipid model (PL model) was trained
with two datasets, (i) incorporation of serine [28] (ii)
incorporation of choline [50] to their different metabolites
(PS,PE,PC) in the phospholipid metabolism pathway. The
experimental datasets includes the steady state concentra-
tions of the radiolabelled precursors (serine and choline)
with respect to their exogenous concentrations.

PL model trained with serine and choline incorporation
datasets

In the experiment [28], variable amounts from 0 to 2000
uM of radiolabelled serine were subjected exogenously
to the cell and were incorporated into various metabo-
lites (see Figures 2 and 3). These data was used to train
the model. The steady state concentration of all the ser-
ine derived metabolites were predicted and used to fit the
experimental data by the procedure defined in the Meth-
ods section. For each extracellular serine concentration,
the influx of serine was calculated by dividing the total
amount of accumulated end products (PC + PE + PS) by
the characteristic accumulation time (2 h).

The characteristic accumulation time correspond to the
cross-over between accumulation that is approximately
linear in time and corresponds to constant net fluxes,
and saturation, corresponding to proximity of steady state
(when the net fluxes vanish). For serine incorporation, this
time is approximately two hours [28].
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Figure 3 The plot illustrates the fit between the steady state concentration of serine and choline incorporated metabolites with the
extracellular serine (0-2000 uM)(left panel) and choline (0-160 uM)(right panel) from experimental studies and from simulation
respectively. The points(or markers) represent the steady state concentration of serine incorporated metabolites with varying extracellular serine
measured in the experiment. The dash-lines represent the concentration of metabolites with varying concentration of extracellular serine, as
calculated from (PL) Model(ODE).Similarly, in the right panel, points(or markers) represent the steady state concentration of choline incorporated
metabolites with varying extracellular choline measured in the experiment. The dash-lines represent the concentration of metabolites with varying
concentration of extracellular choline, as calculated from (PL) Model(ODE).

Exogenous Choline [u M]

Radiolabelled experiments were also performed with
choline as metabolic precursors. Choline produces dif-
ferent metabolic compounds (see Figures 2 and 3) with
PC as the major end product [50]. This dataset was
also used to train the model, with a unique set of
parameters for both experiments. In order to repro-
duce the experimental protocol, extracellular concen-
tration of choline (ChoE) was taken for several values
from 0 to 160 uM, whereas concentrations of extracel-
lular serine (SerE) and ethanolamine (EtnE) were kept
very low. Like for the previous data sets, the influx of
precursor was calculated by dividing the total amount
of accumulated end product (PC) by the accumulation
time (1 h). Though used for influx estimates, the phos-
phatidylcholine does not reach steady state in this exper-
iment (see Figure one of [50], also the model analysis
section) and PC profile has not be taken into account for
the calculation of the objective function &, defined by

Eq. (4).

A model prediction with the experimental results is
shown in Figure 3. The corresponding parameter values
can be found in Table 2.

Model predictions and analysis

Calculations of fluxes from the model (ODE method) and
comparison with Flux Balance Analysis (FBA)

Using the parametrized ODE model we can compute the
steady state concentrations of the metabolites, as well as
the steady state values of the fluxes through all reactions.
Steady state fluxes can also be calculated using the FBA
method (see Methods). We compare the results from two
methods. Because FBA does not fix the time scale, in this
method fluxes are determined up to multiplication by a
constant. In order to compare the two methods, we renor-
malized the FBA fluxes such that the input fluxes (the
average when there are several) coincide in the two meth-
ods. Although there is no reason to expect that the FBA
method provides an absolute reference, this comparison is
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Table 2 Parameter values and confidence intervals for the ODE (PL) model

Reaction ID Reactions Enzymes Estimated Vm(uM/min) Estimated Km (uM) Regime
R1 SerE — Ser 341 €[3.08,3.95] 363 €[326,410]

R2 Ser — PS PSS 131 €[0.517,1.65] 797 €[352,1.25.10°]

R3 Ser — Etn SD 262 €[2.33,3.11] 24 €(22.7,29.5]

R4 Etn — PEtn EK 862 €[6.19,13.3] 109 €[75.6,193]

RS PEtn — PCho ~ PMT 1.08 €10.725,139] 122 €785, 2650]

R6 PS — PE PSD 225 €[0.747,2.94] 204 €[152,413]

R7 PEtn — PE ECT/CEPT 561 €[4.19,7.65] 227 €[175,353]

R8 PCho — PC CCT/CEPT 0413 €[0.315,0.599] 31 €[26.2,349]

R9 PE — PC PEMT/PLMT  142.10% €[59.2,1.33.104 3.21.10° €[2.73.10%,1.92.10°] L
R10 PC — PS PSSbe 0.697 €1[0.318,0.944] 3.76 €[0.06,3.88]

R11 PE — PS PSSbe 89.9 €1[9.16,527] 1.71.10° €[1.58.10%,9.14.10°] L
R12 PC — 1.57 €10.75,3.84] 24.1 €[16.5,358]

R13 PS — 1.54 €[0.013,3.28] 204 €[41.1,1020]

R14 PE — 774 €19.44,1.08.101] 1.55.10° €[2.52.10%,1.65.10°] L
R15 ChoF — Cho  OCT/NPP 0.232 €[0.182,0323] 102 €[91.9,109]

R16 Cho— PCho (K 0.556 €[0.384,0.882] 304 €[22.8,36.7]

R17 EtnE — Etn Kr =5.10"*min~! €[1074,25.1073] K, = 1.33.10~*min~" €[4.45.1071°,14.1073]

For the calculation of the confidence intervals see the Methods section and the Additional file 1 (the allowed objective function values were less than 1.5 times the
global minimum). All the reactions have mass action kinetics, with the exception of the reaction 17 that has first order mass action law kinetics (the forward and the
backward rate constants are denoted K¢ and K, respectively). For those reactions whose regime is linear (L), only the ratio Vmax/Km is significant.

informative. Agreement will confirm the relevance of the
optimal biomass production concept, whereas disagree-
ment will indicate the limitations of the FBA method.

We have performed different in silico experiments with
the incorporation of different metabolic precursors.

Serine incorporation At physiological concentration of
exogenous serine (SerE) (0-100 M), fluxes were calcu-
lated using the FBA method [44] and the ODE kinetic
model (with fitted parameters). The fluxes from these two
different methods were compared. The concentration of
extracellular choline (ChoE) and ethanolamine (EtnE) was
kept very low. Distribution of fluxes with five different
concentration of SerE (0-100 nM) is shown in Figure 4.

Fluxes from FBA (represented with blue bars) are inde-
pendent of the concentration of the metabolites but they
depend on the assigned biomass and on the influxes. The
biomass was defined to be (50% PC + 5% PS + 45% PE)
[12,21].

Relative to the influx, the distribution of fluxes from
FBA method (blue bars, Figure 4) does not change with
the concentration of exogenous serine (SerE). On the
other hand, the relative distribution of fluxes calculated by
the ODE method, changes slightly for some reactions with
change in concentration of SerE. The fluxes from both the
methods were compared to each other and to previously
reported biochemical findings.

Fluxes from ODE (green bars, Figure 4) marks the major
part of serine derived PE, formed via serine decarboxyla-
tion (SD)(R3 in Figure 2 and Figure 4). PS decarboxylation
(PSD)(R6 in Figure 2 and Figure 4) which also can form
PE, has less contribution.

Indeed, the flux R7 is much higher than R6 and it
does not increase much with increase in concentration
of exogenous serine (SerE, Figure 4). Again, R3 is much
greater than R2. A very low flux R2 indicates low, pos-
sibly vanishing, activity of phosphatidylserine synthase
(PSS) during blood stages of P knowlesi in presence of
exogenous serine.

These findings suggest that, direct decarboxylation of
serine and CDP-ethanolamine pathway (R3,R4,R7) (see
Figure 2) is the preferred pathway for the formation of PE
from serine in agreement with [28].

On the contrary, fluxes from FBA method (blue bars,
Figure 4) suggest that R6 is greater than R7. So, the
FBA results contradict the experimental findings [28].
This contradiction may be due to the lack of relevance
of the biomass optimisation in the situation when serine
only is incorporated and emphasizes the utility of kinetic
modeling.

Base-exchange reactions (PSSbe) between serine and
PE or PC were initially not detected in Plasmodium.
However, recent biochemical studies revealed calcium-
dependent base exchanges between serine and PLs in
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P, falciparum (Berry and Vial, unpublished data). This is
an area which remains unexplored in Plasmodium.

PS could be formed directly from serine via PS synthase
(R2), or by transformation of PC and PE via (PSSbe), R10
and R11 respectively (Figure 2). In order to understand the
relative importance of these pathways, we compared the
fluxes R2, R10 and R11 in both the methods.

Fluxes from ODE suggest that, very less quantity of PS
was produced from serine via R2 (PSS) but considerable
amount from PC ( R10) and PE ( R11). The flux values of
R2 from FBA (blue bars) was much higher than the ODE
(green bars), though remained significantly smaller than
R3. It means considerable amount of PS was formed from
serine via R2 (PSS), which quantitatively contradicts the
biochemical findings [28]. However, the flux R10 (PSSbe)
from both the methods suggests an exchange of PC and
PS in presence of SerE.

Source of PC production in absence of CDP-choline
pathway

The major source of PC is thought to be provided by
CDP-choline or Kennedy’s pathway [50,55]. Thus, the
denovo CDP-choline pathway has been proposed to be
the primary route for synthesis of PC in Plasmodium
[50,56]. However, in vitro growth assays using dialyzed

serum indicated that CDP-choline pathway was not essen-
tial for parasite intra-erythrocytic development and sur-
vival [57,58]. There are two possible pathways which
could furnish PC synthesis other than CDP-choline path-
way/Kennedy pathway (see Figure 2):

i. PMT, which transforms PEtn into PCho, which in
turn forms PC via CDP-choline pathway. This is a
part of SDPM pathway by which host serine is
incorporated into PC. The mechanism is S-adenosyl
methionine (SAM)-dependent triple methylation
carried out by a plant-like phosphoethanolamine
N-methyltransferase (PMT or PEAMT) (EC
2.1.1.103). P. falciparum PMT (PfPMT), has been
revealed by the P. falciparum genome sequencing
program [59]. Subsequently, the role of
phosphoethanolamine methyltransferase (PMT)
pathway has been identified in Plasmodium
falciparum [31]. The orthologous gene
(PKH_121150) has been identified in Plasmodium
knowlesi [36].

ii. PE transmethylase (PEMT or PLMT) pathway (R9 in
Figure 2). The capacity of P. knowlesi-infected
erythrocyte to methylate PE into PC has been
documented in previous studies and clearly indicates
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PEMT activity [37]. However the corresponding
genes have not yet been found in any Plasmodium
species.

It is thus necessary to understand the kinetics of SDPM
and PE transmethylase pathway which diverts host serine
and ethanolamine (via PE) into PC. For this, we com-
pared the fluxes R5 (PMT) and R9 (PEMT/PLMT) from
ODE and FBA methods (Figure 4). We found that behav-
ior of the fluxes in both the methods is coherent. Flux R9
(PEMT/PLMT) is slightly more as compared to R5 (PMT)
in both FBA and ODE methods. These suggests that both
R5 and R9 could act as an source for the production of PC.

In order to gain further understanding into the rele-
vance of R5 (PMT) or R9 (PEMT/PLMT) in silico knock-
out experiments were performed.

In silico knockout of R5 (PMT),
phosphoethanolamine-N-methyltransferase

The PL Model was simulated for two hours with the
knockout of R5(PMT). The exogenous serine (SerE) was
kept at 100 uM, whereas the concentrations of choline
and ethanolamine were kept very low. The PC efflux
(R12), PS efflux (R13) and PE efflux (R14) were esti-
mated before knockout (BKO) and after knockout (AKO)
as shown in Figure 5.

The result is a two fold decrease in the efflux R12 and
PC concentration (see Figure 5). Thus, when R5(PMT)
was knocked out, the rate of incorporation of PC into the
membrane decreased in the absence of exogenous choline
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(ChoE). However, there was a small increase in the rate of
PE efflux.

In silico knockout of R9 (PEMT/PLMT),
phosphatidylethanolamine-N-methyltransferase

Similarly, the PL Model was simulated for two hours with
the knockout of R9 (PEMT/PLMT). The fluxes before
knockout (BKO) and after knockout (AKO) are shown in
Figure 6.

There was a marked decrease in PC efflux (R12)
and concentration. Thus, when R9 (PEMT/PLMT) was
knocked out, the rate of incorporation of PC into the
membrane decreased in the absence of exogenous choline
(ChoE).

The behavior of fluxes with R5 (PMT) or R9
(PEMT/PLMT) knockout followed the same pattern.
There was a significant decrease in PC efflux (R12), and
a small increase in the PE efflux (R14). A marked R9
(PEMT/PLMT) reaction denotes the capacity of the para-
site to convert PE to PC.

From the knockout studies (see Figure 5 and Figure 6)
it was found that, part of PC was produced by the even
contribution of R5(PMT) and RO(PEMT/PLMT). Looking
to the results of [30,31,60], knockout of PMT pathway in
P-falciparum produces a severely affected phenotype. This
suggests that PC biosynthesis from SPDM pathway can-
not be compensated by the CDP-choline pathway. This is
only partially in agreement with our predictions and could
mean that PMT might also have PEMT activity in vivo
in particular conditions. Because the corresponding genes
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coding for PEMT have not been found in any Plasmodium
species, deletion of PMT gene in P, falciparum could be
equivalent to a double knockout of PMT and PEMT in
our model, that completely abolishes the incorporation of
ethanolamine into PC.

Rate limiting steps for PC synthesis
We are interested here in detecting rate limiting steps
for the major PC synthesis pathway, namely the CDP-
choline pathway. The analysis is based on experiments
that have been done with choline as unique metabolic
precursor [50]. This experimental setting was designed
to probe the de novo synthesis of PC via CDP-choline
pathway. In this experiments the extracellular concentra-
tion of choline (ChoE) was changed from 0 to 100 uM
in silico. Concentrations of extracellular serine (SerE) and
ethanolamine (EtnE) were kept very low. As shown in
Figure one of [50], the parasite choline and phospho-
choline reach steady state concentrations after two hours
of incorporation. However, the phosphatidylcholine con-
centration is linearly growing with time even after three
hours of incorporation and does not reach steady state.
The incorporation data correspond to concentration of
choline derived metabolites after one hour of incubation
of infected erythrocytes in the presence of radiolabelled
choline. It explains the dynamics of the pathways to pro-
vide PC which is readily incorporated into P knowlesi
membrane or structural phospholipids.

We have simulated the ODE model for 1 h starting with
vanishing initial metabolite concentrations and computed

the resulting fluxes. The kinetic parameters (K, Viuayx) are
the ones obtained from model training and common both
to serine and to choline incorporation.

In order to find limiting steps we use a sensitivity
based approach. Parameters K, V4, are perturbed with
respect to the nominal values. We compute sensitivity
coefficients defined as the derivatives of the fluxes with
respect to all parameters of the model (see Methods
section).

As seen in Figure 7, for choline incorporation via the
CDP-choline (Kennedy) pathway, sensitivity coefficients
have similar orders of magnitude for fluxes and con-
centrations. These coefficients have even, rather than
concentrated distributions.

Consequently, and contrary to our former study [50], the
model cannot identify stricto sensu rate limiting steps. As
expected, rate constants of reaction 15 (the choline influx)
controls all the non-vanishing fluxes and concentrations.
In order of importance,follows reaction R8 (CCT: phos-
phocholine cytidylyltransferase) and to a lesser extent,
R16 (CK: choline kinase).

Our former experimental work [50]which finds CCT as
rate-limiting step should be interpreted in different terms.
Indeed, the relatively slow step CCT produces the quasi-
steady state CDP-choline that is rapidly consumed and
hence present in minute quantities compared to the CCT
substrate PCho. This means that CDP-choline is a fast
intermediate that can be depleted from the model, which
we actually did from the very beginning when we reduced
the model. The sensitivity coefficients of the remaining
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Figure 7 The plots represent the result of the sensitivity analysis. We have computed the sensitivity coefficients matrix for the fluxes (panel a)
and for the metabolite concentrations (panel b) with respect to parameters Vg and Kp,. We have considered choline incorporation via Kennedy
pathway, namely ChoE = 50 uM, Serk = 0, EtnE = 0. Fluxes and parameters are numbered from 1 to 17 that correspond to reaction labels from
Figure 2. Metabolites are numbered from 1 to 8, which corresponds to species represented in Figure 2. Each bar has a size proportional to the value
of the control coefficient (when this coefficient is negative the bars are oriented downwards). We can notice that the strongest effect on both the
PC production (flux 8, panel a) and PC concentrations (species 6, panel b) is produced by changes of parameters of reactions 15 and 8, in this
order. However, all the reactions in the CDP-choline pathway (with the exception of the fast, non-represented one, transforming CDP-choline into
PC) have comparable sensitivity coefficients, meaning that this pathway has not an unique limiting step. The PC concentrations are also sensitive to

the base exchange reaction R10 (panel b), which is normal, because this reaction consumes PC.

reactions, although different, do not differ by orders of
magnitude.

Conclusion

Precise quantitative models for essential metabolic func-
tions of pathogens can be used to understand their
intricate set of biological process and their regula-
tion. It guides us to determine the specificities of their
physiology, improve the action of known drugs and
discover new treatments directed against them. Even
when the full genome is available, as in the case of
Plasmodium, the reconstruction of metabolic path-
ways can be particularly challenging. Generic pathways
databases provide incomplete or unverified metabolic
pathways for Plasmodium. For instance, Kegg database
[61] proposes the similar glycerophospholipid metabolism
map for P. knowlesi, P. berghei, and Bacillus subtilis, in fact
based on evidence coming mainly from S. cerevisiae and
E. coli. Hagai Ginsburg’s Malaria Parasite Metabolic Path-
ways (http://priweb.cc.huji.ac.il/malaria/) is more spe-
cific because based on data from Plasmodium species
(without interspecies distinction), but is still incomplete
and not quantitative. We have proposed here, for the first
time, a complete quantitative model for the glycerophos-
pholipid synthesis in Plasmodium knowlesi. This model is
based on several fluxomic experiments of incorporation
of radiolabelled phospholipid precursors.

In order to learn the metabolic network from data
we have developed a new hybrid optimisation scheme,
which is based on the discretization of the simplex that
parametrizes the set of directions in the cone of admis-
sible fluxes. The main interest of this method is that it
facilitates the global search in the parameter space and
can be combined with other global optimization algo-
rithms, such as genetic algorithms or simulated annealing.
Our method was specifically designed to understand
glycerophospholipid metabolism in Plasmodium from
radiolabelled precursor fluxomic data. It provides an
effective sampling of the parameter space. This method
can be generally applied to metabolic networks with
Michaelis Menten reactions, functioning at steady state.
It can be therefore used for other studies of the same
kind, for rate constant identification in isotope labelling
experiments.

The metabolic network model has been used to elu-
cidate the functioning of the multiple phospholipid syn-
thetic pathways in P. knowlesi. The main source of PC is
the CDP-choline Kennedy pathway, however, SDPM and
PE transmethylase pathways could provide part of PC.
The values of the fluxes as well as in silico knock-out
experiments showed comparable importance of PMT and
PEMT/PLMT for PC synthesis in P knowlesi.

These findings confirmed earlier hypotheses about the
existence of both PMT and PEMT activity in P, falciparum
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and P, knowlesi [37]. Our in silico knock-out experiments
prove partial dependence of PC production on both PMT
and PEMT, meaning that single knock-out of any of these
enzymes will reduce but not completely eliminate PC pro-
duction from serine in P. knowlesi. This prediction can not
explain the result of [60] that deletion of pfPMT gene in
P. falciparum abolish the incorporation of ethanolamine
into PC. Because the corresponding genes coding for
PEMT have not been found in any Plasmodium species,
altogether these findings could suggest that PfPMT might
also have PEMT activity in vivo in particular conditions
(which are not met in vitro or in yeast) [53,62].

Our model also indicate that the major part of ser-
ine derived PE is formed by serine decarboxylation. PS
is predominantly formed by base-exchange reactions and
not by the direct CDP-DAG phosphatidyl-synthase (PSS)
mechanism.

Sensitivity analysis of CDP-choline pathway in our
model, does not identify limiting steps. However, it shows
that the carrier-mediated choline entry into the parasite
and the phosphocholine cytidylytransferase (CCT) reac-
tion have, in order, the largest sensitivity coefficients in
this pathway. This finding is in agreement with previ-
ous knowledge, and has been partially exploited in the
search for antimalarial drugs. Indeed, choline entry is tar-
geted by a new the class of potent antimalarial drugs
[19,63,64]. It would be interesting to combine this action
with simultaneous inhibition of the CCT reaction.
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