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ResearchRecombinant ecto-5'-nucleotidase (CD73) has long 
lasting antinociceptive effects that are dependent 
on adenosine A1 receptor activation
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Abstract
Background: Ecto-5'-nucleotidase (NT5E, also known as CD73) hydrolyzes extracellular adenosine 5'-monophosphate 
(AMP) to adenosine in nociceptive circuits. Since adenosine has antinociceptive effects in rodents and humans, we 
hypothesized that NT5E, an enzyme that generates adenosine, might also have antinociceptive effects in vivo.

Results: To test this hypothesis, we purified a soluble version of mouse NT5E (mNT5E) using the baculovirus expression 
system. Recombinant mNT5E hydrolyzed AMP in biochemical assays and was inhibited by α,β-methylene-adenosine 
5'-diphosphate (α,β-me-ADP; IC50 = 0.43 μM), a selective inhibitor of NT5E. mNT5E exhibited a dose-dependent thermal 
antinociceptive effect that lasted for two days when injected intrathecally in wild-type mice. In addition, mNT5E had 
thermal antihyperalgesic and mechanical antiallodynic effects that lasted for two days in the complete Freund's 
adjuvant (CFA) model of inflammatory pain and the spared nerve injury (SNI) model of neuropathic pain. In contrast, 
mNT5E had no antinociceptive effects when injected intrathecally into adenosine A1 receptor (A1R, Adora1) knockout 
mice.

Conclusion: Our data indicate that the long lasting antinociceptive effects of mNT5E are due to hydrolysis of AMP 
followed by activation of A1R. Moreover, our data suggest recombinant NT5E could be used to treat chronic pain and to 
study many other physiological processes that are regulated by NT5E.

Background
Ecto-5'-nucleotidase (NT5E) is a glycosyl phosphati-
dylinositol (GPI)-anchored membrane protein that cata-
lyzes the hydrolysis of extracellular AMP to adenosine
[1]. NT5E regulates diverse physiological processes that
are modulated by adenosine, including hypoxia, inflam-
mation and epithelial ion transport [2-8]. Recently, we
found that NT5E is expressed in peptidergic and nonpep-
tidergic nociceptive (pain-sensing) neurons and their
axon terminals in spinal cord and skin [9]. Based on
experiments with Nt5e-/- mice, we established that NT5E
accounts for ~50% of all AMP hydrolytic activity in noci-
ceptive neurons [9].

In addition, we observed that NT5E was extensively co-
localized with Prostatic acid phosphatase (PAP, also

known as ACPP, Fluoride-resistant acid phosphatase or
thiamine monophosphatase) in nociceptive neurons. Like
NT5E, PAP functions as an ectonucleotidase in nocicep-
tive neurons by hydrolyzing AMP to adenosine [10,11].
Both Pap-/- and Nt5e-/- mice show enhanced thermal
hyperalgesia in animal models of inflammatory pain and
neuropathic pain as well as enhanced mechanical allo-
dynia following inflammation [9,10]. Interestingly, A1R-/-

mice also show enhanced sensitization following inflam-
mation and nerve injury [12]. Thus, deficiencies in ade-
nosine production or A1R signaling cause similar
behavioral phenotypes.

In support of an A1R-dependent mechanism, we found
that intrathecal (i.t.) injection of secretory PAP protein
(from mouse or human) into wild-type mice had long
lasting antinociceptive, antihyperalgesic and antiallo-
dynic effects that were entirely dependent on A1R activa-
tion [10,11]. These data suggested that spinal delivery of
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PAP protein could be used therapeutically to generate
adenosine and activate A1R over an extended time period.
Likewise, direct activation of A1R with adenosine or
selective A1R agonists had antinociceptive effects in
rodents and humans [13-31].

Considering that both PAP and NT5E generate adenos-
ine, we hypothesized that NT5E protein might also have
A1R-dependent antinociceptive effects. However, we
were unable to test this hypothesis because mammalian
NT5E protein was not available. As emphasized in a
recent review by Colgan and colleagues, this lack of a reli-
able source of purified protein has hindered studies with
NT5E [2]. Others used 5'-nucleotidase protein purified
from rattlesnake (Crotalus atrox) venom instead
[4,32,33]. Crotalus 5'-nucleotidase had no deleterious
effects when injected intraperitoneally and rescued phe-
notypes in Nt5e-/- mice; however, possible toxicity from
venom contaminants remains a concern--especially if this
venom-derived protein were to be used in the nervous
system.

To overcome these toxicity concerns, we purified and
characterized (in vitro and in vivo) a secretory version of
recombinant mouse NT5E. Our present study builds
upon work by Servos and colleagues who purified a
recombinant but non-secretory version of rat NT5E
using the baculovirus expression system [34].

Results
Purification of soluble mouse NT5E using the baculovirus 
expression system
NT5E is anchored to the membrane via a GPI linkage on
Ser523 [35]. In an effort to produce a secreted and soluble
(non-membrane anchored) version of NT5E, Servos and
colleagues generated a baculovirus expression construct
of rat NT5E that reportedly lacked the GPI-anchor at
Ser523 [34]. While Servos and colleagues successfully
used their construct to purify a catalytically active version
of rat NT5E, they did not detect NT5E in the tissue cul-
ture medium as would be expected if the protein were
secreted and soluble. Instead, NT5E was only present in
cell lysates. Upon re-examination of the cloning strategy
used by Servos and colleagues we noticed that their
expression construct included Ser523 but excluded
neighboring Ser526. Using GPI prediction software [36],
we confirmed that Ser523 (but not Ser526) was the most
likely GPI anchor site. Inclusion of this GPI anchor
sequence could explain why Servos and colleagues did
not detect NT5E in the culture medium. We thus gener-
ated a mouse NT5E (Trp29-Phe522) expression construct
that was truncated just before Ser523 (Figure 1A). Our
construct was otherwise identical to the one used by Ser-
vos and colleagues--our construct contained a gp67 sig-
nal peptide, glutathione S-transferase (GST), a thrombin

cleavage site to permit removal of GST and a C-terminal
hexahistidine (His)6 tag (Figure 1A).

Two days after infecting Hi5 insect cells with recombi-
nant baculovirus we detected GST-mNT5E protein in the
tissue culture supernatant at approximately 10 mg/L.
This observation suggested that exclusion of Ser523 was
important for producing a soluble version of NT5E.
Additionally, based on SDS-PAGE and western blotting,
the GST-mNT5E found in the medium was largely intact
whereas cell lysates contained truncated and intact ver-
sions of mNT5E-GST (data not shown). We next purified
mNT5E from the culture supernatant in two steps (see
Methods). We reasoned that GST, a protein that binds
glutathione, might interfere with physiological or behav-
ioral studies if administered in vivo. So as part of our
purification procedure, the GST fusion was removed by
thrombin cleavage. Protein purity was analyzed under
denaturing conditions with GelCode Blue protein stain
(Figure 1B) and western blotting with an anti-NT5E anti-
body (Figure 1C). We observed a single band at ~62 kDa,
corresponding to the calculated molecular weight of ung-
lycosylated mNT5E with a (His)6 tag (61.7 kDa). No addi-

Figure 1 Purification of recombinant mNT5E. (A) Diagram of the 
GST-mNT5E expression construct. (Top) Native mNT5E contains an N-
terminal signal peptide (ss-cleavage) and GPI anchor site. (Bottom) The 
GST-mNT5E fusion construct contains the signal peptide from gp67 of 
baculovirus Autographica californica, GST, a thrombin cleavage site, the 
catalytic domain of mNT5E and (His)6 tag. Translation start and stop 
codons are indicated. (B) GelCode blue-stained SDS-PAGE gel and (C) 
western blot of purified recombinant mNT5E protein (0.05 μg). The 
western blot was probed with an anti-mNT5E antibody.
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tional bands were observed, indicating that mNT5E
protein was intact.

The activity of secreted mNT5E was initially deter-
mined in vitro. Purified recombinant mNT5E protein
dephosphorylated AMP with a KM of 26 μM (Figure 2A).
This KM value is in agreement with the previously
reported range of 1-50 μM using AMP as substrate at pH
7.0 [8,34]. Recombinant mNT5E was also inhibited by
α,β-me-ADP (IC50 = 0.43 μM; Figure 2B), a commonly
used inhibitor of NT5E [1]. Although recombinant NT5E
was not used, others obtained a slightly higher IC50 value
of 3.6 μM with this inhibitor [37]. For comparison, we

found that α,β-me-ADP (0.01-500 μM) did not inhibit
recombinant mouse PAP when AMP was used as sub-
strate (data not shown). Production of recombinant
mouse PAP was described previously [11].

mNT5E has long lasting antinociceptive effects that are A1R 
dependent
We previously found that a single intrathecal injection of
PAP had antinociceptive, antihyperalgesic and antiallo-
dynic effects that lasted for three days and that were
dependent on A1R activation [10,11]. To empirically iden-
tify an effective dose of mNT5E for in vivo studies and to
determine if mNT5E had long lasting antinociceptive
effects, we intrathecally injected wild-type mice with
increasing doses of recombinant mNT5E protein (Figure
3). Time points were based on our previous studies with
PAP [10,11]. We then measured noxious thermal and
mechanical sensitivity before (baseline, BL) and after
mNT5E injection. Six hours post i.t. injection, paw with-
drawal latency to the noxious thermal stimulus was sig-
nificantly increased relative to controls and remained
elevated for two days at all doses tested (Figure 3A).
Intrathecal injection of mNT5E did not alter mechanical
sensitivity (Figure 3B) nor did it cause paralysis or seda-
tion at any of the doses tested. We previously found that
PAP (from human, cow and mouse) also had selective
thermal but not mechanical antinociceptive effects in
naïve mice and had no obvious motor side effects [10,11].

We next evaluated the antinociceptive effects of
mNT5E in the CFA model of inflammatory pain and the
SNI model of neuropathic pain. We used wild-type (WT)
and A1R-/- mice, to evaluate dependence on A1R activa-
tion. We used the contralateral (non-inflamed/non-
injured) paw as a control. As seen previously [9,10,12],
A1R-/- mice displayed enhanced thermal hyperalgesia
after CFA injection and after nerve injury relative to WT
mice (Figure 4A, C). In both chronic pain models, a single
i.t. injection of mNT5E had long lasting (at least 2 days)
thermal antihyperalgesic and mechanical antiallodynic
effects in the inflamed/injured paw of WT mice but not
A1R-/- mice (Figure 4A-D). Indeed, thermal sensitivity
transiently returned to baseline levels in the injured/
inflamed paws following mNT5E injection whereas
mechanical sensitivity approached but did not reach
baseline levels. Consistent with our dose-response study
above, mNT5E had thermal but not mechanical antinoci-
ceptive effects in the control (non-inflamed/non-injured)
paws of WT mice. mNT5E had no antinociceptive effects
in A1R-/- mice, highlighting a critical dependence on A1R
activation. We previously found that control injections
had no effect on thermal or mechanical sensitivity in
these mouse models [10,11]. When combined with
numerous studies of NT5E by others (reviewed by [2]),

Figure 2 mNT5E dephosphorylates AMP and can be inhibited by 
α,β-me-ADP. (A) Plot of initial velocity at the indicated concentrations 
of AMP at pH 7.0. Reactions (n = 3 per point) were stopped after 3 min. 
(B) The indicated concentrations of α,β-me-ADP were added to reac-
tions (n = 3 per concentration) containing mNT5E (0.07 μg/μL) and 400 
μM AMP at pH 7.0. (A, B) Inorganic phosphate was measured using 
malachite green. All data are presented as means ± s.e.m. Some error 
bars are obscured due to their small size. GraphPad Prism 5.0 was used 
to generate curves.
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our data suggest that all the antinociceptive effects of
mNT5E are due to production of adenosine and activa-
tion of A1R on DRG neurons and/or spinal neurons
[38,39].

Discussion
Adenosine and selective A1R agonists have well-studied
antinociceptive effects in rodents and humans [26,40,41].
These agonists are often delivered intrathecally to avoid
side effects associated with peripheral A1R activation
[42]. However, A1R agonists do have side effects when
delivered intrathecally at high doses, including overt
motor paralysis [10,43]. These motor side effects are
likely due to activation of A1R on motor neurons [39].
Our present study indicates that NT5E, an ectonucleoti-
dase that hydrolyzes AMP to adenosine, provides an
alternative means of activating A1R for therapeutic pur-
poses without causing overt motor paralysis. Although
PAP also has A1R-dependent antinociceptive effects
when injected intrathecally [10,11], PAP shares no
sequence similarity to NT5E. This lack of similarity made
it impossible for us to determine a priori if recombinant
mNT5E would be catalytically active, stable and effective
when tested in live animals.

As previously discussed [11], ectonucleotidases are cat-
alytically restricted in that they generate adenosine in
proportion to substrate availability. Catalytic restriction
limits the amount of adenosine produced and could

explain why saturating doses of PAP or NT5E protein do
not paralyze mice. Moreover, adenosine can be elimi-
nated from the extracellular space by nucleoside trans-
porters and metabolic enzymes, including adenosine
deaminase and adenosine kinase [40,44]. These compet-
ing processes of adenosine production and elimination
place an upper limit on how much extracellular adenos-
ine is available to activate A1R in animals. In support of
this, adenosine deaminase inhibitors and adenosine
kinase inhibitors prolong the extracellular bioavailability
of adenosine and have antinociceptive effects in animals
[17,21,45,46].

Unexpectedly, our studies revealed that two molecu-
larly distinct ectonucleotidases (PAP and NT5E) have
pronounced antinociceptive effects that persist for an
extended time period (2-3 days). This long duration of
action in vivo could not have been predicted from the
biochemical properties of these enzymes alone. More
importantly, our findings suggest ectonucleotidases rep-
resent a new class of antinociceptive drugs with potential
therapeutic advantages over adenosine, A1R agonists and
inhibitors of adenosine metabolism. For example, the
long duration of action of ectonucleotidases could be use-
ful in situations where there is a need to provide a sus-
tained level of A1R activation. Moreover, recombinant
NT5E could be used to further study the role of NT5E in
pain mechanisms and to study many other physiological
processes that are regulated by NT5E [2,9].

Figure 3 Dose-dependent antinociceptive effects of intrathecal mNT5E. Effects of the indicated amounts of mNT5E on (A) paw withdrawal la-
tency to a radiant heat source and (B) paw withdrawal threshold (electronic von Frey apparatus). BL = Baseline. Injection (i.t.) volume was 5 μL. n = 10 
wild-type mice were used per dose. Paired t tests were used to compare responses between BL values and later time points for each group. *P < 0.05, 
** P < 0.005; *** P < 0.0005. All data are presented as means ± s.e.m.
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Methods
Molecular biology
The GST-mNT5E baculovirus expression plasmid was
generated by PCR amplification of mouse NT5E (nt 131-
1696 from GenBank accession # NM_011851.3) using
Phusion polymerase and a full-length expression con-
struct of mNT5E as template. Primer sequences con-
tained EcoRI sites (in bold italics) to facilitate cloning into
pAcSecG2T (BD Biosciences). N-terminal primer: 5'-
cgcgaattcattgggagctcacgatcctgcacaca. C-terminal (His)6
tag primer: 5'-gcggaattcttaatgatgatgatgatgatggaacttgatc-
cgcccttcaacg. These primers amplify a product that con-
tains the catalytic domain of mNT5E fused to the (His)6
epitope tag but that lacks the signal peptide and GPI
anchor sequence (located at Ser523). This mNT5E PCR
product was subcloned in frame with an N-terminal GST

fusion tag, with a single thrombin cleavage site between
the GST tag and the coding sequence of mNT5E. The
final plasmid was sequence verified.

mNT5E protein purification
The GST-mNT5E plasmid was used to generate recombi-
nant mNT5E protein using the BD BaculoGold Expres-
sion System (BD Biosciences). Briefly, we infected Hi5
insect cells with high-titer recombinant baculovirus,
incubated the cells for 48 hours at 27°C and then removed
the cells from the supernatant by centrifugation. The
supernatant containing secreted GST-mNT5E was fil-
tered (0.45 μm pore size, Millipore) and concentrated in
PBS (10 mM sodium phosphate, 140 mM NaCl, pH 7.4)
using a Millipore cartridge with a 10 k retention cutoff.
The concentrated supernatant was loaded onto a 5 mL
GSTrap FF column (GE Healthcare) using a peristaltic

Figure 4 mNT5E has antihyperalgesic and antiallodynic effects in WT mice following inflammation and nerve injury. WT and A1R-/- mice were 
tested for (A, C) noxious thermal and (B, D) mechanical sensitivity before (baseline, BL) and after injection of CFA into one hindpaw (A, B; arrow) or 
following nerve injury (C, D; SNI, arrow). (A, B) One or (C, D) six days later, mNT5E protein (1.7 U) was injected i.t. into all mice (arrowhead) then thermal 
and mechanical sensitivity was measured for several days. Inflamed/injured and non-inflamed/non-injured (control) hindpaws were tested. We used 
a 1.7 U dose to conserve protein and because it was nearly as effective as the 2.5 U dose (compare thermal antinociceptive effects in Figure 3A to 
panels A and C-control paws). Paired t testes were used to compare responses at each time point between genotypes (n = 10 animals per genotype). 
*P < 0.05, **P < 0.005, ***P < 0.0005. All data are presented as means ± s.e.m.
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pump at 4°C. Loading was performed overnight at a slow
flow rate (0.4 mL/min. for 14-16 hours) to optimize bind-
ing of the GST-tagged protein. The column was then
washed with 50 mL PBS. Purified thrombin (GE Health-
care, Cat. # 27-0846-01) was added to 2 mL of PBS (250 U
thrombin/L of expression culture) and loaded onto the
GSTrap column using a syringe. The on-column cleavage
reaction proceeded for 16 hours at room temperature.
The pre-loaded GSTrap column was then attached to an
ÄKTA Explorer chromatography system with UV moni-
toring. Cleaved mNT5E and thrombin were eluted in PBS
while the GST tag remained bound to the column. Frac-
tions were monitored by SDS-PAGE to estimate purity,
mNT5E concentration and cleavage efficiency (~80%).
The cleaved mNT5E was separated from thrombin using
a Superdex75 10/300 GL column attached to the ÄKTA
Explorer system. Proteins were eluted in PBS at a flow
rate of 0.5 mL/min. A maximum of 500 μL was injected
per run. Fractions containing cleaved mNT5E were
pooled, concentrated and then dialyzed against 0.9%
saline. Protein purity was confirmed by SDS-PAGE,
staining for total protein with GelCode Blue (Pierce/
Thermo Scientific, Cat. # 24590) and western blotting
with anti-NT5E antibody (R&D Systems, AF4488).
Amersham full-range rainbow molecular weight markers
(GE Healthcare) were used for SDS-PAGE and western
blots. Recombinant mNT5E was kept at 4°C for short-
term (1-2 months) use and at -80°C for long term storage.

Enzyme assays
Enzymatic reactions (50 μL final) were carried out with
recombinant mNT5E at 37°C for 3 minutes in 100 mM
HEPES, pH 7.0, 4 mM MgCl2 with adenosine 5'-mono-
phosphate disodium salt (Fluka, 01930) as substrate.
Reactions were terminated by adding 950 μL of the mala-
chite green color reagent [0.03% (w/v) malachite green
oxalate, 0.2% (w/v) sodium molybdate, 0.05% (v/v) Triton
X-100, dissolved in 0.7 M HCl] followed by incubation at
room temperature for 30 minutes. Inorganic phosphate
was quantified by measuring OD650 and comparing to an
inorganic phosphate (KH2PO4) standard curve [47]. Unit
(U) definition: 1 U hydrolyzes 1 nmol of AMP per minute
at 37°C at pH 7.0. α,β-me-ADP was purchased from
Sigma (M3763).

Behavior
All behavioral experiments involving vertebrate animals
were approved by the Institutional Animal Care and Use
Committee at the University of North Carolina at Chapel
Hill. C57BL/6 mice, 2-4 months old, were purchased
from Jackson Laboratories. A1R-/- mice were backcrossed
to C57BL/6J mice for 12 generations [48,49]. Male mice
were used for all behavioral studies and were acclimated
to the testing room, equipment and experimenter for at

least three days before testing. To further reduce variabil-
ity in behavioral studies, mice were almost exclusively
tested when in the resting or light sleep behavioral state
[50]. The experimenter was blind to genotype during
behavioral testing.

Thermal sensitivity was measured by heating one hind-
paw with a Plantar Test apparatus (IITC) following the
Hargreaves method [51]. The radiant heat source inten-
sity was calibrated so that a paw withdrawal reflex was
evoked in ~10 s., on average, in wild-type C57BL/6 mice.
Cutoff time was 20 s. One measurement was taken from
each paw per time point to determine paw withdrawal
latency. Mechanical sensitivity was measured using a
semi-flexible tip attached to an Electronic von Frey appa-
ratus (IITC) as described elsewhere [52,53]. The force
values obtained with this apparatus are higher than the
force values obtained using calibrated von Frey filaments
[53]. Three measurements were taken from each paw
then averaged to determine paw withdrawal threshold in
grams. To induce inflammatory pain, 20 μL complete Fre-
und's adjuvant (MP Biomedicals) was injected into one
hindpaw, centrally beneath glabrous skin, with a 30G nee-
dle. We performed spared nerve injury surgeries as
described by Shields and colleagues [54]. mNT5E protein
was diluted in 0.9% saline for intrathecal injection (5 μL/
mouse) using the direct lumbar puncture method [55].
None of the mNT5E-injected mice displayed reduced
mobility or paralysis following injection, as assessed by
visually observing motor activity following injections.
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