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Abstract

chronic pain.

Background: Central sensitization-associated synaptic plasticity in the spinal cord dorsal horn (SCDH) critically
contributes to the development of chronic pain, but understanding of the underlying molecular pathways is still
incomplete. Emerging evidence suggests that Wnt signaling plays a crucial role in regulation of synaptic plasticity.
Little is known about the potential function of the Wnt signaling cascades in chronic pain development.

Results: Fluorescent immunostaining results indicate that (3-catenin, an essential protein in the canonical Wnt
signaling pathway, is expressed in the superficial layers of the mouse SCDH with enrichment at synapses in lamina
IIl. In addition, Wnt3a, a prototypic Wnt ligand that activates the canonical pathway, is also enriched in the
superficial layers. Immunoblotting analysis indicates that both Wnt3a a (3-catenin are up-regulated in the SCDH of
various mouse pain models created by hind-paw injection of capsaicin, intrathecal (i.t.) injection of HIV-gp120
protein or spinal nerve ligation (SNL). Furthermore, Wnt5a, a prototypic Wnt ligand for non-canonical pathways, and
its receptor Ror2 are also up-regulated in the SCDH of these models.

Conclusion: Our results suggest that Wnt signaling pathways are regulated by nociceptive input. The activation of
Whnt signaling may regulate the expression of spinal central sensitization during the development of acute and
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Introduction

During the development of chronic pain, spinal neurons in
the spinal cord dorsal horn (SCDH) become sensitized and
hyper-active (termed central sensitization). A spectrum of
neuronal and glial processes has been implicated in the
establishment of central sensitization. For instance, in the
spinal nerve ligation (SNL) and spared nerve injury (SNI)
models of neuropathic pain, the central terminals of pri-
mary sensory neurons were reported to sprout [1-4]. This
sprouting may increase inputs of nociceptive signals.
Indeed, increased release of neurotransmitters or neuro-
modulators such as glutamate, substance P, prostaglandin
E2 (PGE,) and calcitonin-gene related peptide (CGRP)
were reported in animal pain models (reviewed in [5]). An-
other neuronal alteration associated with central sensi-
tization is the expression of long-term potentiation (LTP)
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at the synapses in superficial layers of the SCDH, which is
considered to be a critical synaptic mechanism underlying
chronic pain [6,7] and a potential target for chronic pain
therapy [8]. Furthermore, loss of inhibitory functions of
GABAergic and glycinergic interneurons may contribute
to enhanced pain sensitivity in chronic pain [9,10]. In
addition to neuronal changes, more recent studies revealed
an important role of glial cells, especially microglia and
astrocytes, in central sensitization, and glia are emerging
as a promising target for chronic pain treatment [11]. Acti-
vated microglia and astrocytes facilitate the development
of central sensitization by releasing chemokines, cytokines
and neurotrophins [12-14]. These factors can markedly
enhance the excitability of neurons processing nociceptive
input. For example, tumor necrosis factor-alpha (TNFa),
a key proinflammatory cytokine, was shown to increase
the frequency of excitatory postsynaptic currents (EPSCs)
and N-methyl-D-aspartate (NMDA) currents in lamina II
neurons by stimulating TNF receptor subtype-1 and 2
(TNFR1 and TNFR?2) in an inflammatory pain model [15].
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Despite significant progress in identifying various cellular
processes that contribute to central sensitization and
chronic pain, the molecular mechanisms by which the
spectrum of cellular alterations is initiated and established
remain poorly understood.

Secreted signaling proteins in the Wingless—Int (Wnt)
family play essential roles in many aspects of neural
development/plasticity [16,17], such as neurogenesis,
axonal and dendritic branching, synapse formation, syn-
aptic transmission and plasticity, and memory formation
[18-33]. The synthesis and secretion of neuronal Wnt
proteins are controlled by synaptic activity [28,33,34].
Three Wnt signaling pathways are well characterized, in-
cluding the canonical Wnt/p-catenin pathway, the planar
cell polarity (Wnt/PCP; a.k.a. Wnt/JNK) pathway and the
Wnt/Ca®* pathway [35]. In the canonical pathway, Wnts
bind to the frizzled (Fz) receptors on plasma membranes.
This interaction stimulates the disheveled (Dvl) scaffold
protein, leading to the inhibition or disruption of the ‘de-
struction complex; which contains glycogen synthase
kinase-3p (GSK-3p), axin and adenomatous polyposis
coli (APC). Consequently, the B-catenin protein is stabi-
lized, accumulates in the cytoplasm, and is imported
into the nucleus to activate the transcription of TCF/LEF
(T-cell factor/lymphoid enhancer factor) target genes
[36]. In hippocampal neurons, activation of NMDA
receptors (NMDARs) causes [B-catenin nuclear transloca-
tion from post-synaptic regions and activation of gene
expression [37]. At synapses, [B-catenin interacts with
cadherin to regulate synaptic assembly, remodeling and
plasticity [38,39]. In the PCP pathway, Wnt-bound
Fz signals through Dvl and the GTPase RhoA to activate
c-Jun amino (N)-terminal kinase (JNK) which regulates
cytoskeleton dynamics and transcription [40-42]. JNK
signaling plays important roles in central sensitization
induced by inflammation and nerve injury [43-45].
One mechanism by which JNK signaling contributes
to chronic pain is to regulate the expression of cytokines
(e.g., IL-10, TNFq, IL-1p and IL-6) in the spinal glia cells
[44]. In the Wnt/Ca®" pathway, Fz activation leads to
increased intracellular Ca**, which thereby activates Ca*
*_sensitive proteins such as protein kinase C (PKC) and
calcium/calmodulin dependent protein kinase II (CaMK
II) [46]. Both PKC and CaMKII play pivotal roles in cen-
tral sensitization during the development of neuropathic
and inflammatory pain [47-50]. Despite of the accumula-
tion of suggestive evidence, the involvement of Wnt sig-
naling in pathological pain has not been directly tested.

In this study, we report the spatial distribution of spe-
cific Wnt signaling proteins in mouse spinal cords and
the regulated expression of the proteins in multiple pain
models. Our results reveal the expression of Wnt signal-
ing proteins in the superficial layers of the SCDH and
the up-regulation of their expression in acute and
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chronic pain models. These findings indicate that Wnt
signaling pathways may play a role in the regulation of
central sensitization and chronic pain development.

Results

Spatial distribution of B-catenin and Wnt3a in the

mouse SCDH

Because the Wnt/B-catenin pathway plays important
roles in synaptic plasticity such as long-term potenti-
ation (LTP) [22,33], we were interested in testing if
this pathway is involved in the regulation of central
sensitization. As an initial step toward this goal, we per-
formed fluorescent immunostaining in naive mice to
determine the spinal distribution of B-catenin and Wnt3a,
two signaling proteins in the canonical pathway. We
observed that [(-catenin immunostaining formed a pre-
dominant band in the dorsal horn, although a low level of
signal was detected throughout the gray matter of the
spinal cord (Figure 1). To define further the laminar dis-
tribution of the protein in the SCDH, we used molecular
markers to label the specific layers of the dorsal horn. We
found that pB-catenin was enriched in lamina II, both the
inner (Ili) and outer (Ilo) segments (Figure 1), while its
staining in lamina I was relatively low (Figure 1 A1-2).
Staining for isolectin B4 (IB4) and PKCy, considered as
specific markers for the outer and inner segments of lam-
ina II, respectively, confirmed the presence of [-catenin
in both the lamina IIi and Ilo (Figure 1 B1-2 and C1-2).
These observations indicate that the B-catenin is enriched
in lamina II of the SCDH. Previous studies revealed that
[-catenin is expressed in hippocampal neurons [33]. We
performed double-staining experiments, using NeuN to
label neuronal cell bodies. As shown in Figure 2 A-C,
label for B-catenin in lamina II was observed in regions
surrounding neuronal nuclei labeled by NeuN, indicating
that the majority of -catenin was in neuronal cytoplasm.
On the other hand, B-catenin staining in non-neuronal
cell bodies (NeuN-negative; DAPI-labeled) was detectable
but relatively low.

The B-catenin label was also clustered into small spots
or dots (Figure 2). Because [-catenin is enriched in
synapses [33], we next tested if the clustered [B-catenin
dots corresponded to synapses. To this end, we per-
formed double-labeling experiments with -catenin and
synapsin I (pre-synaptic marker) or PSD95 (post-synap-
tic marker). We observed that B-catenin staining sub-
stantially overlapped with that of synapsin I or PSD95
(Figure 2 D-I). On the other hand, little B-catenin was
observed in the CD11b-labeled microglia (Figure 2 J-L)
or GFAP-labeled astrocytes (Figure 2 M-O). These
results suggest an enrichment of -catenin at synapses
in the SCDH.

Next, we determined the spatial distribution of Wnt3a,
a Wnt ligand that activates the canonical pathway.
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Figure 1 Spatial distribution of B-catenin in normal mouse SCDH. A1-A2: Double-staining of 3-catenin and SP, a marker of lamina | and
outer layer of lamina II. A1. Low power images. 3-catenin is detected in the gray matter of the spinal cord. In the SCDH, -catenin displays a
predominant band. A2. Higher power images of the B-catenin and SP staining in the superficial layers of the SCDH. Relatively moderate levels of
f-catenin staining are detected in SP-marked layer | (I). A band with intensive 3-catenin staining is observed mainly in lamina II, which partially
overlaps the SP-stained outer layer of lamina Il (llo). B1-B2. Double-staining of -catenin and IB4, a marker of the outer layer of lamina Il. B1. Low
power images. B2. Higher power images of the -catenin and IB4 staining in the superficial layers of the SCDH. The outer half of the (3-catenin
band overlaps with 1B4 (llo), while the inner half (Ili) does not. C1-C2: Double-staining of 3-catenin and PKCy, a marker of the inner layer of
lamina Il (Ili). C1. Low power images. C2. Higher power images of the (-catenin and PKCy staining in the superficial layers of the SCDH. The inner
half of the 3-catenin band overlaps with PKCy. Scale bar for A1, B1 and C1: 300 um; Scale bar for A2, B2 and C2: 50 um.

As shown in Figure 3 A-B, Wnt3a was detected through-
out the dorsal horn, with the highest concentration
in the superficial layers. In addition, some brightly
stained profiles that are likely to be cell bodies in the
gray matter were also detected. To determine the
spatial distribution of Wnt3a, we double-labeled Wnt3a
with SP or PKCy. The results showed that Wnt3a

signals were observed in regions labeled by both SP and
PKCy, indicating that Wnt3a is enriched in the laminae
I and II (Figure 3 C-F). Relatively low levels of
Wnt3a staining were also observed in deep SCDH layers
(Figure 3 E-F). Previous studies demonstrated that
Wnt3a was localized in the cell bodies and dendrites
in hippocampal neurons [22,33,51]. Similarly, we found
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Figure 2 Cellular localization of B-catenin in the SCDH. A-C: Double-staining of 3-catenin (A) and neuronal marker NeuN (B). Small clusters of
f-catenin immunoreaction product (red) are in the cytoplasm around NeuN-labeled neuronal nuclei (arrows). Low levels of B-catenin staining are
also observed around non-neuronal cell bodies (arrowheads) deep in the SCDH. Little staining is seen around NeuN in deep SCDH regions
(asterisks). D-F: Double-staining of 3-catenin (D) and synapsin | (E), a pre-synaptic marker. The 3-catenin staining substantially overlaps with
synapsin | detected in lamina Il (F, arrows). G-I: Double-staining of B-catenin (G) and PSD95 (H). 3-catenin staining overlapped with PSD95
staining (I, arrows). J-L: Double-staining of B-catenin (J) and CD11b (K). 3-catenin was barely detectable in CD11b-postive microglial cells (L,
arrows). M-O: Double-staining of 3-catenin (M) and GFAP (N). 3-catenin staining did not overlapped with GFAP staining (O, arrows). Insets are
images at a higher magnification of the areas indicated by arrowheads, to show more clearly the spatial relation of 3-catenin and various
molecular markers. DAPI (blue) staining was performed to visualize all cells. Scale bar: 50 um.

that double-staining experiments with NeuN showed
that Wnt3a staining was found in NeuN-labeled cell
bodies (Figure 4 A1-A2). In addition, the Wnt3a staining
outside of cell bodies largely overlapped with that of

MAP2, a dendritic marker (Figure 4 B1-B2). Wnt3a
staining was not observed in the microglial cells (Figure 4
C1) or astrocytes (Figure 4 D1). The results suggest that
Wnt3a protein is largely restricted to neurons, especially
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Figure 3 Spatial distribution of Wnt3a in mouse SCDH. A. Immunostaining of Wnt3a in mouse spinal cord. Wnt3a (red) is detected
throughout the entire gray matter, with more intensive label in the superficial laminae of SCDH. B. A merged image of Wnt3a and DAPI signals
to show the distribution of Wnt3a-positive cells. C-D. Wnt3a staining (C) and double-staining of Wnt3a and SP (D). Wnt3a staining is observed in
the SP-labeled (green) lamina I layer and the deeper regions in the SCDH. E-F. Wnt3a staining (E) and double-staining of Wnt3a and PKCy (F).
Whnt3a staining is detected in PKCy-labeled (green) lamina Il and probably lamina Ill. Scattered cells with strong Wnt3a staining are also in the
deep SCDH laminae (arrows, C-F). Scale bars for A and B: 300 um; Scale bars for C-F: 100 pm.

in their cell bodies and dendrites. Similarly, Wnt5a pro-
tein is also mainly expressed in neurons in the SCDH,
while its co-receptor Ror2 in both neurons and astro-
cytes (submitted).

Wnt3a and Wnt5a protein in mouse dorsal root

ganglia (DRG)

We also determined the cellular localization of Wnt3a in
DRGs. As shown in Figure 5 A-C, Wnt3a was expressed
in NeuN-labeled neurons in DRGs (L4/L5 levels). Simi-
larly, Wnt5a staining was also largely restricted to DRG
neurons (Figure 5 D-F). Little Wnt3a or Wnt5a staining
was detected in non-neuronal cells. Thus, Wnt3a and

Wnt5a are expressed in neurons both in the spinal cord
and the DRGs.

Regulated expression of Wnt signaling proteins

in the capsaicin pain model

The expression of Wnt3a and p-catenin in SCDH super-
ficial layers suggests a potential role of Wnt signaling in
nociceptive processing. Thus, we sought to determine
whether peripheral painful stimulation affected the expres-
sion of the Wnt signaling proteins in SCDH. We first
employed the capsaicin pain model, created by intradermal
(i.d.) injection of capsaicin in hind paw [52]. It is well
established that this pain model develops central sensitiza-
tion [50,53,54]. Following capsaicin administration, mice
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Figure 4 Cellular localization of Wnt3a in the superficial laminae of the SCDH. A1-A2. Double-staining of Wnt3a and NeuN. A1. Low power
images. Wnt3a (red) is in NeuN-labeled neurons (green) (arrows). Some NeuN-positive cells have little Wnt3a signal (arrowheads). A2. Higher
power images. B1-B2. Double-staining of Wnt3a and MAP2. B1. Low power images. Wnt3a staining (red) largely overlaps with MAP2 staining
(green; arrows). B2. Higher power images. C1: Double-staining of Wnt3a and CD11b. Wnt3a (red) is not in CD11b (green)-labeled microglia
(arrows). D1: Double-staining of Wnt3a and GFAP. Wnt3a (red) is not in GFAP (green)-labeled astrocytes (arrows). Insets in C1 and D1 are the
higher-power images of the areas indicated by arrowheads. Scale bars for A1: 100 um, A2: 20 um, B1, C1 and D1: 50 um, B2: 25 um.

developed mechanical hypersensitivity demonstrated by a
decrease in paw withdrawal threshold (PWT) (Figure 6
A). The mechanical allodynia was observed at 1 h after
capsaicin injection, and it peaked at 3 h. After 7 h post-
injection, the mechanical sensitivity gradually decreased
and PWT returned to normal. Results of immunoblotting

showed that Wnt3a, active p-catenin (ABC) and total B-
catenin (TBC) increased in the SCDH during the period
of increased mechanical sensitivity (Figure 6 B-D). Consis-
tent with the assumption that Wnt3a and p-catenin are in
the same (canonical) pathway, Wnt3a, ABC and TBC pro-
teins followed similar temporal profiles of up-regulation.
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Scale bar: 50 um.

Figure 5 Cellular localization of Wnt3a and Wnt5a in DRGs. A-C: Double-staining of Wnt3a (A) and NeuN (B). Wnt3a is mainly detected in
NeuN-labeled cells in DRGs (C). D-F: Double-staining of Wnt5a (D) and NeuN (E). Wnt5a is largely detected in NeuN-labeled DRG neurons (F).
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The protein levels started to increase at 1 h after capsaicin
injection and peaked at 3-5 h. Furthermore, significantly
higher levels of these proteins were still observed at 9 h
(Figure 6 B-D). The magnitude of increase differed for
each protein: Wnt3a peaked at ~2.5 fold increase whereas
ABC or TBC peaked at ~1.8 fold increase. Although
cautions were taken to avoid potential contamination of
the dorsal horn tissues from DRGs and dorsal root fibers,
we anticipate that there were still peripheral fibers inter-
mingling in the dissected dorsal horn. Thus, although it is
likely that the observed up-regulation of Wnt signaling
proteins was mainly contributed by the dorsal horn cells,
we cannot exclude the possibility that the up-regulation
also occurred in peripheral sensory neurons.

In addition, we also examined the effect of capsaicin-
induced pain on proteins in the non-canonical pathways.
We focused here on Wntba, a prototypic Wnt ligand
that activates the non-canonical pathways. As shown in
Figure 6 E, Wnt5a was also induced in the SCDH fol-
lowing i.d. injection of capsaicin. The temporal profile of
capsaicin-induced Wnt5a alteration differed from that of
Wnt3a and p-catenin. The Wnt5a up-regulation peaked
at 2 h after capsaicin injection, but returned to baseline

by 3 h (Figure 6 E). These data indicate that capsaicin
up-regulates Wntb5a in a more rapid and transient man-
ner. Furthermore, we also examined the temporal profile
of Ror2, a Wntba receptor tyrosine kinase that acti-
vates JNK signaling [55]. Similar to Wnt5a, Ror2 was
also transiently up-regulated (Figure 6 F). Compared
with Wnt5a, the Ror2 up-regulation was delayed by 1 h
(Figure 6 F). The overlapping but distinct temporal pro-
files of Wnt5a and Ror2 indicate that Wnt5a does not
solely depend on Ror2 to transmit signals.

Regulated expression of Wnt signaling proteins in the
HIV-gp120 pain model

We next determined the regulated expression of Wnt
proteins in the HIV gpl20 pain model. Previous work
established that intrathecal injection (it.) of HIV-gp120
protein induces hyperalgesia and mechanical allodynia in
animals [56-59]. Indeed, following gp120 administration,
mice showed a progressive decrease in PWT evoked by
von Frey filaments (Figure 7 A). The mechanical allody-
nia was observed at 1 h after gp120 injection, and fully
developed by 2-5 h. Immunoblotting results showed
that Wnt3a, ABC and TBC progressively increased in
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Figure 6 Up-regulation of Wnt signaling proteins in the capsaicin pain model. A. Time course of mechanical allodynia induced by
intradermal (i.d.) capsaicin injection in mouse hind paws. Mice with saline injection were used as controls (vehicle). Following capsaicin
administration, mechanical hypersensitivity peaked at 3 h post-injection and gradually returned to baseline (¥, p < 0.05; n=6). B-D. Protein levels
of Wnt3a (B), active 3-catenin (ABC, ), and total B-catenin (TBC, D) at different time points after capsaicin injection. Proteins levels gradually
increased and peaked around 3 h after injection. E-F. Temporal expression profiles of Wnt5a (E) and Ror2 C (F) following capsaicin injection. The
levels of both proteins transiently increased after the injection. 3-actin was included as a loading control. In the summary graphs (right panels),
protein levels from at least three independent experiments are presented as relative units to the vehicle controls (mean + SEM; *, p < 0.05; one-
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the SCDH during the development of allodynia (Figure 7
B-D). The protein levels started increasing within 1 h
after gp120 injection and peaked at 2-3 h (Figure 7 B-D).
Although the magnitudes of the peak increases differed
among Wnt3a (1.4 fold, p<0.05), ABC (2.2 fold, p

<0.05) and TBC (1.9 fold, p <0.05), the proteins dis-
played similar temporal profiles of up-regulation. The
progressive up-regulation of the proteins seemed to be
parallel to the temporal profile of allodynic expression
(Figure 7 A).
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Figure 7 Expression profiles of Wnt signaling proteins in the HIV-gp120 pain model. A. Time course of mechanical allodynia induced by
intrathecal (i.t.) HIV-gp120 injection (vehicle controls: saline injection). Following gp120 administration, mice developed mechanical
hypersensitivity. B-D. Protein levels of Wnt3a (B), ABC (C), and TBC (D) at different time points after HIV-gp120 injection. The proteins were
gradually up-regulated after the injection. E-F. Expression of Wnt5a (E) and Ror2 (F) proteins at different time points after gp120 injection. Wnt5a
rapidly increased, peaked at 15-30 min after injection, and returned to baseline by 2 h. Ror2 was also up-regulated and persisted at a high level
at 3 h after injection. Data from at least three independent experiments are summarized in graphs at right (¥, p < 0.05; one-way ANOVA).
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We also examined the expression profiles of Wnt5a
and Ror2 in the gp120 pain model. The results showed
that Wnt5a rapidly increased and peaked at 15-30 min
after gp120 injection (Figure 7 E). Similar to the Wnt5a
expression in the capsaicin pain model (Figure 6 E), the
up-regulation of Wnt5a was relatively transient and
returned to baseline by 2 h (Figure 7 E). Like Wnt5a,
Ror2 also rapidly increased and peaked at 15-30 min
after gp120 injection (Figure 7 F). Unlike Wnt5a, expres-
sion levels of Ror2 were maintained at significantly
higher levels over baseline for 3 h (Figure 7 F). In
addition, the magnitude of the Ror2 increase (3.6 fold)
was higher than that of Wnt5a (1.9 fold).

Regulated expression of Wnt signaling proteins in the
neuropathic pain model

Next, we were interested in examining the regulatory
effect induced by peripheral nerve injury on Wnt signal-
ing proteins. In this experiment, we used the neuro-
pathic pain model produced by unilateral L5 spinal
nerve ligation (SNL) [60], which is a well-established
model that develops various hallmarks of chronic pain
and central sensitization including neuroinflammation,
hyperexcitation of spinal dorsal neurons and disinhib-
ition of inhibitory interneurons [61-63]. As shown in
Figure 8A, one week after SNL, the mice demonstrated
increased paw withdrawal frequencies in response to
mechanical stimulation with von Frey filaments: 0.10 g
force, 92.86 +3.59% compared to 7.15+1.84% (p < 0.05,
n=6) and 040 g force, 98.57+1.43% compared to
18.57+2.6% (p<0.05, n=6), for the sham-operated
mice. Immunoblotting analysis of the SCDH from SNL
mice at one week post-ligation showed that Wnt3a
was significantly up-regulated in the ipsilateral (ipsi)
compared to the contralateral (contra) side (5.9 fold, p
< 0.01) (Figure 8 B). Similarly, both ABC (Figure 8 C)
and TBC (Figure 8 D) were increased in the ipsi side of
the SCDH with similar magnitudes of increase (2.0
fold, p <0.05 for ABC and 1.6 fold, p <0.05 for TBC).
In addition, we also observed that non-canonical pathway
signaling proteins, Wnt5a (Figure 8 E) and its co-receptor
Ror2 (Figure 8 F), increased in the SNL model. Thus,
Wnt signaling proteins are up-regulated following peri-
pheral nerve injury.

Discussion

We describe here the expression of Wnt signaling pro-
teins in the SCDH and their change in expression in
three pain models. We show that B-catenin is enriched
in neurons in lamina II, and that Wnt3a is abundant
in neurons in the superficial layers (laminae I-III). We
also show that these and other Wnt signaling pro-
teins (Wnt5a and Ror2) are up-regulated in the SCDH
in these pain models. Our data suggest potential
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involvement of Wnt signaling pathways in the regulation
of central sensitization in acute and chronic pain. Future
studies are warranted to directly test this hypothesis.

Wnt signaling may contribute to chronic pain via mul-
tiple routes. We found that PB-catenin is enriched in
SCDH lamina II, especially at synaptic regions. Lamina
II neurons, which include both excitatory and inhibitory
interneurons, play crucial roles in central sensitization
[48,64,65]. Because P-catenin is known to regulate synap-
tic transmission, synapse/spine assembling and remodel-
ing [38,39], the observation of enriched [-catenin protein
at the synapses in lamina II suggests that canonical Wnt/
[-catenin signaling may regulate synaptic plasticity in the
neurocircuitry processing nociceptive input in the
SCDH. Consistent with its role in central sensitization,
[B-catenin is up-regulated in capsaicin, HIV gp120, and
SNL pain models. While we found [-catenin is up-
regulated at 7 days after SNL, a recent study showed that
this protein significantly increases at 1 and 3 days and
returns to baseline at 7 days in the rat SCDH after uni-
lateral spared nerve injury (SNI) [66]. These findings
indicate that the regulated expression of -catenin in the
SCDH of different neuropathic pain models follows dif-
ferent temporal patterns. In further support of a role of
[-catenin signaling, Wnt3a, a prototypic Wnt ligand for
the canonical Wnt/B-catenin pathway, is also expressed
in the superficial laminae (including lamina I) and is
up-regulated in these pain models. Previous studies
show that activation of NMDA receptors by synaptic
stimulation elicits Wnt3a secretion from hippocampal
synapses to activate P-catenin signaling and facilitate
long-term potentiation [33]. One may conceive that
activation of NMDA receptors in the SCDH by nocicep-
tive stimuli could also cause Wnt3a secretion to facilitate
central sensitization via B-catenin. Signaling proteins in
the non-canonical pathway, including Wnt5a and Ror2,
are also up-regulated in the pain models. Recent studies
have shown that Wnt5a is an NMDAR-regulated protein
[34] and critical for the differentiation and plasticity of
excitatory synapses [21,23]. Ror2 may mediate the activ-
ity of Wntb5a in the regulation of synapse differentiation
[67]. In addition, Wnt5a also regulates GABA receptor
recycling at inhibitory synapses [68]. These previous
findings suggest that the observed up-regulation of
Wnt5a and Ror2 in these pain models may also contrib-
ute to synaptic remodeling during the development of
chronic pain.

Neuroinflammation in the SCDH is a constant mani-
festation of chronic pain in animal models. Pro-
inflammatory factors such as IL-6, IL-1B, TNF-a and
MCP-1 play important roles in the initiation and main-
tenance of chronic pain [11,15,69]. Recent studies have
suggested that Wnt5a signaling may regulate the peri-
pheral inflammatory response in chronic disorders,
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Figure 8 Up-regulation of Wnt signaling proteins in the neuropathic pain model. A. Neuropathic pain was induced 1 week post L5 spinal
nerve ligation (SNL, n=6). Mice with sham operation (without SNL, n=6) were used as controls. B-F. Wnt3a (A), ABC (B), TBC (C), Wnt5a (D), and
Ror2 C (E) proteins in the ipsilateral (ipsi) and contralateral (contra) sides of the SCDH at 7 days after unilateral L5 spinal nerve ligation (SNL).
Compared with the contra side, significant increases in the levels of Wnt signaling proteins were detected in the ipsi side of SNL but not control
mice (n=3). Data are summarized in graphs at right (**, p < 0.01; *, p < 0.05; #, p > 0.05; student’s t-test).

including sepsis [70], rheumatoid arthritis [71], athero-
sclerosis [72], melanoma [73], and psoriasis [74]. Wnt5a
is known to activate CaMKII signaling to modulate the
macrophage-mediated inflammatory response [70]. Our
previous studies revealed that Wnt5a evokes the expres-
sion of proinflammatory cytokines (IL-1p and TNF-a) in
primary cortical cultures, indicating a role of Wnt5a in
the regulation of neuroinflammation in CNS [75].
Wnt5a is up-regulated by i.t. gp120 and peripheral nerve
injury, and each of these is known to induce persistent
neuroinflammation in SCDH [76-78]. We propose that
one potential mechanism by which up-regulated Wnt5a
may facilitate chronic pain development is by promot-
ing neuroinflammation.

The temporal expression of proteins in canonical and
non-canonical pathways appears to follow differential
profiles after pain induction. [B-catenin and Wnt3a,
which are in the canonical pathway, displayed a gradual
increase following capsaicin or HIV-gp120 administra-
tion. Their gradual up-regulation is correlated with the
progressive development of capsaicin-induced and
gp120-induced mechanical allodynia and stays at a peak
level when mechanical sensitivity starts decreasing. On
the other hand, Wnt5a and Ror2 in the non-canonical
pathway showed a more rapid but transient increase;
their up-regulated expression came back to baseline
when capsaicin-induced allodynia was still at a maximal
level. These observations suggest that the canonical and
non-canonical Wnt signaling pathways may have dis-
tinct biological functions in different phases of chronic
pain development.

Materials and methods

Experimental animals

Young adult male C57 BL/6 ] mice (8—10 weeks), pur-
chased from Jackson Laboratory (Bar Harbor, Maine,
USA) were used for all studies. Animals were housed in
a constant-temperature environment with soft bedding
and free access to food and water under a 12/12-h light—
dark cycle. All animal procedures were performed in
accordance with an animal protocol approved by the
Institutional Animal Care and Use Committee at the
University of Texas Medical Branch (protocol #: 0904031)
and adhered to the guidelines of the International Asso-
ciation of the Study of Pain for the ethical care and use of
laboratory animals [79].

Capsaicin pain model

The mouse capsaicin pain model was generated as
described [52]. Briefly, mice were anesthetized with iso-
flurane (2% for induction and 1.5% for maintenance) in
a flow of O, and placed in a prone position. For each
mouse, 5 pl of capsaicin (0.5% in saline containing 20%
alcohol and 7% Tween 80; purchased from Sigma) was
injected intradermally (i.d) into the plantar region of
hind paw using a 30 gauge needle attached to a Hamil-
ton Syringe. Mice injected with vehicle were used as
controls. Five minutes later, injected mice were returned
to their home cages.

HIV-gp120 pain model

The recombinant HIV-gp120 protein (HIV Bal gp120;
NIH AIDS Research and Reference Reagent Program) in
PBS was stored in a —80°C freezer. At the time of injec-
tion, gp120 was slowly thawed, diluted to a concentra-
tion of 20 ng/pl in ice-cold PBS and maintained on ice.
For gp120 administration, mice were anesthetized under
2% isoflurane, and 5 pl gp120 (100 ng) was intrathecally
(i.t) injected into the subarachnoid space between the
L5 and L6 vertebrae using a 30 gauge needle attached to
a Hamilton Syringe [57,80]. Mice injected with vehicle
were used as controls.

Neuropathic pain model

Peripheral neuropathy in mice was produced by a unilat-
eral L5 spinal nerve ligation as previously reported
[60,81]. Briefly, mice were anesthetized with 2% isoflur-
ane, and the left L5 spinal nerve was isolated and tightly
ligated with 7-0 silk thread. Mechanical sensitivity was
assessed 7 days after ligation.

Immunohistochemistry

Adult mice were deeply anesthetized with 4% isoflurane
and perfused transcardially with 50 ml of D-PBS, fol-
lowed by 50 ml of paraformaldehyde (PFA; 4% in 0.1 M
phosphate buffer). The L4 and L5 DRG, and lumbar
spinal cord tissues were dissected out, post-fixed in the
same PFA solution for 3 hr at 4°C, and then cryopro-
tected in sucrose solution (30% in 0.1 M phosphate buf-
fer) overnight at 4°C. Transverse sections (15 pum) were
prepared on a cryostat (Leica CM 1900) and thaw-
mounted onto Superfrost Plus microscope slides. For
immunostaining, sections were incubated in blocking
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buffer (5% BSA and 0.3% Triton X-100 in 0.1 M phos-
phate buffer) for 1 h at room temperature, followed by
overnight incubation with anti-p-catenin (1:500, BD:
610153), anti-substance P (SP, 1:1000, Abcam: ab10353),
anti-IB4 (1:400, Sigma: 1L2895), anti-PKCy (1:1000, Santa
Cruz: SC211), anti-NeuN (1:200, Millipore: MAB377),
anti-MAP2 (1:400, Millipore: MAB378), anti-Wnt5a
(1:200, Abcam: ab72583), anti-Synapsin I (1:400, Milli-
pore: AB1543), anti-PSD95 (1:400, Cell Signaling: 2507),
anti-GFAP (1:500, Millipore: 04-1062 and MAB360), anti-
CD11b (1:100, AbD: MCA74GA) or Wnt3a (1:200, Milli-
pore: 09162) antibody. After five washes with PBS (0.1 M
phosphate buffer), the sections were incubated with FITC
or Cy3-conjugated secondary antibody (1:200, Jackson
ImmunoResearch Laboratories), followed by incubation
with DAPI (Sigma). IgG from the same animal sources
was used as negative controls for immunostaining. Images
were captured using a laser confocal microscope (Zeiss).

Western blotting analysis

Mice were anesthetized and sacrificed and the L4-L6
lumbar spinal cord segments were collected. The dorsal
halves were dissected on an ice-chilled plate, and the
dorsal roots were cut off under dissecting microscopes.
The collected dorsal spinal tissues were homogenized in
RIPA lysis buffer (1% Nonidet P-40, 50 mM Tris—HCI,
pH 7.4, 1% sodium deoxycholate, 150 mM NaCl, 1 mM
EDTA, pH 8.0) with a protease inhibitor cocktail
(Sigma). Equal amounts of protein were loaded and
separated by SDS-PAGE. Protein was transferred to pure
nitrocellulose membranes, which were then blocked and
incubated with anti-total-p-catenin (TBC, 1:5000, BD:
610153), anti-Active-p-catenin (ABC, 1:1000, Millipore:
05665), anti-Wnt3a (1:1000), anti-Wnt5a (1:1000), or
anti-Ror2 (1:1000, a gift form Dr. Roel Nusse, Stanford
University School of Medicine [55] ) primary antibodies.
Protein bands were visualized by an Enhanced Chemilu-
minescence kit (Pierce).

Mechanical allodynia

For the capsaicin and gpl120 pain models, a series of
calibrated von Frey filaments (0.1 to 2.0 g) were applied
to the plantar surface of the mouse hind paw using the
“up and down paradigm” described previously [82,83].
Mechanical allodynia was assessed by changes in paw
withdrawal threshold in response to von Frey stimuli.
For the SNL neuropathic pain model, mechanical sensi-
tivity was assessed before and seven days after ligation
by paw withdrawal frequencies in response to von Frey
stimuli as previous reported [60,81].

Data analysis and statistics
Densitometry of Western blotting was conducted and
quantified using the Image]J software (NIH) with B-actin as
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the loading control. Values were represented as mean +
SEM of 3 separate experiments. Statistical analysis was
performed using Prism 5 (GraphPad) software. One-way
ANOVA or students t-test was used to analyze data
from different groups. Two-way repeated measures
ANOVA with one repeated factor (time) was used for
mechanical threshold data analysis (p < 0.05 was consid-
ered significant).
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