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Abstract
Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for 
statistical validity. Yet health professionals often seek statements about the probability distribution of unknown 
parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, 
although a Bayesian formulation might. This is the source of an error made in a recent paper published in this journal. 
Many applications lend themselves to a Bayesian treatment, and would benefit from such considerations in their 
design. We discuss Bayes-LQAS (B-LQAS), which allows for incorporation of prior information into the LQAS classification 
procedure, and thus shows how to correct the aforementioned error. Further, we pay special attention to the 
formulation of Bayes Operating Characteristic Curves and the use of prior information to improve survey designs. As a 
motivating example, we discuss the classification of Global Acute Malnutrition prevalence and draw parallels between 
the Bayes and classical classifications schemes. We also illustrate the impact of informative and non-informative priors 
on the survey design. Results indicate that using a Bayesian approach allows the incorporation of expert information 
and/or historical data and is thus potentially a valuable tool for making accurate and precise classifications.

Introduction
The frequentist approach to statistical inference assumes
that a parameter of interest is a fixed and unobservable
quantity. The goal is to make inference about this fixed
value, given an assumed sampling distribution of the
data. For example, one might estimate the prevalence of
disease in a population and calculate a confidence inter-
val about the estimate to reflect the statistical uncertainty
associated with the estimation; or test a hypothesis about
the value of the prevalence and report a p-value to deter-
mine significance. The attributes of these methods are
judged a priori, or before observing any data. For exam-
ple, a 95% confidence interval will capture the true
parameter value on average 95% of the time. Similarly, a
hypothesis test is designed to a certain power function,
which determines the potential errors. Yet, once the data
have been observed, a posteriori the probability that the
true parameter lies within that interval is zero or one and
the result of the hypothesis test is correct or not- and,
unfortunately, we do not know which.

It is common for novice statisticians to make such
statements as "the probability that the prevalence lies

within the confidence interval is 95%", which is, of course,
incorrect in the frequentist framework. Indeed, such
statements would be attractive and desirable, if only they
were correct. There is a vehicle for making probability
statements about distributions of unknown parameters:
Bayesian inference [1]. In the Bayesian framework, the
unknown parameter is treated not as a constant, but as a
random quantity, which varies according to some proba-
bility distribution. At the core of this theory is Bayes the-
orem, which states that for two events, A and B, where
Pr(B) > 0, the conditional probability

In practice, A and B are replaced by the unobservable
parameters, ϕ, and the observable data, X, respectively.
Then the expression becomes
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The relevant pieces of this expression are the likeli-
hood, Pr(X|ϕ) and the prior distribution, Pr(ϕ), which,
together with Pr(X), yield the posterior distribution
Pr(ϕ|X). Both ingredients must be specified for valid con-
clusions in this context. The posterior distribution proba-
bilistically describes the behavior of the unknown
parameter given the prior and observed data, and serves
as the basis for Bayesian analysis. Certain applications
naturally lend themselves to a Bayesian approach. Con-
sider monitoring the prevalence of acute malnutrition
amongst children 6-59 months of age and within a partic-
ular area. At any given time, there may be a true value of
the prevalence of acute malnutrition (i.e. the number of
children acutely malnourished in the area divided by the
total number of children in the area). However, if one
were to consider the prevalence over a six month period,
this value would fluctuate as children age, thereby enter-
ing or exiting the cohort, or their nutritional statuses
change. Thus, it may be more realistic to model the prev-
alence of malnutrition as a random quantity over time
rather than a fixed quantity.

Deitchler et al found Lot Quality Assurance Sampling
(LQAS) to be a useful tool to monitor the prevalence of
Global Acute Malnutrition, defined as Weight-for-
Height-Z-score < -2 standard deviations, in emergency
situations [2,3]. With any LQAS application, the goal is to
classify the population prevalence as above or below pre-
defined thresholds by comparing the number of failures
in a random sample to a specific decision rule. For exam-
ple, one might be interested in determining with a high
degree of confidence whether the prevalence of acute
malnutrition is greater than 10% in a given population of
children less than 5 years of age. To accomplish this goal,
randomly sample 200 children from within the popula-
tion. If more than thirteen children exhibit signs of acute
malnourishment, then classify the prevalence of acute
malnutrition as greater than 10% in that population. The
choice of sample size and decision rule determine the
degree to which one can rely on this classification. The
LQAS procedure is discussed in depth in the next section.
Recently, Bilukha [4] and Bilukha and Blanton [5] sub-
stantially criticized these designs in this journal. The
main problem with their criticism is exemplified in
Bilukha and Blanton's suggestion to use as an alternative
measure of risk, "the statistical probability of the true
population value's exceeding the threshold," conditional
on the number of malnourished children in a sample [5].
When the prevalence is treated as a constant, as it is in
the model in their paper, this is a measure with little
meaning. The authors fall short of specifying the neces-
sary assumptions to make what is clearly a Bayesian state-
ment; namely, no mention is made of the prior
distribution. The reader is left to assume that the authors
did not consider this aspect in their calculations.

It is attractive to have the ability to make a probability
statement about the prevalence of malnutrition, even
though it does require that more structure be imposed on
the model. The Deitchler et al LQAS designs serve as a
natural place to begin this investigation. Classical LQAS
has generally relied on frequentist statistical principles,
particularly in its application in health (see [6] for over
800 examples, all of which take a frequentist approach).
Further, nowhere in the health literature have Bayesian
considerations been incorporated into the LQAS proce-
dure, to the best of our knowledge. Yet, Bayes-LQAS (B-
LQAS) is well-established in the industrial literature,
where it is known as Bayesian Acceptance Sampling (see
[7], and references therein). As early as the 1960's, Brush
examined classical and Bayesian risks for a variety of
sampling plans [7]. Brush, and Sharma and Bhutani [8],
emphasize the importance of examining both the classi-
cal and Bayes risks when deciding upon a sampling
design. Fan [9] and Sheng and Fan [10] consider B-LQAS
for binomial testing and outline an approach to choosing
a prior based on historical data using an empirical Bayes
approach.

More recently, Moskowitz considers B-LQAS under
quadratic and step-loss functions [11]. Fitzgerald looks at
B-LQAS plans under an assumed mixture prior [12], and
he bases B-LQAS designs on Bayes OC curves and average
OC curves. These curves were first introduced by Easter-
ling [13]. Now, B-LQAS has made a transition into the
economics and operations research literature. For exam-
ple, in 1996 Lattimore et al used B-LQAS to monitor drug
use in Illinois. In that application, the sampling plan was
determined by minimizing expected cost, as advocated
by Moskowitz et al [14,15].

In this paper, we discuss the potential benefits of using
B-LQAS in health applications. As a running example, we
discuss an application to acute malnutrition, motivated
by LQAS designs proposed by Deitchler et al to classify
the prevalence of malnutrition [2,3]. We show how to
approach the classification problem from a Bayesian per-
spective, show some of the advantages of this approach,
and discuss the parallels between the classical and Bayes-
ian approach.

Discussion
A Brief Review of LQAS and B-LQAS
LQAS
Classical LQAS is primarily a classification procedure
[16]. In its simplest form, the goal is to classify the
unknown prevalence of a binary indicator as greater than
or equal to some critical threshold, p*, or less than this
threshold. To do so, the number of cases, Y, in a simple
random sample of size n are compared to a predefined
decision rule, d. If fewer than d cases are observed, then
the prevalence is classified as low (p < p*). Otherwise, it is



Olives and Pagano Emerging Themes in Epidemiology 2010, 7:3
http://www.ete-online.com/content/7/1/3

Page 3 of 8
classified as high (p ≥ p*). The sample size and decision
rule are chosen to achieve error probabilities of α and β,
where the former is the maximum acceptable probability
of a false negative (or a false low) over some range of
prevalences and the latter is the maximum acceptable
probability of a false positive (or false high) over some
other range of prevalences.

To define these ranges, LQAS uses upper and lower
thresholds, pU and pL. The sample size and decision rule
are chosen so that the probability of a false negative when
the true prevalence is greater than or equal to pU is less
than or equal to α. Likewise, the probability of a false pos-
itive when the true prevalence is less than or equal to pL is
less than or equal to β. In the industrial literature, these
errors are referred to as the consumer and producer risks.
In health applications, generally pU is chosen to be equal
to the critical threshold p* and pL is chosen to reflect the
desired detectable deviation from that threshold [16].
However, some have suggested using p* = pL [17], which
might be appropriate depending on the application.
When deciding on how to implement the procedure, it is
important that the investigator keep in mind what p rep-
resents, particularly if p is the prevalence of an undesir-
able outcome.

The Operating Characteristic (OC) Curve completely
summarizes any LQAS design. For a given value of p, this
is defined as

where Y is assumed to be binomially distributed with
parameters n and p. Plotting this quantity for the entire
range of p yields the desired curve. A satisfactory LQAS
design will have the following properties:

For example, in Figure 1, we see an OC curve with n =
200 and d = 14, which corresponds to the LQAS design
used by Deitchler et al [2,3] to classify the prevalence of
malnutrition with a critical threshold p* = 0.10 and with
pU = 0.10 and pL = 0.05. In that application, α was set to
0.10 and β to 0.20. We see that the OC curve is less than α
= 0.10 at the upper threshold and greater than 1 - β = 0.80
at the lower threshold, and thus meets the design require-
ments.
B-LQAS
B-LQAS is similar to classical LQAS in that the final goal
is decide whether to classify the prevalence as greater
than or equal to some threshold p* , or less than this

threshold, so that appropriate action be taken. However,
in the Bayesian context, we allow a prior distribution of
the parameter, p, to be part of the analysis. As with classi-
cal LQAS, we choose the sample size, n, and the decision
rule, d, to achieve certain criteria when performing the
classification before observing the data. In contrast to
classical LQAS, these criteria are based on posterior
properties of our decision, or what we believe after
observing the data. For example, it might be important to
know what is the probability we have made the correct
decision, or classification, and we have the choice of two
probabilities, depending on which decision we make.

To get a better understanding of the intuition behind
this approach, consider Figure 2, where we have plotted a
hypothetical prior distribution of the prevalence of mal-
nutrition. This distribution has mean 8.5% with 77% of its
mass between 5% and 10%. Overlaid on this plot are two
OC curves. The solid curve corresponds to a classical OC
curve with d = 14, or the decision rule that we would
choose using classical considerations. When we consider
the prior distribution, we might argue that it makes less
sense to use this decision rule, which prioritizes error
above 10% and below 5%, since we seldom expect to see a
prevalence as high or as low. The dashed line corresponds
to a classical OC curve with d = 28. With the chosen prior,
this appears to be a better design as it prioritizes the
region of largest prior mass when choosing a decision
rule. That is, the design prioritizes correct classification
of prevalences which are most likely given our prior
beliefs. Hence, prior beliefs about the parameter of inter-
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Figure 1 Classical Operating Characteristic Curve with sample 
size n = 200, decision rule d = 14, upper threshold pU = 0.10, lower 
threshold pL = 0.05, and maximum tolerated errors α = 0.10 and β 
= 0.20.
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est should play a vital role in determining an appropriate
design, and in explaining its properties.

For the sake of illustration, in this paper we assume the
conjugate Beta prior on the prevalence, p ~ Beta(a, b), to
demonstrate the effect on the OC curves. That is, we let
the prior distribution, π(p), take the structural form

where a, b > 0 and B(a, b) is the beta function [18]. The
Beta provides a rich family of distributions, allowing for a
range of flexible prior shapes. Further, there is some pre-
cedence for its use [10]. The parameters a and b control
the shape of the prior distribution. To aid interpretation,
we might think about a and b as the prior number of suc-
cesses and failures, respectively. Therefore, a large value
of b relative to a yields a distribution skewed to the left.

For pedagogical reasons, we choose these parameters
to reflect a variety of potential prior beliefs (see Figure
3A). For example, when a = 1 and b = 1, the prior is com-
pletely flat, which might correspond to a lack of prior
knowledge or possibly prior indifference. When a = 2 and
b = 10, this corresponds to a prior density with most of its
mass below 30%, which is a realistic assumption as mal-
nutrition prevalence is rarely as high as 30%. For example,
in the CE-DAT global database of over 1400 malnutrition
surveys conducted in emergency situations, only 59
reported a prevalence as high as 30% in children 6-59
months [19]. However, we also look at the case where a =
4 and b = 2 and where a = b = 5, reflecting a prior belief

that the prevalence is in fact quite high, even though this
condition is probably quite unlikely in the present con-
text. The properties of a B-LQAS design can once again
be formalized in the OC curves, although we now focus
our attention on the Bayes OC curves. A key difference
between classical LQAS and B-LQAS is the reliance on
not one, but two curves to determine appropriate
designs, since we need to condition on either a high or
low classification. In this paper, we define the following
Bayes OC curves

where the event Pass = {Y ≥ d} and Fail = {Y <d},where
Y is the number of "successes" in a sample of size n. Plot-
ting (2) and (3) as a function of x yields the desired
curves. We can write

where π(p) is the prior distribution of p and f (y|p) is the
sampling distribution of Y given the parameter, p. As a
result, the Bayes OC curves are less straightforward to cal-
culate than the classical OC curves, as some integration
over the unknown parameter is required. In some cases,
these integrals can be analytically intractable, in which
case one would have to appeal to numerical methods to
evaluate the expressions. In any single application we ulti-
mately take only a single action, but we need to consider
both Bayes OC curves. Note that in the case of malnutri-
tion, if Y ≥ d, this indicates a high burden of malnutrition.
Therefore, the use of the word Pass is not instinctual.
However, we might think of Pass as "qualifying for
humanitarian aid" to facilitate the interpretation. We con-
tinue with this notation to provide a unified framework.

The interpretation of each of these curves allows us to
make probabilistic statements about the parameter of
interest, given the results of our diagnostic procedure;
such as statements like those made by Bilukha and Blan-
ton [5], which in their context are incorrect. Intuitively, it
would be desireable to control for the probability that the
prevalence is low when we say it is high (or declare a
Pass), for example, and vice-versa. Using the Bayes OC
curves, we can choose n and d so that the Bayes classifica-
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Figure 2 Hypothetical prior distribution of acute malnutrition 
with mean 8.5% (**) and candidate OC curves for LQAS classifica-
tion with d = 14 (-) and d = 28 (--).
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tion errors are controlled. For an analogue to classical
LQAS, we can enforce the following:

where pU = p* and pL is some lower critical threshold.
However, it is also possible to choose pL = pU = p*, which
might be more appealing to some practitioners. This lat-
ter case is discussed at length in the context of Phase II
clinical trials by Wang et al [20]. Ultimately, the choice
depend on the application and the priorities of the inves-
tigators. We discuss this issue further in the next section.

In Figure 3B, we see the Bayes OC curve plotted as a
function of the prevalence threshold (x in equations (2)
and (3)) with n = 200 and d = 14. When α = 0.10 and β =
0.20, we see that the constraints posed in (4) and (5) for
pU = 0.10 and pL = 0.05 are met for all considered priors.
That is,

Hence, when we choose d = 14, which corresponds to
the classical solution, we achieve reasonable Bayesian
properties as well.

Note that when we let pL = pU = 0.10, the error at the
upper and lower thresholds increases slightly as com-
pared to the case when pU = 0.10 and pL = 0.05 for the
considered priors. That is, 1 - BOCP < ( p = 0.10 | n, d)
decreases from essentially one, to just over 0.80, in the
case when a = 2 and b = 10, which is still within the
design constraints. This is important, however, as it high-
lights the tradeoff between classification precision and
accuracy in these applications. Namely, by classifying as
above pU = p* or below pL, we are asking for slightly
imprecise results, but doing so with high accuracy. How-
ever, if we classify as above or below pU = p*, we are ask-
ing for highly precise results, but doing so with less
accuracy. We revisit this notion in more depth below.

Maximizing the Figure of Merit
In general, the above outlined approach is feasible yet
time consuming, as it might require an investigator to
look at a range of sample sizes and decision rules to arrive
at a given design. A more automated design selection is
achieved by using the following Figure of Merit (FOM),

1 − ≤BOC p n dF U( | , ) a (4)
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Figure 3 (A) Various Beta distributions to describe a range of potential prior beliefs. We assume that p ~ Beta(a, b). (B) Bayes OC Curves assuming 
n = 200 and d = 14. The dashed lines (---) represent 1 - BOCF and the solid lines (-) represent 1 - BOCP.
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and for a given sample size, one might choose the deci-
sion rule to maximize this quantity. In the decision theo-
retic literature, this quantity is known as the Bayes Risk of
a zero-one utility (negative loss) function [1]. When pU =
pL, the FOM of a given design is the average probability of
correct classification given a prior π(p). When pL <pU,
dividing the above quantity by a factor of 1 - Pr(pL <p
<pU) yields the average probability of correct classifica-
tion of priority locales. This scaling of the FOM does not
affect the maximization, but can help with interpreting
the result. Interestingly, (6) can be rewritten as

which shows that an optimal design is one that maxi-
mizes a weighted average of the Bayes OC curves, where
the weights are the marginal probabilities of passing and
failing the procedure. The marginal distribution of Y is
also referred to as the prior predictive distribution. That
is, the predictive distribution of Y given only our prior
assumptions. Hence, we weight more heavily the Bayes
OC curve which has the greater prior predictive probabil-
ity of occurring.

Continuing with our example, Figure 4A shows the plot
of the FOM as a function of d for the situations when n =
200, pU = 0.10, pL = 0.05 and 0.10, and four prior distribu-
tions. When pL = 0.05, the optimal decision rule hovers
around d = 14, or the same as the classical LQAS solution.
Yet, it is important to note that both when a = 5, b = 5 and
a = 4, b = 2, the optimal decision rules are less than 14.
Further, even though the curves are very nearly flat in the
displayed range of rules, these are true maxima due to the
fact that the prior mass below pL is non-zero. Scaling the
maximum FOM appropriately reveals that the average
probability of correct classification of priority locales is
close to 100%, indicating the appropriateness of the
design for detecting extremes (i.e. areas where p ≤ pL or p
≥ pU).

When pL = pU = 0.10, the maximum FOM decreases,
albeit slightly, and the optimal decision rule increases to d
= 17 or d = 20, depending on the prior. Therefore, if our
prior belief is that the malnutrition prevalence is low, we
require a greater number of malnourished children in our
sample to be convinced otherwise. But if we believe that
the malnutrition prevalence is high, we will need fewer

malnourished children in our sample to be convinced
that the prevalence is indeed low, and thus possibly trig-
gering an earlier intervention. This is a consequence of
incorporating prior information into our analysis. In
either case, it is important to realize that the optimal
design does a good job of classifying areas. That is, in
both cases, the maximum FOM is greater than or equal to
90%. Therefore, with a sample of size n = 200, the proba-
bility that we correctly classify an area is greater than or
equal to at least 0.90.

It is interesting to note that when a = 1 and b = 1, the in
difference prior, the optimal decision rule is equal to 20,
or np*. Both Bilukha and Blanton [5] and Rhoda et al [17]
have suggested using d ≈ np* for the decision rule in the
classical setting. The use of a flat prior with pL = pU = p*
gives a Bayesian justification for such a choice, although
the use of a flat prior does not ordinarily make sense for
this application, as it is uncommon for the prevalence of
acute malnutrition to reach as high as 30%, much less
80% or 90% [19]. We discuss this in more depth in the fol-
lowing sections.

Balancing Accuracy and Precision
The FOM measures the overall accuracy of the B-LQAS
procedure, and it is attractive to constrain our procedure
to achieve at least a minimum FOM. Namely, we constrain
the FOM so that

where the parameter δ controls the overall level of
accuracy in the procedure. This might be considered a
more appealing design metric than α and β. Of course,
when pL = pU, constraints (4) and (5) imply

Hence, in this special case, the optimal design which
meets (7) might be chosen as that design for which a
weighted average of the producer and consumer risks,
weighted according to the prior belief of passing or fail-
ing, is greater than or equal to 1 - δ. If α = β, then we have
that α = β = δ, further simplifying the parameterization.

The precision demanded of the procedure impacts the
accuracy. That is, the choice of pU and pL affects the prop-
erties of the design. Formally, define the precision as 1-
|pU-pL|.When pU = pL, the precision is equal to one. But as
pL deviates from pU , the precision decreases. Indeed,
when at their maximal difference, the precision is zero. In
our example, pU = 0.10 and pL ranges from 0.05 to 0.10, so
that the precision ranges from 0.95 to 1.00.
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In Figure 4B, we plot the maximum average probability
of correct classification of priority locales (or the appro-
priately scaled FOM) as a function of the precision, fixing
pU = 0.10 and allowing pL to vary from 0.05 to 0.10.
Therefore, when the precision is equal to 0.95, this corre-
sponds to pL = 0.05 and pU = 0.10. When the precision is
equal to one, then pL = pU = 0.10. Assume that we want a
design that achieves an overall accuracy of 0.95 (1 - δ =
0.95). We see that for three of the four considered priors,
the maximum FOM is well above 0.95 for all considered
precisions, and therefore we should on average correctly
classify over 95% of locales with these procedures. How-
ever, for the situation when a = 2 and b = 10, which is
likely the more realistic prior for this application, the
maximum FOM drops below 0.95 as pL approaches pU , or
the precision approaches one. Hence, it is not always pos-
sible to achieve the desired level of accuracy for all preci-
sions, short of increasing the sample size; illustrating the
trade of between the two.

Conclusion
In this paper, we describe the basic framework for per-
forming Bayes-LQAS, using as an example an application
to acute malnutrition. The benefits of using such a
method include the ability to incorporate mild or strong
prior beliefs about the underlying distribution, based
either on historical data or even expert opinion, and the
provision of a principled framework for accumulating

data, which can be used in subsequent surveys to inform
decision making.

Further, B-LQAS allows for the investigator to make
probabilistic statements about the prevalence itself, given
the outcome of the classification procedure, which classi-
cal LQAS does not. Using the FOM allows for the selection
of a design with optimal a priori probabilities of correct
classification.

We also see the inherent tradeoff between accuracy and
precision. This tradeoff is not unique to the Bayesian
framework, of course. Indeed, it is this very tradeoff that
motivates the use of upper and lower thresholds to evalu-
ate error in the classical LQAS framework. This is due to
the fact that it is impossible to make completely accurate
classifications for all values of p, barring an infinite sam-
ple or a complete census. An important aspect of this tool
which we have not discussed is its potential as a routine
tool for monitoring population health. Indeed, the Figure
of Merit approach can be easily adapted to incorporate
historical or routine data. The above formulation is sim-
ple by construction, as we wish only to illustrate the
potential of B-LQAS. More complex modeling is required
to exploit the full utility of this method for monitoring
health programs over time. For use with panel data, or
repeated cross-sectional surveys over regular intervals,
the extension of the above method needs investigating.

Clearly, the choice of prior distribution is an important
element of B-LQAS. One alternative to complete specifica-

Figure 4 (A) The Figure of Merit plotted as a function of d where p ~ Beta(a, b) and assuming n = 200, pU = 0.1 and both pL = 0.05 (-) and pL 

= 0.1(---). Solid vertical lines indicate the maximum FOM when pL = 0.05 and dashed vertical lines indicate maximum FOM when pL = 0.10. (B) Maximum 
FOM as a function of the precision with pU = 0.1 and pL varying from 0.05 to 0.1 for various assumed Beta priors.
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tion of the prior is to let the data influence its shape via
empirical Bayes procedures (see [21], pg. 122-126 for fur-
ther discussion). Regardless, the prior can have minor or
major influence on the chosen design, depending on the
situation. In the example we present, the sample size for
the survey is relatively large. However, it is not uncom-
mon to use much smaller sample sizes when performing
LQAS(n = 19, e.g.) [16]. In this case, the prior distribution
will impact the choice of design more heavily. Most
importantly, the prior should accurately reflect prior
beliefs and should not be chosen to subvert the classifica-
tion procedure.
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