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Development of a 3D immersive videogame to
improve arm-postural coordination in patients
with TBI
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Abstract

Background: Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural
(trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame– Octopus. The
game was developed using the basic principles of videogame design and previous experience of using
videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual
environments, Octopus included an actual gaming component with a system of multiple rewards, making the
game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-
postural coordination in patients with TBI was tested.

Methods: The game was developed using WorldViz Vizard software, integrated with the Qualysis system for
motion analysis. Avatars of the participant’s hands precisely reproducing the real-time kinematic patterns were
synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13
individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the
screen, the participants interacted with a computer-generated environment by popping bubbles blown by the
Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar
allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced
ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed
using principal component analysis.

Results: As a result of the short-term practice, the participants improved in game performance, arm movement
time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies.
Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time.

Conclusion: These results support the feasibility of using the custom-made 3D game for retraining of arm-postural
coordination disrupted as a result of TBI.
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Background
Approximately 3.2 million Americans live with long-term
disability following traumatic brain injury (TBI) [1]. The
majority of TBI survivors present with disrupted central
and executive mechanisms underlying arm and postural
(trunk and legs) coordination [2]. Behaviorally, such dis-
ruption limits postural stability when performing arm

movements, increases the risk of falling, deteriorates
motor skills, and eventually decreases the quality of life
of TBI survivors [3-5]. Despite the importance of arm-
postural coordination, surprisingly little attention is paid
to its restoration by conventional rehabilitation, which
generally treats the affected upper extremities, postural
control, and gait separately. This lack of attention is
related to the complexity of TBI-related coordination
deficits, inconsistency of evaluation, difficulties addres-
sing a specific problem with real world coordination
tasks, and adapting these tasks to the abilities and needs
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of TBI survivors. Development of customized virtual rea-
lity (VR)-based gaming exercises and their implementa-
tion into TBI rehabilitation may solve this problem.
To date numerous custom-made VR applications have

been tested and shown to be effective in restoring sensori-
motor abilities in patients with acquired brain injuries.
Utilizing movements similar to those made in the real
world, VR games incorporate elements essential for suc-
cessful retraining. The games offer practice in various and
safe environments, allow manipulation with the timing
and precision of object interactions, provide real-time per-
formance feedback, and acknowledge a participant’s suc-
cess relative to his/her abilities [6-10]. Although most
positive evidence has been collected in patients with stroke
[6,8,11,12], several studies reported the feasibility of VR
practice in patients with TBI [13,14]. The potential of VR
gaming applications has been verified in this population
when assessing cognitive functions [14,15], or retraining
functional skills [16,17] and balance [9,18,19].
Despite the high potential of VR games, some gaps

remain in their development as rehabilitation tools. Most
virtual environments use gaming concepts, which simply
simulate arm movements, balance, walking, and cognitive
tasks separately, with minimal attention paid to restoration
of specific motor deficits, such as complex whole-body
motions. This fact limits the use of VR applications in
patients with multiple TBI-related sensorimotor abnorm-
alities. Furthermore, most customized VR paradigms lack
actual gaming elements that could make the task challen-
ging, competitive, motivating, and fun. Virtual-reality para-
digms with built-in animation scenarios frequently ignore
the basic principles of game development, such as the
inclusion of a gaming story, conflict, reward system, and
level-based increases in difficulty. Most studies reported
results of practicing repetitive, stereotyped actions, as for
example pointing at a target in a simulated elevator [11]
or reaching to grasp simulated objects [12]. Designing vir-
tual environments which implement the principles of
game design would advance virtual rehabilitation in neuro-
logical populations.
While absent in custom-made virtual environments,

the above basic gaming elements are found in popular
“off-the-shelf” games offered for example by Nintendo
Wii and Sony EyeToy. Unfortunately available as alterna-
tive therapeutic tools, off-the-shelf games cannot replace
customized tasks because of the inflexible gaming con-
tent, absence of strict requirements for defining and
monitoring the precision of motor performance, and lack
of equivalency to movements performed in the real world
[20,21]. For example, all large-amplitude whole-body
movements required for playing tennis can be replaced
with only one hand manipulating a Wii controller. Such
a distorted spatial calibration diminishes the rehabilita-
tion effect of this gaming system.

Considering the drawbacks of existing VR-based appli-
cations, we developed a customized videogame (Octopus)
for use by patients with TBI. Unlike many other custom-
designed virtual environments, Octopus focused on train-
ing arm-postural coordination, utilized the basic principles
of game design, and included tasks calibrated according to
the patient’s anatomical features and movement abilities.
This paper provides a description of the game design,
training protocol, and effect of a short-term gaming prac-
tice on the arm and postural coordination of patients with
mild-to-moderate TBI. Some results have appeared pre-
viously in abstract form [22].

Methods
Gaming system
The gaming system consisted of a Dell Mobile Precision
M6500 laptop (Intel i7 quad core CPU) with a graphics
accelerator (NvidiaQuadro FX 3800 M) integrated with a
6-camera system for motion capture (Qualisys AB,
Sweden). Participant interaction with the simulated vir-
tual environment occurred via hand avatars, precisely
reproducing the real-time kinematic patterns. The ava-
tars were created with 3 reflective markers (12 mm in
diameter) attached to each hand. The movements of the
markers were recorded by the Qualisys system for
motion analysis at 100 Hz and then synchronized with
the VR gaming scenario with minimum delay. The image
was projected in 3D format onto an 82-inch screen (1080
p Mitsubishi DLP® TV bundle, RealD) and was viewed
by the participant in the first-person view via shutter
glasses (RealD Professional CrystalEyes 5). The glasses
are emitter free and thereby caused no interference with
the infrared signal emitted by the motion capture system.
Wearing these light weight glasses (67 grams) posed
minimum constraint on participant’s movements.
The gaming scenario was developed using WorldViz’s

Vizard software (WorldViz LLC) with computer gra-
phics created with Alias’ Maya package for 3D anima-
tion (Maya®, Version 7.0.1; Autodesk, Inc.).

Gaming Scenario
The game is designed to challenge postural stability while
reaching to intercept a moving target. In the gaming sce-
nario, all actions occur in an underwater world populated
with seaweeds and corals (Figure 1). The main character,
Octopus, is located in the middle of the screen. Octopus
blows bubbles towards the participant, whose presence in
the underwater landscape is indicated by the right and
left hand avatars.
The gaming task is to reach and pop (intercept) as

many bubbles (targets) as possible with the left or
right hand. Once launched, each target randomly fol-
lows 1 of 5 radial (circular) trajectories (Figure 2A),
designed so that the target in the overhead position
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corresponded to the participant’s height with the arm
raised up. At shoulder level the target is 25-30 cm
beyond the length of the arm, outstretched forward
(Figure 2B). This reaching distance is considered as the

lower border for norms on the Berg Balance test [20].
This trajectory allows flexibility in the reaching strat-
egy used to intercept the target. When approaching it
in a strictly sagittal plane, the participant can reach the

Figure 1 Experimental setup with subject standing in front of the screen with the Octopus scenario projected. Image is taken from the
seventh gaming trial.
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target overhead (by maximally extending the arm
upwards), at shoulder level (by extending the arm for-
ward), or somewhere between these two critical points.
Catching the target at the shoulder level might take
less time, but it also causes greater postural displace-
ment, since it requires that the participant lean his/her
entire body forward. In the frontal plane, bubbles are
aligned along a semicircle, with a 45° interval between
trajectories (Figure 2A). The upper target (#3) is within
reaching distance, while the lower targets (#1, #5) are
15-18 cm beyond the length of the arm, outstretched
to the right or left side. This distance corresponds to
norms for healthy individuals on the Multi-Directional
Reach Test [23]. Visual representations of the hand
and bubble are matched in size.
The gaming session begins with a narration that pre-

sents the story of Octopus, provides the gaming instruc-
tions, and describes the reward system. In part, the
narrative instructs the participant to pop as many bub-
bles as possible for 90 s without leaving an initial posi-
tion, losing balance, or taking a step. Each successful
bubble trajectory interception is rewarded with points,
which accumulate throughout the gaming trial and serve
as the criteria of performance success (performance
score). The result of the first gaming trial is used to
establish a baseline score. Each following trial is rewarded
with appearance of an additional character on the Octo-
pus landscape, when the number of bubbles popped was
≥110% of the score on the previous trial. The set of char-
acters includes fish, shark, treasure chest, diver and so on

(Figure 1). All the characters appear in particular points
of the screen and add some entertaining effect to the
game. For example, the fish crosses the screen horizon-
tally at different speeds, the sea horse moves up and
down in the left corner of the screen, and the diver is
swimming on the right. The ultimate goal is to collect as
many characters as possible and get the final reward, an
animated Mermaid, who is sitting on the coral reef and
waving her tail. All these actions are added to slightly dis-
tract participants. The participants were instructed to
catch the bubbles, but not the characters. The Octopus
blows bubbles regularly every 4sec at a speed of 1.5 m/s.
Successful interception causes the next bubble to appear
earlier (immediately after) and thereby increases the bub-
ble flow rate. The maximum possible flow rate is 1/sec,
but none of our participants reached it. In case of unsuc-
cessful bubble catch, the next bubble follows the regular
flow rate. All participants practiced the Octopus game
with the same gaming parameters.
Participants
The feasibility of the game was tested in 13 individuals (6
males and 7 females, 32 ± 6.7 year old) with chronic mild-
to-moderate manifestations of TBI. Table 1 shows the
clinical and demographic data for the subjects enrolled in
the study.
Participants had mild-to-moderate coordination deficits

affecting gait, postural control, and upper extremity move-
ments, with clinical test scores ranging as follows: a) 39-55
points on the Berg Balance test [24], with 45 points indi-
cating a high fall risk; b) 12-29 points on the Functional
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Figure 2 Calibration of virtual space with bubble in the frontal (A) and sagittal (B) planes. The bubble trajectories in the frontal plane are
numbered from 1 to 5 to simplify description in the text; the octopus location is marked by the smiley in figure 2B.
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Gait Assessment Test [25], with 22 points indicating a
high fall risk; and c) 5-12 points on the Ataxia Test
according to Klockgether [26], with 35 points identifying
severe ataxia. The participants had low scores (< 10
points) on the Motion Sensitivity Test [27], indicating that
no adverse effect (e.g., dizziness, nausea, or disorientation)
likely would occur as a result of head or 3D environment
motions. Measured as part of the Berg Balance test, the
forward reach (item #6) and single-leg stance (item #12)
were ranked and included in the total score, and were ana-
lysed separately in terms of absolute values (e.g., forward
reach in cm and single-leg stance in s, not exceeding 30 s).
All participants were able to stand unsupported for at
least 2 min. They demonstrated near to full range of
motion in upper extremities and had no marked increase
in muscle tone. Of the 13 participants, only 3 (#3, #4, #12,
Table 1) had mild impairments of arm functions. Arm
functions were evaluated with the Arm and Hand section
of the Fugl-Meyer stroke assessment scale [28]. The above
mentioned participants had scores 62/66; 64/65, and 66/
61 for the dominant/non-dominant arms, where a score of
66 corresponds to normal functioning. The participants
reported normal stereovision, and normal/corrected visual
acuity. The rapid cognitive assessment with the Mini-
Mental State Examination scale [29] indicated that no par-
ticipant exhibited severe abnormalities that might signifi-
cantly restrict game performance The participants had
high scores ranging from 22-30, with ≤ 9 points indicating
severe cognitive dysfunction. All participants signed
informed consent documents prepared in compliance with
the Helsinki Declaration and approved by the Institutional
Review Board.

Training Protocol
Participants practiced the Octopus game 10 times during
a single practice session. Each 90-s game included ~20-
25 reach-to-pop movements, with a total of 200-250
repetitions per session. To avoid fatigue, a 1-2 min rest
period (in standing or sitting position) was allowed
between trials. A retention test of 2 gaming trials was
administered 30 min after the end of the practice. The 2
retention trials repeated the first and last gaming scenario
(with no characters and with the complete number of vir-
tual characters, respectively) of the practice session, with
the scores averaged. Before the practice session practice
began, a single game trial was introduced to participants
to familiarize them with the game content and thereby to
reduce a warm up effect. The forward reach and single
leg stance items of the Berg Balance test were repeated
twice, at the beginning (pre-test; Table 1) and end (post-
test) of the gaming session, to evaluate the effects of the
short-term practice. On average, each gaming session
lasted for ~1 h, including time for the practice itself and
rest.
Subjective assessment
In order to assess the usability of the game, a 28-item
self-report questionnaire based on the work of Qin et al.
[30], was administered to all participants. The question-
naire was presented in the format of a 7-point scale, and
patients were asked to report their agreement (7 point),
disagreement (1 point), or neither agreement or disagree-
ment (4 point) with respect to a number of statements.
The questionnaire was designed to assess seven aspects
of game satisfaction: control, curiosity, concentration,
comprehension, challenge, empathy and motion/fatigue.

Table 1 Demographic data and clinical scores of patients with TBI

Subject Age Sex Years Since TBI Arm Dominance FGA Score Ataxia Score* Berg Balance Score

Total #6 Forward Reach (cm) #12 Single Leg Stance (s)

Pre-test Post-test Pre-test Post-test

S1 41 M 4 R 24 5 45 28 29 16 19

S2 41 M 6 R 20 12 39 23 25 8 10

S3 19 M 2 R 24 11 41 21 17 > 30 > 30

S4 34 F 1.5 R 21 5 48 19 18 5 9

S5 29 F 10 R 29 3 55 24 27 15 25

S6 22 M 4 R 27 5 52 27 29 19 22

S7 38 F 10 R 21 6 55 29 31 3 7

S8 44 F 8 R 27 5 54 25 25 9 10

S9 44 F 10 R 15 9 48 19 23 5 4

S10 38 M 10 L 12 8 49 18 19 8 10

S11 38 M 5 R 27 4 44 32 34 > 30 > 30

S12 33 F 3 L 18 11 43 24 27 > 30 > 30

S13 20 F 2 R 23 9 53 19 24 22 25

*Ataxia scale quantifies the severity of each of the following symptoms: ataxia of gait, stance, upper and lower extremities, dysdiadochokinesis, intention tremor,
and dysarthria on a 6-point scale, with grade 0 (symptom is absent) to 5 (unable to perform). All symptom scores are summed with a total score ranging from 1
to 21 corresponding to mild-to-moderate ataxia, and the score 35 indicating the most severe manifestations.
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Some of the items were altered to fit the type of game we
used and three questions were added to address the
motion/fatigue aspects of the project.

Data Collection and Analysis
For data analysis, bubble trajectories in the x, y, and z
directions were synchronized with the whole-body
movements. These data were recorded by the Qualisys
system for motion analysis at 100 Hz, using 30 reflective
markers placed on the major bony landmarks. Reaching-
to-pop bubble #3 (Figure 2A) with the dominant hand)
was analysed kinematically according to the following
parameters: arm movement time, arm trajectory curva-
ture, and arm-postural coordination.
The trajectory curvature, analogous to Levin’s index of

curvature [31], was calculated as the ratio of the actual
arm trajectory length to the shortest path to the target. A
ratio of 1 indicates no arm deviation from the shortest
path, while a ratio of 2 indicates that the arm trajectory
was twice as long as the shortest distance between the
initial and final arm positions.
The arm-postural coordination was analysed in terms of

movement variation and the contribution of body seg-
ments, using principal component analysis (PCA) as
described by Mah et. al. [32] and modified by Alexandrov
et al. [33]. From kinematic data, the angular displacements
of 9 body segments (i.e., 2 hands, 2 forearms, 2 upper
arms, 1 trunk, and 2 legs) were computed in the sagittal
(flexion-extension) plane, typically relative to the sagittal
movement of the bubble. The leg, consisting of the thigh
and shank, was analysed as a single segment since the
angular displacement at the knee joint was minimal for
this task.
The vector of temporal variation of the 9 segmental

angles �i around their mean values �mi (i = 1,2...8,9)
was represented in PCA as a weighted sum of orthogo-
nal and normalized compounds, i.e., a sum of principal
components (PCs):
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where wij was the weight of the segmental angle varia-
tion �j in the ith PC. Each ith PC in the equation above
was defined by a vector of 9 constant normalized weights
wij (j = 1,2...8,9), called PC loading, and by a correspond-
ing time-dependent scaling factor ξi(t), called PC factor.
The PC loading had a positive (or negative) sign when
the corresponding segment shifted toward (or away
from) the bubble. The PC loading indicated the contribu-
tion of each individual segment to the arm-postural coor-
dination, with a mean PC loading > 0.7 being considered

significant [33]. The covariance matrix used for the PCA
included non-normalized values to enhance the contribu-
tion of relatively small segmental displacements. Each
movement parameter was measured in a time window
between the initial bubble launch and its interception.
Performance success was measured as the number of
popped bubbles in a 90-s trial. Preliminary individual
data were averaged across 13 subjects, each performing
3-4 reaches/trial of the selected bubble with the domi-
nant arm.
Data normality was verified with the Kolmogorov-

Smirnov test (p > 0.5). The means were compared using
a one-way ANOVA, repeated over eleven times, includ-
ing practice and retention trials. A paired t-test was
used for within-group comparison of the Berg Balance
test scores (forward reach and single leg stance) between
pre-test and post-test.

Results
Game performance
While practicing the game, the participants were not
instructed on how to move to catch a bubble success-
fully. The bubble trajectory could be intercepted using
different combinations of arm and postural segment dis-
placements. Figure 3 shows the sagittal displacements of
the bubble, hand, trunk, and legs (red lines) in a repre-
sentative participant during the first trial (Figure 3A)
and the last trial (Figure 3B). The gray body model in
both figures serves as a link between the trajectories and
illustrates the participant’s movements. His initial
attempt to reach the bubble was characterized by a
longer and less-accurate hand movement (Figure 3A).
The target trajectory (dashed line) was intercepted at an
almost overhead position that required minimal postural
involvement. By the end of the practice session on the
ninth trial (Figure 3B), the hand trajectory became
shorter, less curved, and the bubble trajectory was inter-
cepted earlier than on the first trial. To reach the bub-
ble, the participant leaned forward and used his leg to
counterbalance the forward body shift. This later strat-
egy revealed the greater involvement of postural seg-
ments into arm transport.
All participants improved in game performance during

the practice session (F1,10 = 3.93, p < 0.001), increasing
the number of bubbles popped from 15.5 ± 6.72 (mean ±
SD) on the first trial to 22.8 ± 10.0 on the last trial.
Significant improvement occurred by the sixth trial
(Figure 4A, post-hoc p = 0.024) and was retained over a
30-min break to 21.8 ± 7.91 (p = 0.605). Improvement
occurred despite the inclusion of additional virtual
objects, which appeared after each successful gaming trial
and distracted participants’ attention. The increased
number of popped bubbles through the practice session
was proportional to the decreased time of bubble
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trajectory interception (F1,10 = 2.57, p = 0.008, Figure 4B)
from 1.61 ± 0.44 s to 1.42 ± 0.35 s on the eighth trial
(post-hoc p = 0.034), and to 1.35 ± 0.39 s on the last trial
(post-hoc p = 0.010). The movement time measured dur-
ing the retention test (1.39 ± 0.44 s, p = 0.076) indicates
that no changes occurred after the 30-min retention
interval.
A similar decrease in the trajectory curvature (F1,10 =

4.15, p = 0.012, Figure 4C) was observed through the
gaming session, from initial ratio 2.13 ± 0.43 to 1.72 ±

0.49 (p = 0.041) on the eighth trial with the final mean
of 1.67 ± 0.37 on the last trial (p = 0.002), with partial
retention of the ratio 1.7 ± 0.39 over the retention inter-
val. Thus the above results indicate that our participants
improved on all three parameters characterising game
performance. The performance score itself was changed
after half of the trials were completed, with two other
parameters improved upon completion of about ¾ of
trials. The skills were partially retained over a rest
interval.
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Arm-postural coordination
The movement coordination and relative contribution of
different body segments to arm transport were analysed
using PCA. About 90% of the variance in the angular dis-
placements of the 9 segments was accounted for by the
first 3 PCs (Figure 5A). The amount of variance
explained by PC1 was significantly different for reaches-
to-pop during the first gaming trial (39% ± 12%) than for
those during the last trial (64% ± 14%). The percentage
of angular variance associated with PC1 provided evi-
dence of coupling between the segments when popping
the bubbles. This coupling was increased by the end of
the practice session (F1,10 = 2.97, p = 0.003). The first sig-
nificant change in percentage was observed by the eighth
trial (p = 0.023) with a tendency to retain acquired coor-
dination (58% ± 10%) over retention interval.
Performance of the gaming tasks involved the entire

body, with 9 body segments (see the Methods section)

included into variance clusters. Not all of these segments,
however, had a significant impact on movement produc-
tions as was determined by the loading coefficients
(< 0.7). Figures 5B-D show the PC loadings from the 5
body segments only (dominant forearm and upper arm,
trunk, and dominant and non-dominant legs) that con-
tributed significantly to the whole-body movement and
had a coefficient exceeding 0.7 at least once throughout
the data analysis. The loading coefficients are presented
for the first, last, and retention trials. The upper arm
loadings in PC1 across the first and last trials indicated
that, regardless of the trial, this segment consistently con-
tributed (> 0.7) to the bubble popping and represented
the reaching movement itself. The upper arm involve-
ment remained practically unchanged throughout the
entire gaming session F1,10 = 0.98, p = 0.184). The fore-
arm loading during the last trial was smaller than during
the first one (F1,10 = 2.45, p = 0.045), probably due to the

Figure 5 Means and standard deviations of the percentage of variance explained by the first 3 PCs (A), and segmental loadings of the
dominant forearm, upper arm, trunk, dominant and non-dominant legs on the first 3 PCs during the first (B), last (C), and retention
(D) trials. * identifies significant difference between the first trial and the trial where significant changes occurred; #- identifies significant
difference between the first and the last trial; §-identifies significant difference between the last and retention trials. The differences are indicated
for the PCs loadings coefficients exceeding 0.7.
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reduced excursion of the forearm motion relative to the
upper arm.
The pattern of loading coefficients for the postural seg-

ments (trunk and legs) was markedly different as partici-
pants progressed from the beginning to the end of the
gaming session. These coefficients were much smaller on
PC1 during the first trial, indicating their weak coupling to
arm motion. In PC2 and PC3, the postural segment load-
ings were larger, with trunk motion being coupled (PC2;
> 0.7) and the legs contributing insignificantly (PC3; <
0.7). The loadings of the postural segments, on PC1
increased dramatically by the end of practice (F1,10 = 1.99,
p = 0.031 for the trunk; F1,10 = 4.78, p = 0.003 for the leg
on the dominant side), signifying that these body parts
became greater contributors to the arm transport. Signifi-
cant changes (p = 0.018) were observed by the eighth trial
for the trunk segment and by the ninthh trial for the leg
segment (p = 0.021). The leg on the non-dominant side
increased its loading (from 0.29 to 0.61; (F1,10 = 2.01, p =
0.049) with large inter-subject variation, but did not reach
significance (> 0.7). High loadings for the legs and trunk
in PC1 on the last trial, combined with the fact that PC1
explained 64% of the variance, indicated that these seg-
ments were tightly synchronized with arm motion, form-
ing the synergistic pattern of the whole-body motion.
Means of the segmental loadings during the retention test
were similar to those recorded during the last gaming trial
(post-hoc p > 0.05 for arm, and trunk p ≥ 0.7), except for
the leg segment (p = 0.252).
After completing the practice session, 10 of 13 partici-

pants displayed improved reaching distances and 9 of 13
increased single-leg stance times (Table 1). Evaluated
with the valid [34] and reliable [35] Berg Balance test, the
reaching distance was increased on average from 23.6 ±
4.42 to 25.2 ± 5.08 (p = 0.032), and the single-leg stance
from 15.4 ± 10.1 to 17.7 ± 9.73 (p = 0.032). Although
statistically significant, these changes did not reach a
4-point minimal detectable change threshold [35], indi-
cating the functional improvement to be clinically mean-
ingful. Participants #2 and #9 performed on the pre-test
better than on the post-test (Table 1). This might be
explained by their fatigue due to practicing.

Subjective assessment
The descriptive analysis has been used to evaluate the
usability of the game with self-report questionnaire data.
On the whole patients indicated moderate levels of satis-
faction with the game. Results were ambivalent with
respect to fatigue. Patients had means of scores 3.42 ±
2.15 points for the survey items “My arms fatigued quickly
while playing the game” and 3.46 ± 2.03 points “I got tired
quickly while playing the game” where both were near
“Neither agree nor disagree”. This seems to suggest that
the game was subjectively neither too easy nor overly

difficult in terms of the physical movements required of
patients.
Patients indicated strong interest in the style of the game

interface (6.23 ± 1.09), but only moderate interest in the
story (3.62 ± 1.98). They reported that they were able to
comprehend the game (5.69 ± 1.60), and expressed high
agreement with statements about relationships among
game characters and events (5.86 ± 1.87). Patients
reported high agreement with statements such as “I like
the tasks, which are difficult, in the story” (5.50 ± 1.24)
and “I feel successful when I overcome the tasks in the
game” (6.23 ± 0.93). On the other hand, patients reported
moderate to low levels of immersion into the game experi-
ence, rating the statement “After playing, it takes a long
time for me to return to the real world mentally” with a
score of only 2.77 ± 2.05.

Discussion
Overall, all of our participants benefited from game prac-
tice during a single session, displaying improved game
performance, arm movement time, trajectory curvature,
arm-postural coordination, forward reach, and single-leg
stance time. These movement performance changes were
partially retained (on average 86%) over the 30-min
retention interval.
An increase in the game performance score occurred in

most participants at the middle of the gaming session.
This first quick improvement was probably associated
with understanding of what actions lead to successful per-
formance of the task. Significant changes in movement
characteristics, however, were observed much later, upon
completion of about ¾ of all reach-to-pop tasks. All
improvements most likely were caused by changes in
movement strategies. According to the PCA results, a par-
ticipant’s initial effort to pop a bubble began with explor-
ing all possible gaming solutions, making the performance
very variable. At that early stage of learning, participants
developed an idea of “how to move” that is consistent with
classical theories of motor learning [36-39]. Their perfor-
mance was very variable, characterized by lots of unneces-
sary motions, interfering rather than facilitating the goal
achievement. The later learning followed the “principle of
reduction”, first described by Skinner in 1938 [39]. All
excessive motions and forces were reduced and patients
“mastered control of redundant degrees of freedom” [36].
Once movement redundancy was under control, the
patients were able to free additional degrees of freedom
that were constrained initially. Specifically, later game
tasks were performed with greater involvement of postural
segments, including the trunk and, in some cases, the legs.
This strategy allows catching the target earlier and is used
in real life by a majority of experienced goal keepers play-
ing soccer or handball. The goalkeepers do not wait until
the ball appears in the goal space, but begin leaning
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toward it much earlier, often immediately after the ball
was forwarded. This facilitates catching the ball before it
reaches maximum velocity and allows some time to cor-
rect the movement of the arm end-point, in case the ball
trajectory was anticipated mistakenly. In our game, the tar-
get trajectory remained unchanged. However, the partici-
pants intuitively chose early target interception. Moreover,
their arm and postural segments began moving in a more
coordinated manner, increasing movement efficiency and
decreasing movement time of reaches-to-pop. This finding
is consistent with the results of Kaminski [40] who, using
an example of reaching forward while standing, showed
that stronger arm and postural coupling allows faster
movement performance.
As unsolicited feedback, one participant reported that

the gaming practice gave her an “awareness” of whole-
body movements. She expressed amazement that such
“forgotten” movements could be made during a gaming
session without loss of balance or taking a step. While
performing activities of daily living that required arm
movements while standing, the participant had previously
“stiffened” her body to minimize the risk of falling. Upon
completing the gaming session, she reported that she had
learned how to control her body and was no longer afraid
of instability. Indeed, training the patients in how to gain
control, rather than in how to stabilize posture, was an
ultimate goal of the gaming practice.
The benefits of the greater involvement of postural seg-

ments in arm reach-to-pop movements may be disputa-
ble from the movement control standpoint. According to
Levin et al. [41] and others, trunk involvement in arm
transport during seated reaches is a pathological com-
pensatory strategy in patients after stroke. The authors
showed that compensatory trunk movements may
improve the performance of the paretic arm initially, but
this strategy prevents further long-term recovery of more
efficient arm movement patterns [42]. A short-term prac-
tice with trunk restraint results in greater reach-to-grasp
improvements in patients with chronic stroke than prac-
tice without trunk compensatory involvement [43]. The
same finding is true for seated activities where balance
maintenance is not critical. In contrast, trunk and leg
movements are an essential part of activities such as
dressing, doing laundry, and cooking when performed in
a standing position. For these tasks, gaining control of
the arm-postural interaction supports successful and safe
performance and cannot be excluded without a detri-
mental effect.
The usability of the game was evaluated with the

questionnaire data. Patients indicated moderate levels of
difficulty and immersion in the game, reported that the
game was subjectively neither too easy nor overly diffi-
cult in terms of the physical movements. They liked the
tasks and felt successful when overcoming them. Despite

the strong interest in the style of the game interface,
participants indicated only moderate interest in the
story. This is not surprising as the task was not designed
with a particularly compelling story. Based on these self-
report data, it seems that the game designers were suc-
cessful in creating a game which was compelling enough
to engage patients in the task and provide challenges
without being overly fatiguing. There is room for
improvement in terms of immersion into the game and
in game narrative.
The short-term effect of practicing Octopus, the par-

tial skill retention over time, and participants’ satisfac-
tion provide strong evidence of the feasibility and
usability of this type of videogame in patients with TBI.
These games potentially can be used to challenge pos-
tural stability and regain arm-postural control. In con-
trast to the previously used VR approaches, Octopus has
an algorithm which allows manipulating an amount of
postural displacements depending on patient’s abilities.
This is a novel aspect in design of rehabilitation games
which encourages maximal use of available coordination
strategies.

Limitations of the study
The study did not address whether the gaming interven-
tion improved functional outcomes. This was a pre-clin-
ical experiment testing the feasibility of a VR game as a
rehabilitative tool, which is a necessary step prior to
initiating any type of clinical studies. Longer-term prac-
tice in the framework of different types of randomized
controlled trials is necessary to assess changes in func-
tional abilities. Another study limitation was enrolment
of relatively unimpaired individuals, who had nearly full
ranges of motions. We can predict that people with
restricted arm movements would utilize postural seg-
ments for arm transport to a greater extent, as was
shown on example of arm swinging while standing in
individuals with stroke [44]. This was not confirmed
experimentally yet and will be considered in further
research. The study did not include a control group.
Thus the results cannot be interpreted in terms of
whether our TBI participants approached the level of
performance in healthy uninjured individuals. Future
study is necessary to address this issue.
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