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Abstract

Background: Assessing biomass is gaining increasing interest mainly for bioenergy, climate change research and
mitigation activities, such as reducing emissions from deforestation and forest degradation and the role of
conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries
(REDD+). In response to these needs, a number of biomass/carbon maps have been recently produced using
different approaches but the lack of comparable reference data limits their proper validation. The objectives of this
study are to compare the available maps for Uganda and to understand the sources of variability in the estimation.
Uganda was chosen as a case-study because it presents a reliable national biomass reference dataset.

Results: The comparison of the biomass/carbon maps show strong disagreement between the products, with
estimates of total aboveground biomass of Uganda ranging from 343 to 2201 Tg and different spatial distribution
patterns. Compared to the reference map based on country-specific field data and a national Land Cover (LC)
dataset (estimating 468 Tg), maps based on biome-average biomass values, such as the Intergovernmental Panel
on Climate Change (IPCC) default values, and global LC datasets tend to strongly overestimate biomass availability
of Uganda (ranging from 578 to 2201 Tg), while maps based on satellite data and regression models provide
conservative estimates (ranging from 343 to 443 Tg). The comparison of the maps predictions with field data,
upscaled to map resolution using LC data, is in accordance with the above findings. This study also demonstrates
that the biomass estimates are primarily driven by the biomass reference data while the type of spatial maps used
for their stratification has a smaller, but not negligible, impact. The differences in format, resolution and biomass
definition used by the maps, as well as the fact that some datasets are not independent from the reference data
to which they are compared, are considered in the interpretation of the results.

Conclusions: The strong disagreement between existing products and the large impact of biomass reference data
on the estimates indicate that the first, critical step to improve the accuracy of the biomass maps consists of the
collection of accurate biomass field data for all relevant vegetation types. However, detailed and accurate spatial
datasets are crucial to obtain accurate estimates at specific locations.
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Background
The accurate estimation of forest biomass is crucial for
many applications, from monitoring fuelwood availabil-
ity [1] to reducing uncertainties in global carbon (C)
modeling [2-4]. Accurate biomass estimates are also

required for the implementation of a reliable mechanism
to reduce emissions from tropical deforestation and for-
est degradation (REDD+) under the United Nations
Framework Convention on Climate Change (UNFCCC)
[5]. While there is high interest in seeing such initiatives
take form, monitoring forest biomass stocks and stock
changes is identified as a key challenge for developing
countries wishing to take part in the expected REDD+
mechanism [6,7].
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Biomass stock over a certain area can be estimated
based on area assessment of the different land uses and
the associated biomass densities. In most developed
countries land use area assessment is based on field mea-
surement (e.g. using the cadastral system) and biomass
stock is estimated from the national forest inventory. In
tropical regions and particularly in sub-Saharan Africa,
most of the countries do not have the technical and
financial capacities to assess land use area through field
measurement, and national forest inventories are often
rare and outdated. As a consequence, the amount and
distribution of tropical forest biomass is still highly
uncertain [8,9].
In the last years new approaches using satellite obser-

vations and other spatial datasets were developed to opti-
mally extrapolate field data over large areas [10,11] and a
number of spatially explicit biomass and C datasets were
produced for tropical regions [12-15,4] or with global
coverage [16-18]. Given the relevance of this topic, space
agencies are currently evaluating new satellite missions
dedicated to biomass mapping, such as BIOMASS from
ESA [19]. Nonetheless, a proper assessment of the accu-
racy of remotely sensed biomass maps is often limited by
the lack of field validation datasets with comparable cov-
erage and resolution, somehow hindering the operational
use of the biomass products for national assessment of
biomass and C stocks. Since maps based on global or
regional datasets may not be tailored to country specific
circumstances, their applicability at national scales needs
to be better understood with appropriate case-studies.
In 1989, the government of Uganda established the

National Biomass Study (NBS), a long term program
aimed at the assessment of biomass resources and their
dynamics at national level using country-specific data and
methodology. The NBS is based on the combination of
extensive biomass field measurements (over 5,000 plots),
country-specific allometric equations and an ad-hoc land
cover (LC) map [20]. Given its high quality, the NBS
represents an optimal reference dataset to better under-
stand the capabilities of existing biomass or C maps and
related methodologies for national level applications.
Specifically, the objectives of this study were to use the
NBS dataset to: (1) compare existing biomass datasets; (2)
quantify their accuracy; (3) assess the effect of different
input data and methodologies on the biomass estimates.

Methods
Biomass maps
Six biomass or C stock maps, namely the Avitabile [21],
Baccini [15], Drigo [12], Gibbs & Brown [14], Henry [4]
and Reusch & Gibbs [17] maps, were compared to the
NBS biomass map [20] for the area of Uganda (Table 1).
While some maps were based on global and regional
datasets, others were based on country-specific data.

Datasets with resolution lower than 5 Km (e.g. [22,18])
were not included in the present analysis because they
were considered too coarse in comparison with the lim-
ited extent of the country. While it is not possible to
define with certainty the most accurate map because the
true biomass values cannot be known, the NBS biomass
map was considered as reference because based on the
largest number of nation-specific field data and a widely
accepted methodology.
The approaches used by the maps to relate spatial

data to ground observations were classified using the
scheme presented by Goetz et al. [10]: (1) Stratify &
Multiply (SM), where satellite data are used to derive a
thematic map and the field biomass data within each
class are averaged; (2) Combine & Assign (CA), where
satellite and other spatial datasets are integrated to
derive a thematic map with finer-grained strata and the
field data within each stratum are averaged; (3) Direct
Remote Sensing (DR), where satellite data are directly
converted to biomass density using classification techni-
ques (e.g. neural network, regression trees). Linear
regression or model inversion techniques are also
employed, especially in combination with active remote
sensing sensors [13,23].
The approach used by the Avitabile map is an extension

of the DR approach (DR+) because it integrates satellite
with LC data using a statistical model. Similarly, the
Henry map is based on an extended CA approach (CA+)
using a Monte Carlo procedure and satellite inputs in
combination with categorical data (i.e. LC map) to obtain
almost continuous biomass estimates.

Maps pre-processing
The datasets were standardized with regard to measure-
ment variable, reference system, spatial coverage and spa-
tial resolution. Aboveground biomass (AGB) was used as
a common measurement unit and the carbon maps were
converted into AGB using a carbon ratio of 0.47 for the
Reusch & Gibbs map and 0.5 for the Gibbs & Brown and
Henry maps. When the maps reported total (above and
belowground) biomass or carbon stock, the aboveground
component was calculated using root-to-shoot ratios,
namely the IPCC [24] ratios for the Reusch & Gibbs map
and the Gaston et al. [25] ratios for the Gibbs & Brown
map. Before the comparison of each map to the NBS, the
two datasets were projected to a common reference sys-
tem and, in order to minimize geolocation errors, higher
resolution datasets were re-projected to the reference
system of the dataset at lower resolution. The maps were
co-registered if necessary and then aggregated to a com-
mon resolution on the basis of the following procedure,
depending on the nature (vector, raster) and native reso-
lution of the datasets. When the maps to be compared
were both raster-based, the dataset at higher resolution
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Table 1 Main characteristics of the biomass and C maps used for the comparative study

Map Coverage Format Spatial resolution/
VMMU

Number of
classes

Pool Variable Biomass data Spatial
data

Ancillary data Period Approach

NBS [20] Uganda Vector 4 - 50 ha 48 Aboveground Biomass NBS Field data NBS LC
map

NBS Ecozone map circa-
2000

CA

Avitabile [21] Uganda Raster 30 × 30 m 376 Aboveground Biomass subset of NBS Field
data

Landsat None 1999-
2003

DR+

Baccini [15] Tropical Africa Raster 1 × 1 Km 343 Aboveground Biomass Field data MODIS None 2000-
2003

DR

Drigo [12] Eastern Africa Vector 40 - 120 ha 143 Aboveground Biomass Biome average Africover FAO GEZ circa-
2000

CA

Gibbs & Brown
[14]

Tropical Africa Raster 5 × 5 Km 176 Above and
belowground

Biomass Biome average GLC2000 CIESIN Population 2000 CA

Henry [4] sub-Saharan
Africa

Raster 300 × 300 m 346 Aboveground Carbon Field data Globcover FAO GEZ, MODIS VCF 2005 CA+

Reusch & Gibbs
[17]

Global Raster 1 × 1 Km 14 Above and
belowground

Carbon IPCC Biome
average

GLC2000 FAO GEZ, Frontier
forest map

2000 CA

The spatial resolution of vector-based maps is given by a Variable Minimum Mapping Unit (VMMU), which is class-specific. The NBS map used in this study was derived from the NBS LC map by applying to each
stratum its respective average biomass density reported in Drichi [21]. The spatial datasets used by the biomass/C maps included the Africover LC map [36], the Global Land Cover map for the year 2000 (GLC2000)
[37], the Globcover 2005 map [38], the Food and Agriculture Organization (FAO) Global Ecological Zone (GEZ) map [30], the MODIS Vegetation Continuous Field (VCF) tree cover products [39], the CIESIN’s Gridded
Population of the World dataset [40] and the Frontier Forest map [41]. The number of biomass classes of the maps with continuous values was calculated after their conversion to integer values (i.e. classes of 1 Mg
ha-1 interval).
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was aggregated and resampled to the grid and pixel size
of the dataset at lower resolution. When both maps were
vector-based, the map with smaller Minimum Mapping
Unit (MMU) (i.e. higher spatial detail) was first converted
to high-resolution (30 m) raster and then aggregated
within the polygons of the map with larger MMU. When
the comparison was done between a vector-based and a
raster-based map with lower resolution, the vector-based
map was converted to high-resolution raster and then
aggregated to the cell size and grid of the low-resolution
raster. Instead, when the raster-based map had a higher
resolution than the vector-based map, the raster was
aggregated within the vector polygons and the compari-
son was performed at polygon level. The reference NBS
map, which was vector-based with a variable MMU ran-
ging from 0.04 Km2 for forests to 0.5 Km2 for grasslands,
was considered as having higher resolution than the ras-
ter maps with cell size ≥ 1 Km but lower resolution than
the raster maps with cell size ≤ 300 m.

Comparison of maps
The level of agreement of the biomass maps with the
NBS map was assessed by comparing total and spatial
distribution of the biomass estimates. Spatial similarity
was assessed on the basis of difference maps, the Fuzzy
Numerical (FN) index, FN maps and variograms.
The difference maps, obtained by subtracting corre-

sponding map cells, represent the difference of the map
estimates at pixel level while the FN index [26,27] mea-
sures the similarity of spatial patterns between two numer-
ical raster maps. The FN index, ranging between 0 (fully
distinct maps) and 1 (fully identical maps), is computed as
the average of the numerical similarity s between each pair
of corresponding cells (a and b) in the two maps, which in
turn is computed cell-by-cell as follows:

s (a, b) = 1− | a− b |
max(| a |, | b |) (1)

where the cell values (a and b) are re-computed con-
sidering the neighboring cells within a specified window.
The FN index provides a single measure of the maps’
overall agreement while the FN map represents the
numerical similarity at pixel level.
The variograms of the biomass maps were computed to

represent and compare the spatial variation of areas with
homogeneous biomass density in the datasets [28,29]. The
map variograms were also compared with the variogram
derived from the field plots in order to identify the map
most able to maintain the spatial variation represented by
the field data. Since the variograms are sensitive to the
spatial resolution of the dataset [28], the maps were con-
verted to raster format at 1 Km resolution before the ana-
lysis and the Gibbs & Brown map was excluded because of

its lower native resolution. Water bodies were masked
before the FN and variogram analysis.
In order to investigate the effect of spatial resolution

on the maps similarity, the spatial statistics were com-
puted at the map native resolution and, after aggrega-
tion through averaging, at other resolutions ranging
from 1 to 50 Km.

Comparison of maps with field data
The accuracy of the biomass maps was assessed using
available NBS field data. This validation dataset consisted
of 3510 field plots with a spatial extent of 50 × 50 m sys-
tematically located throughout the country at 5 × 10 Km
distance and measured between 1995 and 2005. Clusters
of 1 to 5 plots were located at each grid intersection
separated by a distance of 300 m. The field plots were
up-scaled to the resolution of the biomass maps using
the following procedure. For vector-based maps, the bio-
mass values of the plots located within each polygon
were averaged. For raster-based maps, the plots located
within each pixel were area-weighted averaged on the
basis of the NBS LC map (i.e. weighting the plots accord-
ing to the fraction of the corresponding LC polygon area
within each pixel) using only the pixels where the field
plots represented, through LC polygons, at least 90% of
the pixel area. Since the comparison is affected by the
map resolution, the Avitabile and Henry maps were
aggregated to 1 Km resolution before the analysis.
The upscaled plot values were then compared with the

estimates of the corresponding unit (pixel or polygon) of
the biomass maps. Since categorical maps (i.e. maps based
on the SM or CA approach) attribute an average value to
the map units belonging to the same class, the average of
all upscaled field plots located within the same biomass
class was also compared with the class value itself. Lastly,
in order to test the assumption that 1 plot (area of 0.0025
Km2) may not be comparable with the larger map units
(area of 1 Km2 for most datasets), the comparison statis-
tics were re-computed selecting only the map units with
at least 2 field plots.

Comparison of biomass reference values and spatial data
The biomass maps considered in this study were obtained
by combining biomass reference values with spatial data-
sets. In order to separate and quantify the impact of these
two components on the map estimates, the same set of
biomass reference values was applied to different spatial
maps, and viceversa. Specifically, the most detailed bio-
mass reference values (the NBS plots) and then the most
general values (the IPCC Tier 1 values) were applied to
the NBS LC map, to the GLC2000 map stratified by the
Food and Agriculture Organization (FAO) Global Ecologi-
cal Zone (GEZ) map [30] (as in the Reusch & Gibbs map)
and to the Globcover map stratified by the FAO GEZ map
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(as in the Henry map). The NBS plots were also applied to
Landsat data in the Avitabile map.

Results
The comparison results are to be interpreted keeping in
consideration that the Avitabile and Baccini maps were
not independent from the reference data. Specifically, the
Avitabile map used the NBS field plots and the NBS LC
map to estimate biomass density while the Baccini map
used the NBS biomass map to derive training data. On the
other hand, the Drigo, Gibbs & Brown, Henry and Reusch
& Gibbs maps were independent from the reference data
and the comparison results represent an independent vali-
dation of their performance for the area of Uganda. How-
ever, the results were partially affected by differences in
map formats and resolutions. For example, coarser maps
(e.g. Gibbs & Brown, Drigo) were favored in the compari-
son because the similarity between the datasets tended to
increase at lower resolution (see below).

Comparison of maps
Total aboveground biomass of Uganda
The comparison of biomass stock of Uganda revealed
strong disagreement between the remote sensing pro-
ducts, with estimates of total AGB ranging from 343 to
2201 Tg (Table 2). The Baccini map provided the closest
estimate (443 Tg) to the NBS reference value (468 Tg)
while the Reusch & Gibbs map provided the most differ-
ent value (2201 Tg). Estimates from maps based on the
DR approach were conservative (i.e. negative bias) while
maps based on the CA approach provided higher values
than the NBS (i.e. positive bias). The map histograms
(Figure 1) showed large differences among the distribu-
tion of the biomass estimates, with the Avitabile, Baccini

and NBS maps as well as the NBS field plots being con-
centrated at low values (< 100 Mg ha-1) and the Drigo,
Gibbs & Brown, Henry and Reusch & Gibbs maps pre-
senting higher frequencies at higher values.
Other estimates of Uganda’s biomass
Similar level of disagreement among AGB estimates of
Uganda, as the tendency of maps based on biome average
values and coarse spatial datasets to overestimate this
parameter, was observed in Gibbs et al. [11]. This study
estimated total above and belowground C stock for several
tropical countries combining four sets of biomass refer-
ence values with the GLC2000 map stratified by the FAO
GEZ map. After converting the Gibbs et al. [11] values for
Uganda to AGB by applying a biomass conversion factor
of 0.47 and the root-to-shoot ratio for rainforest (the most
common ecozone of Uganda) of 0.37 [24], the estimates
were between 674 and 1921 Tg, within the range found in
the present comparison but consistently above the NBS
reference value (Table 2). Higher AGB values were
obtained using root-to-shoot ratios for the other ecozones
present in Uganda.
High variability of estimates of forest biomass was also

noticed comparing the FAO Forest Resource Assessment
(FRA) statistics for Uganda for the year 2000, which indi-
cate 681 Tg in the FRA 2000 Report [31] and only 244 Tg
in the FRA 2005 Report [32]. The difference, due to the
adoption of the NBS data in the FRA 2005 Report, indi-
cates the sensitivity of this parameter to the input data
and methodology used to estimate it. The value reported
in the FRA 2005 refers to forest AGB and is about half of
the NBS value due to the fact that in Uganda large amount
of biomass are stored in areas outside forest land.
Spatial distribution of biomass
Differently from summary statistics (e.g. total biomass)
where positive and negative differences may compensate
each other, spatial comparison of the maps reveals their
similarity at local level. The scatterplots (Figure 2), differ-
ence maps (Figure 3) and FN maps (Figure 4) showed that
the Reusch & Gibbs map strongly overestimated AGB dis-
tribution over most of the country and especially at low
biomass values. The Gibbs & Brown map overestimated
AGB in the northern part of Uganda and underestimated
it in the south-eastern region. Conversely, both the Drigo
and Henry maps overestimated AGB in the southern
region and at high biomass values, and presented esti-
mates similar to the NBS in the northern region. The spa-
tial analysis of the Baccini map, which total AGB was very
similar to the NBS value, revealed the presence of local
differences, with overestimation in the western region
counterbalanced by underestimation in the center-eastern
region. The Avitabile map presented high spatial agree-
ment with the NBS map and provided lower biomass den-
sities over most of the country, with higher differences in
the forest areas. The FN index (Figure 5) confirmed these

Table 2 Total and mean AGB of Uganda for different
biomass maps

Map Total AGB
(Tg)

Mean AGB (Mg/
ha)

Bias (Mg/
ha)

Avitabile 343 14.2 -5.2

Baccini 443 18.4 -1.0

NBS 468 19.4 -

Gibbs & Brown 579 24.0 4.6

Drigo 1191 49.3 29.9

Henry 1550 64.2 44.8

Reusch & Gibbs 2201 91.1 71.7

Houghton [42]/DeFries
[43]a

674 27.9 8.5

Brown [44]/Achard
[45,46]a

744 30.8 11.4

Olson [47]/Gibbs [16]a 832 34.5 15.1

IPCC [24]a 1921 79.5 60.2

The map bias is relative to the NBS value. The values for the maps indicated
with the symbol (a) are derived from [11]
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findings and showed that the spatial agreement between
the maps usually increased at lower spatial resolution.
The comparison of variograms (Figure 6) indicated a

large variability in the variance of the datasets. The field
plot variogram was best approximated by the Avitabile
and NBS variograms, suggesting that these two maps best
maintained the biomass spatial variation represented by
the field data. Instead, the other maps presented higher
semivariance, indicating larger variations in biomass pre-
dictions compared to those observed from the field data at

corresponding distances. Variogram behavior was related
to the stratification approach employed by the maps and
showed that maps based on coarse stratification layers and
biome average values (i.e. Reusch & Gibbs, Drigo) could
not capture the high biomass spatial variability represented
by the field plots but mapped large homogeneous areas or
few, distinct biomass classes. On the contrary, maps based
on a regression approach or several detailed strata (i.e.
Avitabile, NBS) identified small biomass areas with a con-
tinuum of values, representing more closely the spatial

Figure 1 Histograms of the biomass maps and NBS field plots. The histograms represent the frequency (i.e. number of occurrence) (y axis)
for each AGB class (x axis). AGB is reported in Mg ha-1. The histograms are derived from maps aggregated at the resolution of the coarser map
(5 × 5 Km) for consistent representation of frequency values.
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Figure 2 Comparison of AGB values between the NBS and the other biomass maps. The comparison is performed at pixel level and the
results are reported for the maps aggregated at 10 Km resolution for graphical reasons. AGB is reported in Mg ha-1. RMSE: root mean square
error.

Figure 3 NBS reference biomass map (left) and difference of AGB values between the biomass maps and the NBS map (right). The
difference maps, obtained by subtracting the corresponding map pixels, indicate overestimation with positive values (in green) and underestimation
with negative values (in brown) in comparison to the NBS map. The NBS map is modified from [20]. AGB is reported in Mg ha-1.
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characteristics of the field data. The variogram of the Bac-
cini map, based on a regression approach but with coarse
resolution, showed an intermediate behavior while the
Henry map, despite its higher resolution and large number
of biomass classes, represented a biomass spatial variation
not matching with that of the field plots.
Comparison of maps with field data
The comparison of the biomass maps with the field
plots (Table 3) confirmed the large differences among
the datasets.
The error estimate was higher for the Reusch &

Gibbs, Henry, Drigo and Gibbs & Brown maps, which
presented a Root Mean Square Error (RMSE) equal to
66.7, 62.2, 57.2 and 30.4 Mg ha-1 respectively. Since the
reference field data were independent from these maps,
the error estimates quantify the map accuracies for the
area of Uganda. However, the RMSEs were reduced by
the skewed distribution of the field data (see Figure 1),
which focused the comparison on low biomass areas
where prediction errors tended to be smaller than those
in high biomass areas.
The other three maps, directly or indirectly related to

the field data, presented lower error estimates.

DrigoBaccini

Reusch&
Gibbs

Avitabile

Henry
Gibbs & 
Brown

Reusch & 
Gibbs

s

Figure 4 Fuzzy Numerical maps. The Fuzzy Numerical maps represent the spatial distribution of the numerical similarity (s) between the
biomass maps and the NBS map, ranging from 0 (fully distinct) to 1 (fully identical).

Figure 5 Fuzzy Numerical index. The Fuzzy Numerical index
represents the mean similarity between the biomass maps and the
NBS map computed at different spatial resolutions (1 to 50 Km).

Avitabile et al. Carbon Balance and Management 2011, 6:7
http://www.cbmjournal.com/content/6/1/7

Page 8 of 14



The RMSE of the Avitabile map aggregated at 1 Km
resolution (17.7 Mg ha-1) was comparable with the value
computed at the map’s native resolution using indepen-
dent NBS field plots (15 Mg ha-1) [21]. Similarly, the
RMSE of the NBS map (24.1 Mg ha-1) was comparable
with the mean standard deviation of the biomass strata
(16.9 Mg ha-1) reported by [20]. Instead, the RMSE of the
Baccini map for Uganda (24.7 Mg ha-1) was lower than
the value reported by [15] for tropical Africa computed
using independent reference data (50.5 Mg ha-1), possibly
because in the present analysis the map was indirectly
related to the reference data.
When the comparison was performed selecting only the

map units (pixels or polygons) with 2 or more field plots,
there was only a small increase in the map accuracies,
while the number of units available for the comparison

decreased considerably (Table 3). When the comparison
was performed for biomass classes (as defined above)
instead of map units, the RMSE values were higher
(Table 4), possibly because the aggregation in classes
reduced the effect of the skewed distribution of the field
data.
Comparison of biomass reference values and spatial data
The comparison of AGB estimates obtained using differ-
ent combinations of the input data showed that applying
different biomass reference values to the same spatial
map caused very large variations in the biomass estimates
(219 - 504%) (Table 5). On the contrary, using different
spatial maps to stratify a set of biomass reference value
caused much smaller variations (20 - 33%) (Table 6).
However, the spatial datasets influenced the distribution
of the estimates and, according to the FN index, the

Table 3 Comparison of the biomass maps with the NBS field data

All plots Plots ≥ 2

Map N Bias (Mg/ha) RMSE (Mg/ha) N Bias (Mg/ha) RMSE (Mg/ha)

Avitabile 850 -2.9 17.7 173 -1.7 13.6

Baccini 888 -4.8 24.7 184 -7.5 23.5

Drigo 985 39.3 57.2 664 38.8 54.0

Gibbs&Brown 92 9.2 30.4 31 6.1 28.0

Henry 878 51.1 62.2 183 57.1 69.9

NBS 1129 1.1 24.1 693 0.9 19.5

Reusch&Gibbs 778 35.5 66.7 160 31.5 65.1

The comparison is performed using all map units with at least 1 field plot ("All plots”, left column) and selecting only the map units with 2 or more field plots
("Plots ≥ 2”, right column). N is the number of map units used for the comparison

Figure 6 Variograms of the biomass maps and NBS field plots. The right figure shows a zoom of the variograms for semivariance values
between 0 and 2500.
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overall spatial agreement of the biomass maps with the
NBS reference map decreased using global LC datasets
instead of Landsat data or the NBS LC map (Table 6).
The results also indicated that the use of the IPCC Tier

1 values in combination with different spatial maps always
over-estimated AGB of Uganda (Table 5). The comparison
of the biomass estimates separately per vegetation type
revealed that most of the overestimation was due to the
IPCC reference values for forest (ranging from 115 to 310
Mg ha-1), which were significantly higher than the corre-
sponding NBS values (ranging from 35 to 223 Mg ha-1)
and, when applied to the NBS LC map, estimated forest
biomass to 1279 Tg while this was only 294 Tg according
to the NBS (Table 7).
In addition, the comparison of the LC maps revealed

large differences among the datasets. Specifically, the
GLC2000 mapped larger areas of forest and shrubland and
smaller extents of grassland and agriculture in comparison
to the NBS (Table 7). Therefore, by using the IPCC Tier 1
values in combination with the GLC2000 map (as in the
Reusch & Gibbs map), the higher biomass reference values
for forest and shrubland were applied to larger area cover-
age of these two classes, causing the strong overestimation
of AGB stock found in the Reusch & Gibbs map.

Discussions
The comparison of six biomass and C stock maps with
the NBS reference dataset revealed large differences

regarding estimates of total AGB of Uganda and its spa-
tial distribution. These differences were related to the
biomass reference data (biome average values versus field
data), the spatial datasets (global versus national maps or
satellite data) and the statistical approach (averaging ver-
sus regression models) employed by the maps.
The biomass reference data were responsible for most of

the variability in the AGB estimates (Table 5). Maps based
on biome average biomass values (i.e. Reusch & Gibbs)
and averages from forest inventories acquired in several
countries (i.e. Drigo, Gibbs & Brown) agreed less with the
reference dataset than maps based on national forest
inventory data, strongly overestimating the country’s AGB
stock. This was due to the fact that biome average values,
representative of large areas and broad vegetation types,
were applied to areas of Uganda that diverge from the
average biome conditions. For example, the IPCC Tier 1
value of 260 Mg ha-1 for AGB in forests in the tropical
moist deciduous ecozone was not appropriate to the
woodlands in northern Uganda, located in an area much
drier and with lower tree density and dimension than in
the average ecozone condition, where the NBS reference
value was 35 Mg ha-1. In addition, while biomass density
in mature forest and at specific locations can reach higher
values than the average NBS values [23], applying default
AGB values to 1 Km resolution maps is particularly not
appropriate in a country like Uganda, which is character-
ized by a highly fragmented landscape. However, while the

Table 5 Total AGB using different combinations of spatial and biomass data

Spatial data Biomass data Total AGB (Tg) Difference (%)

NBS LC
NBS plots 468 -

IPCC Tier1 1,492 219%

GLC2000 + FAO GEZ
NBS plots 377 -

IPCC Tier1 2,234 493%

GlobCover + FAO GEZ
NBS plots 363 -

IPCC Tier1 2,191 504%

The right column reports the percentage difference of total AGB using different biomass reference data for each spatial dataset

Table 4 Comparison of the biomass maps with the NBS field data by biomass classes

All plots Plots ≥ 2

Map N Bias (Mg/ha) RMSE (Mg/ha) N Bias (Mg/ha) RMSE (Mg/ha)

Avitabile 52 -0.9 24.7 45 -0.9 20.0

Baccini 75 26.7 45.0 56 14.5 31.5

Drigo 94 47.7 64.5 90 45.5 61.5

Gibbs&Brown 36 36.2 47.9 14 9.3 34.0

Henry 163 75.4 88.5 130 67.4 79.6

NBS 34 8.6 28.7 33 7.8 28.5

Reusch&Gibbs 11 70.7 104.3 11 70.7 104.3

The comparison is performed using all map units with at least 1 field plot ("All plots”, left column) and selecting only the map units with 2 or more field plots
("Plots ≥ 2”, right column). N is the number of biomass classes with field plots identified in each map

Avitabile et al. Carbon Balance and Management 2011, 6:7
http://www.cbmjournal.com/content/6/1/7

Page 10 of 14



use of biome average values overestimated the total AGB
of Uganda, in some cases their application to local level
underestimated AGB density (see Figure 3), which in
terms of C assessment may cause underestimation of
emissions from deforestation occurring in forests with
more than average biomass density [2,8].
Regarding the spatial datasets, maps based on global

LC datasets agreed less with the reference data than
maps based on national LC or satellite data. Global data-
sets represent the distribution of the main LC types at
regional level using a limited number of classes and, as a
consequence of the small thematic detail, the variability
of a biophysical parameter as biomass within the LC
classes is usually large. For example, in the GLC2000
dataset all areas dominated by trees (> 40% cover) are
classified as forest, but it can be expected that even after
their stratification by ecological regions, the biomass den-
sity within a forest type varies considerably according to
tree size, density and specific conditions related to local
climate and land use history. Instead, national LC maps
identified different forest types that allowed reducing the
variability in the AGB strata. Satellite data were also able
to identify strata with low AGB variability and, in com-
parison with LC maps, presented the advantage of higher
spatial resolution, higher thematic content (i.e. continu-
ous values) and were not affected by ambiguities in class
definition or propagation of LC errors in the biomass
estimates.
Regarding the statistical approach, biomass estimates

derived from averaging methods (CA approach) agreed

less with the reference data than predictions based on
regression models (DR approach). While this result was
clearly affected by the fact that the Avitabile and the Bac-
cini maps (DR approach) were not independent from the
reference datasets, similar conclusions were reached by
Goetz et al. [10] on the basis of independent comparison
data. Using lidar metrics closely related to AGB density,
Goetz et al. showed that in central Africa the Baccini
map (DR approach) had a narrower range of variability of
lidar values within each AGB class and hence a smaller
uncertainty for any AGB estimate than the Gibbs &
Brown map (CA approach). It is important to note that
these results are due to the input data employed by the
CA maps (i.e. biome average values and coarse spatial
maps) more than to the approach itself. Ultimately, the
quality of a biomass map depends on the input data used
to generate it. However, the factors reducing the map
accuracy were strictly associated with the approach: for
instance, the DR approach could hardly be developed on
the basis of few average biomass values, and it employs
satellite data that are certain to have higher spatial and
thematic resolutions than any derived map. In addition,
since all the map units belonging to the same class
receive the same biomass value, the averaging approach
cannot explain the intra-class variability, which can be
large when the strata do not accurately reflect the bio-
mass distribution. Instead, maps based on regression
models provide continuous estimates that can describe
the full range of biomass variability. Moreover, while the
categorical data (such as LC) that are used to identify the

Table 7 Comparison of biomass and area statistics for the main LC classes of Uganda

AGB Ref. values (Mg/ha) Total AGB (Tg) Area (Km2 × 1000)

LC class NBS Plots IPCC Tier1 NBS Plots + NBS LC IPCC Tier1 + NBS LC NBS LC GLC2000

Forest 35 - 223 115 - 310 294 1279 49.3 67.3

Shrubland 14 70 14 98 14.2 49.2

Grassland 8 2 - 6 47 31 51.2 15.8

Agricolture 11 10 112 84 84.7 70.7

For each LC class, the comparison is performed between the NBS and the IPCC Tier 1 biomass reference values (left columns), between the total AGB estimates
of Uganda obtained by applying the NBS and IPCC reference values to the NBS LC map (central columns), and between the area mapped by the NBS LC and the
GLC2000 maps (right columns)

Table 6 Total AGB using different combinations of biomass and spatial data

Biomass data Spatial data Total AGB (Tg) Difference (%) Fuzzy Numerical

NBS plots NBS LC 468a - -

GLC2000+FAO GEZ 377 -19.5% 0.568

GlobCover+FAO GEZ 363 -22.5% 0.565

Landsat 343b -26.7% 0.608

IPCC Tier1 GLC2000+FAO GEZ 2,234 - 0.265

GlobCover+FAO GEZ 2,191 -1.9% 0.292

NBS LC 1,492 -33.2% 0.410

The values indicated with the symbol (a) and (b) are derived from [20] and [21], respectively. The table also reports the percentage difference of total AGB using
different spatial dataset for each biomass reference data and the Fuzzy Numerical index. The Fuzzy Numerical index is computed by comparing each map with
the NBS reference map (NBS plots + NBS LC) at 1 Km resolution
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strata can only represent the dominant class within a cer-
tain unit (unless there is no dominant class and the unit
is defined as a “mosaic”), the continuous nature of remo-
tely sensed surface reflectance accounts also for the
minor components, but this capability is limited by the
complexity of retrieving biomass from a mixed signal.
Maps based on the DR approach showed the tendency

to underestimate biomass density, which is mainly a con-
sequence of three factors related to the use of optical
data and decision tree models (see also [21]). First, the
optical signal tends to saturate in closed canopy forests
resulting in the tendency to underestimate areas with
high biomass densities. Second, in order to minimize
atmospheric effects (i.e. cloud coverage, haze) satellite
images are often acquired during the dry season when
deciduous vegetation is usually without leaves and may
be confounded with low-vegetation areas. Third, by aver-
aging the data within each terminal node, decision tree
models intrinsically underestimate at high values (and
overestimate at low values).
We note that the differences between the approaches

tend to reduce when the maps based on the CA approach
identify several strata with high spatial and thematic reso-
lution, and when the continuous AGB estimates provided
by the DR approach are aggregated in classes to achieve
satisfactorily accuracies.
The differences among the maps were also affected by

the lack of a common definition of AGB. Some maps
(NBS and Avitabile) refer to air-dry biomass while others
refer to oven-dry biomass (Henry, Reusch & Gibbs) or do
not provide this information (Baccini, Drigo, Gibbs &
Brown) Similarly, there are differences regarding the
minimum diameter and the inclusion or exclusion of
dead trees, non-woody plants (herbaceous plants, lianas)
or non-woody components (foliage, seeds). However,
considering that oven-dry biomass is equivalent to about
80% of air-dry biomass [33] and that in some ecosystems
tree biomass can represent more than 95% of the total
AGB [4], the contribution of different AGB definition
can only account for a limited portion of the large differ-
ences present among the maps.
The comparison of the biomass maps with ground

reference data confirmed the above findings but also
demonstrated the difficulty to perform a consistent vali-
dation of remote sensing products. Compatible maps as
well as an accurate, representative and comparable field
dataset are required to obtain comparable and reliable
estimates of map accuracy, but such datasets are usually
not available. In the present analysis the validation results
were affected by differences in the format (vector, raster),
spatial resolution and biomass definition used by the
maps, by the skewed distribution of the field data and,
most importantly, by the fact that some datasets were not
independent from the testing data.

Lastly, this study demonstrates that the AGB estimates
were primarily driven by the biomass reference values
while the type of spatial datasets used for their stratifica-
tion had a smaller, but not negligible, impact. The results
highlight the importance of the applicability of biomass
reference values to the study area but also indicate that
the resolution and accuracy of the spatial data are still
critical to obtain reliable AGB estimates at local level,
which are necessary for land management or estimating
emissions from deforestation at specific locations.

Conclusions
In order to better understand the reliability of existing bio-
mass and C stock products, we compared six maps with a
reference dataset for the case study of Uganda. The com-
parison revealed very large differences among the datasets
and indicated that maps employing the CA approach in
combination with biome average values (as the IPCC Tier
1 values) and global LC datasets strongly overestimated
the biomass stock. Instead, more reliable estimates were
obtained using country-specific field data (i.e. forest inven-
tories) in combination with satellite data and/or national
LC and ancillary information. Maps based on satellite data
were able to provide continuous and spatially detailed bio-
mass estimates. These maps tended towards conservative
estimates mainly as a consequence of the processing tech-
niques and the saturation of the satellite signal at high bio-
mass values. The comparison with ground reference data
confirmed these findings but the validation results were
not entirely comparable as they were affected by several
factors. The larger impact of biomass reference data than
spatial maps on AGB estimates indicates that the first cri-
tical step to improve the accuracy of the biomass maps
consists of the collection of accurate biomass field data for
all relevant vegetation types. However, detailed and accu-
rate spatial datasets are crucial to obtain accurate esti-
mates at specific locations and to correctly quantify
emissions from deforestation as required for REDD+
actions. The acquisition of field datasets comparable with
the remote sensing products is also necessary for their
proper validation. With new remote sensing based maps
of forest parameters recently produced over large areas,
such as the global forest canopy height map [34] or the
pan-tropical forest carbon stock map [35], the develop-
ment of reliable reference datasets and appropriate com-
parison techniques is crucial to better understand the
capabilities and limitations of such datasets.
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