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Abstract

The successful operation of a cognitive radio system strongly depends on its ability to sense the radio environment.
With the use of spectrum sensing algorithms, the cognitive radio is required to detect co-existing licensed primary
transmissions and to protect them from interference. This paper focuses on filter-bank-based sensing and provides a
solid theoretical background for the design of these detectors. Optimum detectors based on the Neyman-Pearson
theorem are developed for uniform discrete Fourier transform (DFT) and modified DFT filter banks with root-Nyquist
filters. The proposed sensing framework does not require frequency alignment between the filter bank of the sensor
and the primary signal. Each wideband primary channel is spanned and monitored by several sensor subchannels that
analyse it in narrowband signals. Filter-bank-based sensing is proved to be robust and efficient under coloured noise.
Moreover, the performance of the weighted energy detector as a sensing technique is evaluated. Finally, based on the
Locally Most Powerful and the Generalized Likelihood Ratio test, real-world sensing algorithms that do not require a
priori knowledge are proposed and tested.
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1 Introduction
Spectrum sensing has been brought into the center of
research activities due to its application in the con-
text of cognitive radio (CR) [1]. Cognitive radio and
dynamic spectrum access have been identified as the
means to maximize spectrum exploitation and efficiency.
The cognitive radios share the available spectrum with
a licensed primary system (PS) and have the responsi-
bility not to adversely affect the PS user operation by
causing interference. Spectrum sensing is used to iden-
tify and consequently avoid co-existing primary signals.
Several spectrum sensing techniques have been derived
and studied [2,3]. These algorithms present pros and cons
concerning the need for a priori knowledge of PS signals
features, the computational complexity, the robustness in
channel variations and coloured noise etc.
In [4], the introduction of filter-bank-based sensing was

made and further analysis was provided in [5]. The main
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advantage of this technique lies in the fact that since the
CR networks will use multicarrier modulations for trans-
mission, the analysis filters that are intended for receiver
operation, e.g. in OFDM-OQAM [6,7], in discrete wavelet
multiTone [8] and in filtered multiTone [9], could also be
used for sensing without extra computational workload.
In [10], filter-bank-based physical layer design for CR sys-
tems was introduced, where simultaneous spectrum sens-
ing and transmissionmay be possible using the filter bank.
In [4] and [5], Fahrang-Boroujeny examined the filter bank
operation as an estimator of the power Spectral density
(PSD) incorporating a spectrum analyser in the receiver
structure. A comparison in the performance of the estima-
tion with the non-parametric multitaper method [11] was
also made. It was confirmed that the use of a filter bank
can similarly achieve remarkable spectral analysis with the
use of a larger set of samples but much less computational
complexity.
However, in [4,5], no detectors were presented that

could be practically used to identify primary emissions in
a given band of interest. Since then, several studies were
made regarding filter-bank-based sensing. Most studies
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consider simplified models for the operation of the fil-
ter bank and do not attain optimality [12,13]. In [14],
filter bank sensing is performed using data-aided feature
detection achieving results in extremely low signal-to-
noise ratio (SNR); however, the algorithm required knowl-
edge for specific features of the PS signal. Some studies
focus on the reduction of the computational workload
[15-17], while others propose new filters suitable for sens-
ing [18,19]. In addition, special issues have been addressed
that concern the application of filter banks in spectrum
sensing [20,21]. Moreover, in [22,23], efficient implemen-
tations of filter bank sensors are presented.
This study is motivated by the absence of strong theoret-

ical description for filter-bank-based sensors. A variety of
detectors are presented for uniform and modified discrete
Fourier transform (uniform DFT-MDFT) filter banks and
especially root-Nyquist filters. As in [14], filter banks are
implemented using the polyphase structure in order to
perform simultaneous parallel sensing on all subchannels;
however, the proposed algorithms are not based on spe-
cific signal feature extraction. Optimality based on the
Neyman-Pearson theorem [24] is achieved. Moreover, the
designed sensors are based on the approach that there is
no ‘1-1’ matching of the receiver filters and the PS signal
bandwidth. This is a common flaw among the major-
ity of filter-bank-based sensing studies. Primary signals
are in their vast majority wideband, while the CR filter
bank has the objective to divide the monitored spectrum
into narrowband channels. Therefore, in a common con-
figuration, a primary channel is spanned and analysed
by a number of CR filters. The use of multiple CR fil-
ters on a single PS transmission also eliminates the need
for frequency alignment between the primary signal and
the CR detector. An additional advantage is that the fil-
ter bank can partially exploit the radio channel frequency
selectivity without the need for complicated equalization
procedures on the primary signal. In [25] and [26], mul-
tiple CR subchannels are also used to span the primary
signal. In the first study, a technique for SNR estimation
of the PS signal is proposed using simple approximations,
while in [26] the authors introduce a weighted energy
detector scheme that is able to efficiently scan Bluetooth
channels.
In Section 2, the used system model is presented. In

Section 3, the Neyman-Pearson optimal detectors for uni-
form DFT banks are extracted, while in Section 4, the
optimal detectors in the output of an OFDM-OQAM
receiver (using an MDFT bank) are studied. In Section 5,
the weighted energy detector for uniform DFT banks is
analysed, and in Section 6, the extension of the filter
bank sensing application in coloured noise is presented.
It is noted that coloured noise has been identified [5]
as a significant challenge for spectrum sensing applica-
tions. Finally in Section 7, practical implementations of

the detectors - the Locally Most Powerful (LMP) test
and the Generalized Likelihood Ratio Test (GLRT) - are
proposed. Simulation results are presented in Section 8.

2 Systemmodel
A CR system is assumed that digitizes a large portion
of spectrum containing K channels of the PS. The wide-
band received signal is analysed by a bank of M > K
filters that span the whole digitized bandwidth. Conse-
quently, each PS channel is analysed by

⌈
L = M/K

⌉
filters.

A graphical representation of a 32-channel filter bank that
spans the bandwidth that contains four PS channels is pre-
sented in Figure 1. In the specific example, the output
from eight subchannels can be used to extract the decision
on whether a PS channel is occupied or not.
Given the fact that the wideband CR receiver should

optimize the use of the limited computational resources,
the analysis focuses on uniform DFT [27] filter banks with
downsampling at the Nyquist rate. The well-known com-
putationally efficient polyphase structure can be assumed.
The type-1 polyphase representation of an finite impulse
response (FIR) filter is the following [28]:

h(1)
i (n) = h (Mn + i) , H (z) =

M−1∑
i=0

z−iH(1)
i

(
zM

)
(1)

where the subscript indicates the ith polyphase filter path,
while the superscript defines the type of polyphase repre-
sentation. Analysis is also expanded in filter banks used by
OFDM-OQAM systems. The specific filters present sim-
ilarities with the cosine-modulated filter banks and their
digitally equivalent representation is the MDFT [29] filter
banks [29]. Ideally, a digital implementation of an OFDM-
OQAM system will use MDFT filter banks with perfect
reconstruction (PR) properties. In many cases, the PR
property is sacrificed for better time-frequency localiza-
tion; however, these filters can also be expressed with the
MDFT structure and it is highly desired to approximate
the behaviour of MDFT-PR. Two equivalent structures
of an OFDM-OQAM receiver are presented in Figure 2
(where normalization and phase correction coefficients
are arbitrarily set since they do not affect the results of the
specific study). The two filter structures are equivalent for
D filter coefficients where α =

⌊
D−1
M/2

⌋
= 2α′, i.e., α is

even. Nevertheless, the selection of odd α does not affect
the MDFT-filter bank-based spectrum sensing results.
Moreover, the assumed prototype filter is real and sym-

metric ensuring linear phase response. Deeper analysis is
performed for filter banks using a root-Nyquist prototype
filter [30]. The root-Nyquist filters are typically used for
pulse shaping in radio communication systems due to the
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Figure 1 Filter bank configuration example forM= 32 in a bandwidth containing four PS channels.

InterSymbol Interference (ISI)-free transmission proper-
ties. It is noted that the necessary and sufficient condi-
tion for MDFT-PR filters suitable for OFDM-OQAM also
leads to root-Nyquist filters [29].

The nth time sample of the received signal from the
output of the A/D converter is represented by rn, while

y(i)
n represents the output of the ith filter. It is assumed
that the filter impulse response is normalized so that the
mean input and output signal powers remain constant, if
the incoming signal is contained in the specific filter pass-

band. Thus, hu = pu

/√
∞∑

u=−∞
∣∣pu∣∣2 , where pu is the FIR

Figure 2 Two OFDM-OQAM receiver filter structures. (a) Conventional implementation and (b) parallel uniform DFT bank implementation.
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filter prototype. Using a non-casual filter representation,
the Nyquist ISI-free condition is expressed by

gn =
∞∑

u=−∞
huhn−u =

{
1, n = 0

0, n = lM, l �= 0 (2)

The presented theoretical analysis assumes that the trans-
mitted PS signal sn is circular white Gaussian random
variable with mean power at the receiver (over a flat
channel) σ 2

s . This assumption is accurate for orthogonal
frequency division multiplexing (OFDM) signals, but it is
questionable for single carrier signals. However, since the
signal passes through a cascade of filters and transceiver
impairments, each signal sample is the result of linear
combinations and shifts that includes a large number of
random variables. Thus, a generalized version of the Cen-
tral Limit Theorem can be invoked to justify the Gaussian
assumption for the PS signal. The incoming signal at the
CR receiver for given PS transmissions under frequency
selective channels is provided by

rn =
K−1∑
k=0

ζk

∞∑
u=0

c(k)u s(k)n−u + wn (3)

where the superscripts indicate the transmitted signal at
the kth primary channel, and the ζk coefficient is equal
to 0 if the kth channel is free, or 1 if the kth chan-
nel is occupied. Filter c(k)u represents the radio channel
impulse response for the kth PS channel. The formulated
detection problem concerns the use of the available infor-
mation frommultiple filter bank outputs in the decision of
whether a primary channel is occupied or not. Therefore,
the binary decision problem for the kth primary channel
is expressed as

H0 : ζk = 0 → r(k)n = wn

H1 : ζk = 1 → r(k)n =
∞∑
u=0

c(k)u s(k)n−u + wn
(4)

The observation vector that contains the information used
for the decision is a set of N samples (depending on the
sensing duration) for each of the L filters that span the pri-
mary channel under investigation. The following vectors
are defined:

yl =
[
y(l)
n y(l)

n−1 . . . y(l)
n−N+1

]T
(5)

with

y(l)
n =

∞∑
u=−∞

h(l)
u rMn−u (6)

where h(l)
u is the impulse response for the lth subchan-

nel of the filter bank. In (6), it is assumed that the signal
is maximally decimated at the output. Without loss of
generality, L is assumed even for presentation purposes.
No additional information on primary signal features and

specifications is assumed. The next step is the definition
of the detectors.

3 Neyman-Pearson optimal detectors for
maximally decimated signals

The energy detector is the simplest and most common
spectrum sensing technique with low complexity and
minimum knowledge regarding the primary system. The
energy detector can be seen as a special case of filter-bank-
based sensing with M = 1 and K = 1. It is proved that
for zero-mean white Gaussian input, the energy detector
is optimal according to the Neyman-Pearson theorem [24]
for known PS signal power σ 2

s and additive whiteGaussian
noise (AWGN) with σ 2

w.

T =
N−1∑
n=0

∣∣y [n]∣∣2 H1
≷
H0

γ (7)

The metric T follows a scaled χ2 distribution as the sum
of squares of white Gaussian zero-mean random vari-
ables [31] with 2N degrees of freedom. It is proved that T
follows the distributions below:

T =
{

σ 2
w
2 χ2

2N If H0,
σ 2
w+σ 2

s
2 χ2

2N If H1
(8)

In this paper, the energy detector is used as a reference for
the evaluation of the extracted algorithms.
When referring to maximally decimated signals, it is

considered that the rate of the signals at the filter output
is reduced to the minimum as it is defined by the Nyquist
sampling theorem. This means that the specific detector
operates at the output of a uniformDFT filter bank (or the
output of one of the parallel banks in an OFDM-OQAM
system before the real-imaginary separation - Figure 2b).
The sensing mechanism can be considered as a vector
detection problem with vector observations from L dif-
ferent sensors. Assuming that the k0th primary channel
is observed, the output from the filter paths with indexes
k0L + l, l = 0, . . . , L − 1 is collected.
The first step is to define a single observation vector

with the use of a reordering technique for the selected vec-
tors. For reasons that will be cleared out at the next steps,
the following reordering is selected:

- The observation vectors are divided in two groups:

• Group 0 contains the even subchannels.
• Group 1 contains the odd subchannels.

- Spatial reordering (or row rollout [24]) is performed
(choosing first the group 0 vector). Therefore,

y =
[ (

y(0))H | (
y(1))H ]H

= [
yH0 yH2 . . . yHL−2 | yH1 yH3 . . . yHL−1

]H (9)
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where yl is given in (5). For simplicity reasons, the
common term k0L of the vector subscripts was
omitted. Subvectors yi represent the observation
vector per filter path, i.e. per subchannel.

The signal PSD under H1 after filtering and before
decimation is given by

Syiyi
(
f
) = Srr

(
f
) ∣∣H (

f − fi
)∣∣2

=
(K−1∑

k=0

∣∣∣C(k) ( f )∣∣∣2S(k)
ss

(
f
) + Sww

(
f
)) ∣∣H (

f − fi
)∣∣2
(10)

where C(k) ( f ) is the radio channel transfer function
for the PS signal that occupies the kth subchannel and
S(k)
ss

(
f
)
, Srr

(
f
)
the respective PSDs for sn and rn respec-

tively. As in [4], it is considered that the receiver fil-
ters are adequately narrowband. This assumption is valid
for OFDM-OQAM systems since by design the filters
should divide the whole bandwidth in subchannels where
the radio channel frequency response can be consid-
ered approximately flat (since otherwise computationally
cumbersome equalization methods would be required).
Therefore, the following approximation can be consid-
ered:

Syiyi
(
f
) �

(∣∣C (
fi
)∣∣2Sss ( f ) + Sww

(
f
)) ∣∣H (

f − fi
)∣∣2

= (|ci|2σ 2
s + σ 2

w
) ∣∣H (

f − fi
)∣∣2

(11)

where the PSDs for the white Gaussian signal and noise
were used. The ci coefficient is a measure of the radio
channel effect for the specific subchannel obtained by
the radio channel Fourier transform. Although this study
assumes flat radio channel per filter subchannel, this
requirement is not very strict. During simulation and
detector evaluation, the radio channel models did not pro-
vide strictly flat radio channels per filter. Nevertheless,
under realistic channel conditions, no significant fluctu-
ations from the assumed optimum performance under
the flat channel assumption was observed. Moreover, a
better approximation of the ci coefficients can be made
with the use of a mean value of the frequency selective
channel transfer function for each subchannel filter. More
specifically,

|ci|2 = 1
BW

∞∫
−∞

∣∣C (
f
)
H

(
f − fi

)∣∣2df (12)

where BW is the total bandwidth. From (11), it is con-
cluded that with the use of the narrowband filter, the input
signal for each subchannel can be considered an AWGN
random variable with ri ∼ N (

0,
(|ci|2σ 2

s + σ 2
w
)
IN

)
,

despite the radio channel effects. UnderH0, the input sig-
nal is also AWGN with ri ∼ N (

0, σ 2
wIN

)
. In Figure 3, two

examples of Rayleigh channels with exponential power
delay profiles (PDP) are presented. The first example
(maximum delay spread 12 samples and exponent λ = 1)
presents a quite accurate flat narrowband channel approx-
imation. In the second case (maximum delay spread 24
samples with exponent 0.5), frequency selectivity is appar-
ent in the passband. However, the flat approximation is
used in both cases with higher expected deviation from
the ideal for the second example.
Generally, for large M and adequately small number of

filter coefficients, the filter transition bandwidth is not
quite sharp. However, it can be assumed that the subchan-
nels of the filter bank provide sufficient attenuation at the
passband so that the following approximation stands:

H
(
f − fi

)
H∗ ( f + fi+l

) � 0,
i = 0, . . . ,M − 1

i + l = 0, . . . ,M − 1
l �= −1, 0, 1

(13)

In (13) it is claimed that the outputs from two filter paths
that are not directly adjacent are uncorrelated and under
the Gaussian assumption independent. According to the
Neyman-Pearson theorem, the detector that optimizes
the probability of detection PD for given probability of
false alarm PFA is provided by the likelihood ratio:

f (y/H1)

f (y/H0)

H1
≷
H0

θ (14)

where f is the probability density function (PDF) for the
random variable (operand ‘/’ indicates a conditional prob-
ability). Threshold θ is selected in order to achieve the
desired PFA. In order to define the threshold, the distri-
butions of the vector random variables, as well as the
distributions of the final detectionmetric must be defined.
Based on the initial assumptions, y is a multidimensional
Gaussian variable. The first task is to determine its covari-
ance matrix. Similarly to the energy detector, the SNR,
or equivalently the signal and noise powers, should be
known. More specifically, the investigated detector should
be aware of the SNR per subchannel that is given by γi =
|ci|2σ 2

s
σ 2
w

. Initially, this information is assumed known. In a
real-world design of the detector, an estimation procedure
is performed before or during the detection (Section 7).

3.1 Distribution underH0

The determination of the covariance matrix for the speci-
fied block vector with spatial reordering is made using the
following relationship:
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Figure 3 Examples of radio channel transfer functions per subchannel forM= 32 and Rayleigh channels with exponential power delay
profiles.

E
(
yyH

) =
⎡⎣ E00 | E01

− − − | − − −
E10 | E11

⎤⎦ (15)

where,

Eij =

⎡⎢⎢⎢⎢⎢⎢⎣
E
(
yiyHj

)
E
(
yiyHj+2

)
. . . E

(
yiyHj+L−2

)
E
(
yi+2yHj

)
E
(
yi+2yHj+2

)
E
(
yi+2yHj+L−2

)
...

. . . . . .
...

E
(
yi+L−2yHj

)
E
(
yi+L−2yHj+2

)
. . . E

(
yi+L−2yHj+L−2

)

⎤⎥⎥⎥⎥⎥⎥⎦
(16)

Initially, in order to quantify the effect of the filter bank on
the variables, the input signal variance for all subchannels
is assumed to be σ 2 = 1. The covariance of the maximally
decimated signal for each subchannel separately is given
by [4]

ρyiyi (n) =
∞∑

u=−∞
hue2π j

ui
M hMn+ue−2π j ui+Mni

M

=
∞∑

u=−∞
huhMn+u = gMn

(17)

For a root-Nyquist filter and according to (2), the result is
equal to unity for n = 0 and zero otherwise. Therefore,

the output samples of each subchannel are uncorrelated
despite the filter bank.

E
(
yiyHi

) =
⎡⎢⎣ ρyiyi (0) . . . ρyiyi (N − 1)

...
. . .

ρyiyi (−N + 1) ρyiyi (0)

⎤⎥⎦ = IN

(18)

Based on the aforementioned assumption (13), the output
vectors from not direct-adjacent filter paths are uncorre-
lated and therefore,

E
(
yiyHi+l

) = 0N , l �= −1, 0, 1 (19)

It remains to calculate the cross-correlation [R]m,n =
ρyiyi+l (m − n) (m, n = 1 . . .N) between the output sam-
ples of adjacent filters (l = −1, 1).
The elements of R are calculated with the following

formula:

[R]k,m = E
(
y(i)
n y(i+l)∗

n+m−k

)
= E

(
y(i)
n y(i+l)∗

n+ε

)
=

∞∑
u=−∞

∞∑
p=−∞

huhpe2π j
iu
M e−2π j (i+l)p

M E
(
rMn−ur∗Mn−p+Mε

)
(20)
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where m − k = ε. For zero-mean white Gaussian input
with σ 2 = 1, the following result is extracted:

[R]k,m = δp+Mε−u

∞∑
u=−∞

∞∑
p=−∞

huhpe2π j
iu
M e−2π j (i+l)p

M

=
∞∑

u=−∞
huhu−Mεe2π j

iu
M e−2π j (i+l)(u−Mε)

M

=
∞∑

u=−∞
hue−2π j luM hu−Mε

(21)

which can be proved to be equal to the following:

[R]k,m = gcosM(m−k) �
∞∑

u=−∞
hu cos

(
2πu
M

)
hu+M(k−m)

R =

⎡⎢⎢⎢⎣
gcos0 gcosM . . . gcosM(N−1)
gcos−M gcos0
...

. . .
...

gcos−M(N−1) . . . gcos0

⎤⎥⎥⎥⎦
(22)

The matrix R is real. It is noted that filters are expressed
with a non-casual representation in order to exploit sym-
metries in a simple way. As a next step, the following
LN
2 × LN

2 low triangular block matrix is defined:

P �

⎡⎢⎢⎢⎢⎢⎢⎣

R 0 . . . 0
R R 0

0 R R
. . .

...
. . . 0

0 0 R R

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸
L/2 N×N matrices

(23)

Based on the definition of (23) and using (18), (19) and
(22), the produced result is given by

E
(
yyH/r ∼ N (0, 1)

) 
= C =

⎡⎢⎢⎣
ILN/2

| P

− − −
PT | ILN/2

⎤⎥⎥⎦
(24)

The definition of the LN × LN matrix leads directly to
the extraction of the covariance matrix for variable y given
that the primary channel is free (H0). It is straightforward
to claim that

H0 : Cy = Cw = σ 2
wC ⇒ y/H0 ∼ N (

0, σ 2
wC

)
(25)

The fact that C is expressed as a 2 × 2 block matrix with
identity matrices in the block diagonal justifies the selec-
tion of the specific reordering since the computations are

now quite simplified. More specifically, the inverse of C is
given by ([32])

C−1=
⎡⎢⎣

(
ILN/2 − PPT)−1 | −P

(
ILN/2 − PTP

)−1

− − −
−PT(ILN/2 − PPT)−1 | (

ILN/2 − PTP
)−1

⎤⎥⎦
(26)

An important feature is that the determinant of C can be
easily calculated using |C| = ∣∣ILN/2 − PPT∣∣ [33], since the
matrix is real and symmetric. In addition, the conditional
probabilities between groups 0 (even filter paths) and 1
(odd filter paths) are extracted:

y ∼ N (0,Cw) ⇒
{

y(0)/y(1) ∼ N (
Py(1), σ 2

w
(
I − PPT))

y(1)/y(0) ∼ N (
PTy(0), σ 2

w
(
I − PTP

))
(27)

3.2 Distribution underH1

According to the initial assumptions, the primary signal
sn follows the normal distribution with mean power σ 2

s .
Initially, a noiseless channel is assumed. Due to the radio
channel and based on the approximation in (11), the input
signal power per subchannel is given by the multiplication
of the mean signal power with a radio channel coefficient,
i.e. the assumed input per subchannel is given by r(i)n =
cisn and the mean input signal power per subchannel is

E
(∣∣∣r(i)n ∣∣∣2) = E

(|cisn|2) = |ci|2σ 2
s . The calculation of the

covariance matrix of the observation vector is made using
the procedure of the previous paragraph with the intro-
duction of the radio channel coefficient effects. Since the
result presented in (18) has been computed for standard
zero-mean Gaussian input (σ 2 = 1), the autocovariance
matrix for the output of the ith filter path, when the input
is given by r(i)n = cisn, is provided by

E
(
yiyHi

) = |ci|2σ 2
s IN (28)

The cross-covariance submatrix between filter outputs of
non-directly adjacent paths is once again zero. For directly
adjacent filter paths, computation is performed as in (20)
with the inclusion of the channel coefficients.

[R]k,m = E
(
y(i)n y(i+l)∗

n+m−k

)
= E

(
y(i)n y(i+l)∗

n+ε

)
=

∞∑
u=−∞

∞∑
p=−∞

huhpe2π j
iu
M e−2π j (i+l)p

M E
(
cisMn−uc∗i+ls

∗
Mn−p+Mε

)
(29)

In order to avoid complex coefficients, since there is
no simple method to estimate their phase, the following
rationale is considered: A complex zero-mean Gaussian
variable can also be seen as a pair of two random vari-
ables: (a) the Rayleigh amplitude |sn| ∼ Rayleigh

(
σ 2
s
)
and

(b) the uniform in [0, 2π) phase ϕsn ∼ U (0, 2π). After the
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application of the channel coefficient on the signal, the
considered input of the ith filter is given by

r(i)n = ci |sn| ejϕsn = |ci| |sn| ejϕsn+ϕci (30)

However, the radio-channel-induced phase shifts due to
the uniform phase distribution and periodicity will not
cause any variation in the signal phase distribution and
therefore:

ϕsn + ϕci ∼ U (0, 2π) ⇒ s′n = |sn| ej(ϕsn+ϕci ) ∼ N (
0, σ 2

s
)

(31)

From (31) and (30) it is extracted that

r(i)n ∼ N (
0, |ci|2σ 2

s
)

(32)

Using (32) and (29) similarly to (21), it is concluded that

E
(
yiyHi+l

) = σ 2
s |ci|

∣∣ci+l
∣∣R (33)

The diagonal matrix � is defined:

�=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|c0| IN 0 0 . . . 0
0 |c2| IN 0 0

0
. . . . . . . . . . . .
. . . 0 |cL−2| IN 0 0

... 0 0 |c1| IN 0
. . .

0 0 |c3| IN 0 0
. . . . . . . . . 0

0 0 0 |cL−1| IN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(34)

where the diagonal elements contain the channel coeffi-
cients according to the adopted reordering. Based on the
definition of �, it is concluded that under H1 with no
noise, the received signal covariance matrix is given by

Cs = σ 2
s �C� (35)

Let us now assume that AWGN with mean power σ 2
w

is also present during reception. In this case, the input
for the ith subchannel assuming that the primary signal
sn follows the zero-mean Gaussian distribution withmean
power σ 2

s is given by

r(i)n = cisn + wn (36)

where wn is the noise component with wn ∼ N (
0, σ 2

w
)
.

It was proved for a noiseless signal in (32) that cisn ∼
N (

0, |ci|2σ 2
s
)
. The input signal for the ith subchannel r(i)n

is given by the sum of two zero-mean Gaussian variables
with variances |ci|2σ 2

s and σ 2
w. Based on the properties of

the Gaussian distribution [24] and given that signal and
noise are independent and uncorrelated random variables,
r(i)n will also follow the zero-mean Gaussian distribu-
tion and its variance will be provided by the sum of the

variances of the two random variables (signal and noise).
Therefore,

r(i)n ∼ N (
0, |ci|2σ 2

s + σ 2
w
)

(37)

If zn is a zero-mean Gaussian variable with σ 2 = 1, then

the variable
(√

|ci|2σ 2
s + σ 2

w

)
zn follows the same distri-

bution with r(i)n and it can be used for the calculation of the
autocovariance and cross-covariance matrices. Similarly
to (28) and (29), it is proved that

E
(
yiyHi

) = (|ci|2σ 2
s + σ 2

w
)
IN (38)

and for l = ±1,

E
(
y(i)n y(i+l)∗

n+m−k

)
=

∞∑
u=−∞

∞∑
p=−∞

huhpe2π j
iu
M e−2π j (i+l)p

M

× E
(
rMn−ur∗Mn−p+Mε

)
=

∞∑
u=−∞

∞∑
p=−∞

huhpe2π j
iu
M e−2π j (i+l)p

M ×

× E
((√

|ci|2σ 2
s + σ 2

w

)
zMn−u

×
(√∣∣ci+l

∣∣2σ 2
s + σ 2

w

)
z∗Mn−p+Mε

)
=

(√
|ci|2σ 2

s + σ 2
w

)(√∣∣ci+l
∣∣2σ 2

s + σ 2
w

)
[R]k,m

(39)

which concludes that E
(
yiyHi+l

)
=

(√
|ci|2σ 2

s + σ 2
w

)
(√∣∣ci+l

∣∣2σ 2
s + σ 2

w

)
R. The combination of the results

from (38) and (39) are now used to extract the correlation
matrix for vector y defined in (9). It is proved that

Cy = �yC�y,↔ C−1
y = �−1

y C−1�−1
y (40)

where �y is the diagonal matrix containing the factors(√
|ci|2σ 2

s + σ 2
w

)
.

�y = (
σ 2
s �2 + σ 2

wILN
)1/2 (41)

Thus, based on the Gaussian distribution properties, since
the observation vector underH1 is a linear transformation
of the zero-meanGaussian input and its covariancematrix
is given by (40), it follows the distribution of (42):

y/H1 ∼ N
(
0,

(
σ 2
s �2 + σ 2

wILN
)1/2C(

σ 2
s �2 + σ 2

wILN
)1/2)
(42)

If the known (or estimated) quantity is the SNR γi,
the channel coefficients can be calculated from |ci|2 =
γiσ

2
w/σ 2

s
.
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3.3 The detector metric
In order to define the detector, starting from (14), the log-
likelihood relationship is formed:

ln (|Cw|) − ln
(∣∣Cy

∣∣) + yHC−1
w y − yHC−1

y y
H1
≷
H0

ln (θ) ⇒

yH
(
C−1
w − C−1

y

)
y
H1
≷
H0

θ ′ = ln (θ) + ln
(∣∣Cy

∣∣) − ln (|Cw|)
(43)

Therefore, the metric that will be used for the decision is
provided by

T (y) = yH
(
C−1
w − C−1

y

)
y (44)

3.4 Metric distribution underH0

Initially, the eigenvalue decomposition of matrix C =
U�UH is performed and since C is hermitian UUH =
UHU = I. With the use of the eigenvalues and eigenvec-
tors, an interim variable can be defined:

z = 1
σw

�
−1/2UHy (45)

It is simple to prove that this variable decorrelates the
samples of vector y and that z ∼ N (0, ILN). Thus, the
metric can be written as

yH
(
C−1
w −C−1

y

)
y ⇒ zHσw�1/2UH

(
1/σ 2

w
C−1−�y

−1C−1�y
−1
)

× U�1/2σwz

= zH
(
I− σ 2

w�1/2UH�y
−1C−1�y

−1U�1/2) z
(46)

In order to calculate the eigenvalues of the matrix that
appears at the quadratic form of the metric, the definition
of the characteristic polynomial is used:

det
(
I − σ 2

w�1/2UH�y
−1C−1�y

−1U�1/2 − χI
)

= det
(
σ 2
w�1/2UH�y

−1C−1�y
−1U�1/2 + (χ − 1) I

)
= det (�) det

(
σ 2
w�y

−1C−1�y
−1+(χ − 1)C−1) = 0

(47)

The determinant of � can be omitted. In order to move
forward, the approach described below is followed:

• The inverse of C−1 is also an hermitian matrix.
• Thus, the matrix

V = σ 2
w�y

−1C−1�y
−1 + (χ − 1)C−1 can be seen as

the sum of two covariance matrices of
multidimensional Gaussian variables. It is known
from probability theory [34] that if two random
variables are independent, the covariance matrix of
their sum is equal to the sum of the covariance
matrices. Let us assume a random variable that
follows the distributionN (0, σ 2

w�y
−2) and a second

random variable that follows the distribution
N (0, (χ − 1)I). In addition, the two variables are
considered independent. It is assumed that the
variables are added and applied to the selected filter
bank. Then, the covariance matrix of their sum at the
output of the bank will be provided by matrix V.

• However, for independent Gaussian variables a
different approach can be used that produces
equivalent results. The sum of two independent zero-
mean Gaussian random variables is also a zero-mean
Gaussian random variable. The variance of the sum is
equal with the sum of variances [34]. Therefore,
instead of considering the sum of two independent
random variables applied to the filter bank, it is
equivalent to assume a single random variable that
follows the distributionN (0, σ 2

w�y
−2 + (χ − 1)I).

• Based on the second approach, the covariance matrix
at the output of the filter will be given by

W = (
σ 2
w�y

−2 + (χ − 1) I
) 1
2C−1(σ 2

w�y
−2 + (χ − 1) I

) 1
2

(48)

The extraction of the covariance matrix in this case is
performed using the same procedure that was
followed in (39), (40) and (41).

• Since the two procedures are equivalent for Gaussian
random variables, it is expected that the equivalence
will also stand between the covariance matrices V and
W and therefore they can be used interchangeably.
The followed approach is valid, since the eigenvalues
extracted by V are applied on the Gaussian random
variable z ∼ N (0, ILN). In addition, the validity of
the procedure was verified with extended tests.

• Thus, instead of calculating the determinant of V, we
proceed using matrixW. From (48) and given the fact
that the determinant of C is non-zero (since C is
invertible), it is extracted that

det
(
σ 2
w�y

−2 + (χ − 1) I
) = 0 ⇒ χi = 1− σ 2

w
σ 2
s |ci|2 + σ 2

w
(49)

• With the use of V-W equivalence, the metric matrix
is considered to have L discrete eigenvalues with N
degrees of multiplicity each. The eigenvector matrix
does not play any role in the procedure and it does not
need to be calculated. Since U is unitary, the random
variable z̃ = UHz will follow the same distribution as
z. Therefore, the metric underH0 is given by

T (y/H0) =
L−1∑
l=0

N−1∑
n=0

σ 2
s |cl|2

σ 2
s |cl|2 + σ 2

w

∣∣z̃n+lN
∣∣2 (50)

• In order to verify the validity of the predescribed
equivalence, extended tests were performed for
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various filters and radio channels. The eigenvalues of
matrixVwere numerically extracted and used directly
for metric calculation. It was observed that in all
cases, the eigenvalues of V andW were very similar.
However, the most important observation was that
they produced, as expected, identical distributions
when applied to z for metric calculation. Therefore,
the equivalence was also verified via simulations.

In (50), each z̃i element follows the standard complex
Gaussian distribution (unit variance). Consequently,

2
∣∣z̃n+lN

∣∣2∼ χ2
2 (51)

The chi-square distribution can be considered a special
case of Gamma distribution. In fact, if a random vari-
able ω follows the χ2

2 distribution, for a positive constant
β , the variable βω follows the gamma distribution with
parameters (1, 2β) [35]. Therefore,

σ 2
s |cl|2

σ 2
s |cl|2 + σ 2

w

∣∣z̃n+lN
∣∣2 ∼ G

(
1,

σ 2
s |cl|2

σ 2
s |cl|2 + σ 2

w

)
(52)

where G denotes the gamma distribution. In order to cal-
culate the metric distribution, the characteristic function
for G is used. Moreover, since the addends in (50) are inde-
pendent, the characteristic function of the total metric will
be given by the product of the functions of the individual
variables. Thus,

ϕT(y/H0) (τ ) =
L−1∏
n=0

⎛⎜⎝ 1

1 − j σ 2
s |cl|2

σ 2
s |cl|2+σ 2

w
τ

⎞⎟⎠
N

(53)

The PDF is given by the inverse Fourier of the character-
istic function at point −t.

fT(y/H0) (t) = F−1−t

⎧⎪⎨⎪⎩
L−1∏
n=0

⎛⎜⎝ 1

1 − j σ 2
s |cl|2

σ 2
s |cl|2+σ 2

w
τ

⎞⎟⎠
N⎫⎪⎬⎪⎭ (54)

The calculation of the analytical solution is not a straight-
forward task because of the fact that each eigenvalue is
repeated N times. An analytical solution can be achieved
using the distribution provided in [36] where the positive
definite matrix of [36] is the identity matrix. The metric
distribution is given by

fT(y) (t > 0/H0) =
L−1∏
i=1

(
λ
udft/H0
min

λ
udft/H0
l

)N

×
∞∑
k=0

dktLN+k−1e
−
(

t
λ
udft/H0
min

)
(
λ
udft/H0
min

)LN+k
� (LN + k)

(55)

where coefficients dk are calculated iteratively using

d0 = 1,

dk+1 = N
k+1

k+1∑
i=1

[
L−1∑
l=1

(
1 − λ

udft/H0
min

λ
udft/H0
l

)i
]
dk+1−i, k = 0, 1, 2 . . .

(56)

and the λis are the L discrete eigenvalues, thus,

λ
udft/H0
i = σ 2

s |ci|2
σ 2
w + σ 2

s |ci|2
(57)

According to the Neyman-Pearson theorem, the thresh-
old is calculated from the probability of false alarm PFA
under H0 through the complimentary cumulative distri-
bution function (CDF). The following relationship is used
[36]:

PFA = 1 −
L−1∏
i=1

(
λ
udft/H0
min

λ
udft/H0
l

)N ∞∑
k=0

dk

⎛⎜⎜⎝�

(
LN + k, θ

λ
udft/H0
l

)
� (LN + k)

⎞⎟⎟⎠
(58)

Threshold θ is calculated for a given PFA with numerical
inversion of the function.
The main problem regarding the use of (55), (56) and

(58) in a sensing algorithm is the infinite sum. In a prac-
tical implementation, the truncation of the infinite sum is
unavoidable. In order to calculate the number of needed
addends (or equivalently dk coefficients) that will provide
a sufficient approximation of the distribution, the follow-
ing simulation procedure was followed. A large set of
50,000 channels with exponential PDP was produced. The
exponential PDP is given by

PDP = exp (−λn) , for n = 0, 1 . . . ,Cmax (59)

During the simulation, the used PDP parameters were λ =
0.7, Cmax = 48. The ci coefficients were calculated using
(12) and the eigenvalues λ

udft/H0
i were determined using

(57). It was concluded that the number of the necessary dk
coefficients depends on the spread of the extracted eigen-
values. This means that if the standard deviation of the
L eigenvalues is small, then the approximation converges
fast to the distribution of (55); otherwise, a very large
number of dk coefficients should be calculated. In order
to extract an empirical rule for the number of needed
coefficients, the ratio of the maximum eigenvalue λ

udft/H0
max

over the minimum eigenvalue λ
udft/H0
min was used as a mea-

sure of the eigenvalue spread. For each channel, the values
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in (55) and (56) were calculated iteratively as k was con-
tinuously increasing. In each step, numerical integration
of the estimated PDF was performed. When the inte-
gration result becomes larger than 0.9999, it is assumed
that the approximation has converged to the desired
distribution.
In Figure 4, the simulation results are presented. It

can be seen that in the vast majority of cases, less
than 1,000 coefficients are needed for successful con-
vergence. The prediction bounds of the linear fit (using
the minimum mean square error (MMSE) technique) for
99.99% confidence level are also provided in Figure 4. It
was estimated that based on the simulation, the upper
prediction bound is described by the following straight
line:

y = 25.26x+ 300.3 (60)

Therefore, if the number of coefficients is estimated using
(60), then there will be 99.99% probability that the approx-
imated distribution has successfully converged. It is noted
that with the use of the described procedure, a very
accurate estimate of the PFA from (58) is achieved with
absolute error less than 10−5 for PFA > 0.25.
In order to avoid the need for an approximation of an

infinite sum, a method of numerical integration of the
characteristic function can be used. During this study, a
simple fast Fourier transform (FFT)-based algorithm that
performs the integration was developed. Let us assume
that the energy of the characteristic function is concen-
trated in the space τ ∈ [ −δ δ ]. Then, it is proved that
(54) can be accurately approximated by

f̂T(y)

(
tk = πk

δ
/H0

)
= δejπk

πN ′ FFT
[
ϕT(y/H0) (n
τ − δ)

]
N ′

(61)

The FFT-length N ′ can be found as an integer with
N ′
τ = τmax with τmax a value where the PDF is expected
to be practically zero and
τ = 1

2δ . Therefore, fast Fourier
transforms can be used to approximate with high accuracy
the distribution under investigation. The complimentary
CDF can be approximated with the trapezoidal numerical
integration technique. Thus, for a threshold θ ′ = πk0

δ
, the

PFA is given by

PFA �
k0∑
n=0

π

δ

⎛⎝ f̂T(y)
(

πk
δ

/H0
)

+ f̂T(y)
(

π(k+1)
δ

/H0
)

2

⎞⎠
(62)

Given the fact that based on the aforementioned analysis,
the selected threshold θ ′ is also discrete, an approximation
of the PFA for any threshold can be calculated using linear
interpolation.

3.5 Metric distribution underH1

UnderH1, the interim variable can be defined as

z = �−1/2UH�y
−1y (63)

In this case, the determinant that provides the eigenvalues
is given by

Figure 4 Simulation results of the number of coefficients for distribution approximation.
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det

(
�yC−1�y

σ 2
w

− (χ + 1)C−1

)

= det

⎛⎝(�y
2

σ 2
w

− (χ+1) I

) 1
2

C−1

(
�y

2

σ 2
w

− (χ+1) I

) 1
2
⎞⎠= 0

(64)

which leads to χi = σ 2
s |ci|2
σ 2
w

.
The calculation of the metric distribution underH1 can

be made with the same techniques as before:

• Using the analytical solution (55) and (56), where the
used eigenvalues are λ

udft/H1
i = σ 2

s |ci|2
σ 2
w

• With FFT-based approximation of the PDF from the
characteristic function given by

ϕT(y/H1) (τ ) =
L−1∏
n=0

(
1 − j

σ 2
s |ci|2
σ 2
w

τ

)−N

(65)

After the extraction of the metric distribution under H1
and for a given threshold, the probability of correct detec-
tion PD can be calculated. Using the analytical solution,
the following formula is derived [36]:

PD = 1 −
L−1∏
i=1

(
λ
udft/H1
min

λ
udft/H1
l

)N ∞∑
k=0

dk

⎛⎜⎜⎝�

(
LN + k, θ ′

λ
udft/H1
l

)
� (LN + k)

⎞⎟⎟⎠
(66)

When the truncation of the infinite sum is done using the
ratio of the maximum over the minimum eigenvalue and
the empirical formula of (60), then the approximation of
the PD value is extremely accurate (absolute error less than
10−4).

4 Detector at the OFDM-OQAM receiver output
The candidacy of OFDM-OQAM as a modulation tech-
nique for CR system leads inevitably to the need for
a detector design for such systems. As mentioned in
Section 2, the OFDM-OQAM systems can be assumed to
use an MDFT filter bank structured as the block diagrams
in Figure 2. The two structures are equivalent and can be
used to implement the filtering unit of an OFDM-OQAM
demodulator. In order to design the detector, the samples
after the real/imaginary separation blocks are collected.
At this point, the signal has practically returned to the
Nyquist sampling rate. The second structure is selected,
which contains two similar parallel uniform DFT banks
with maximally decimated output in order to simplify the
mathematical formulation of the problem. The two banks
are operating with relevant time offset of M/2 symbols.
The signal that is led to the detector can be defined as

yoqam2i = �
(
y(A)
2i

)
+ j


(
y(B)
2i

)
yoqam2i+1 = j


(
y(A)
2i+1

)
+ �

(
y(B)
2i+1

)
i = 0, 1..M/2

(67)

The superscript indicates whether the specific signal is
extracted by the first upper bank (A) or the second lower
bank (B). Initially, an examination is performed to verify
that there is no correlation between the real and imaginary
part of the signal. The real/imaginary separation blocks
can be expressed as simple linear relationships:

�
(
y(X)
i

)
=

⎡⎢⎣y(X)
i +

(
y(X)
i

)∗

2

⎤⎥⎦ ,

(
y(X)
i

)

= −j

⎡⎢⎣y(X)
i −

(
y(X)
i

)∗

2

⎤⎥⎦
X = [A, B] , i = 0, 1 . . .M − 1

(68)

First, the autocorrelation matrix for each subchannel is
calculated. It is noted that the presented analysis is pro-
vided for the even channels, but the exact same results are
extracted for the odd subchannels with permutation of the
� (•) and 
 (•) operators:

[
E
(
yoqami

(
yoqami

)H)]
k,m

= E
(
yoqam,i
n

(
yoqam,i
n+m−k

)∗)
= E

(
yoqam,i
n

(
yoqam,i
n+ε

)∗)
= E

(
�

(
y(A,i)
n

)
�

(
y(A,i)
n+ε

))
+ E

(


(
y(B,i)
n

)


(
y(B,i)
n+ε

))
+ jE

(
�

(
y(A,i)
n+ε

)


(
y(B,i)
n

))
− jE

(
�

(
y(A,i)
n

)


(
y(B,i)
n+ε

))
where (m − k = ε)

(69)

Assuming a circular white Gaussian input, the following
result is extracted from (18) and (19):

E
(
�
(
y(A)
n

)
�
(
y(A)
n+ε

))
= 1

2
σ 2
x,iδ (ε)

E
(


(
y(B)
n

)


(
y(B)
n+ε

))
= 1

2
σ 2
x,iδ (ε)

with σ 2
x,i =

{
σ 2
w, forH0

|ci|2σ 2
s + σ 2

w, for H1

(70)

The investigation of the correlation of the imaginary parts
in (69) leads to
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E
(
�

(
y(A,i)
n+ε

)


(
y(B,i)
n

))
= E

⎛⎜⎝−j

⎛⎜⎝y(A,i)
n+ε +

(
y(A,i)
n+ε

)∗

2

⎞⎟⎠
⎛⎜⎝y(B,i)

n −
(
y(B,i)
n

)∗

2

⎞⎟⎠
⎞⎟⎠

= j
4

(
E
(
y(A,i)
n+ε

)
E
((

y(B,i)
n

)∗)) − j
4

(
E
((

y(A,i)
n+ε

)∗)
E
(
y(B,i)
n

))

= j
4

⎛⎝ ∞∑
u=−∞

∞∑
p=−∞

h∗
uhpe

2π j i(p−u)
M E

(
x∗
Mn−u−M

2
xMn+Mε−p

)

−
∞∑

u=−∞

∞∑
p=−∞

h∗
uhpe

2π j i(p−u)
M E

(
x∗
Mn+Mε−uxMn−p−M

2

)⎞⎠

= j
4

⎛⎝ ∞∑
p=−∞

hphp−Mε−M
2
ejπ i−

∞∑
u=−∞

huhu−Mε−M
2
e−jπ i

⎞⎠ = 0

(71)

In (71), all the terms containing E (xnxn+ε) and
E
(
(xnxn+ε)

∗) were omitted since in complex circular nor-
mal variables, these terms are zeroed, if the imaginary
and real parts have the same variances. The same result
is extracted for the remaining term of (69). The combined
result is given by

E
(
yoqami

(
yoqami

)H) = σ 2
x,iIN (72)

Similarly to the previous analysis, the correlation of the
output from non-directly adjacent filter paths is con-
sidered zero. The next step is to calculate the cross-
correlation between outputs of directly adjacent filters.
Assuming that filter path i is even, then i + 1 is odd. The
exact same procedure can be used for an odd ith filter.
Thus,

where once more, all the terms that did not contain
products between conjugates were ignored. The first find-
ing concerns the first four terms. Since the output from
each separate filter bank is the same with the output
of a uniform DFT filter bank at Nyquist rate, then the
cross-correlation matrix between the outputs of adjacent
paths coming from the same filter bank has already been
calculated in (22) for white Gaussian input with unitary
variance (N (0, 1)). Given that the only difference between
filter banks (A) and (B) is a delay offset of the input and
that filter paths y(A)i , y(B)i monitor the same spectral band
(with the same radio channel coefficient ci), the output
cross-correlations for adjacent subchannels for the two
filter banks are equal. Therefore,

E
(
y(A)i

(
y(A)i+1

)H) = E
(
y(B)i

(
y(B)i+1

)H) = σx,iσx,i+1R,

E
(
yoqami

(
yoqami+1

)H) = E

⎛⎜⎝
⎛⎜⎝y(A)i +

(
y(A)i

)∗

2
+

y(B)i −
(
y(B)i

)∗

2

⎞⎟⎠
⎛⎜⎝
⎛⎜⎝y(A)i+1 −

(
y(A)i+1

)∗

2

⎞⎟⎠
H

+
⎛⎜⎝y(B)i+1 +

(
y(B)i+1

)∗

2

⎞⎟⎠
H⎞⎟⎠

⎞⎟⎠

= 1
4

⎛⎜⎜⎜⎝
E
(
y(A)i

(
y(A)i+1

)H) − E
((

y(A)i

)∗(
y(A)i+1

)T) + E
(
y(B)i

(
y(B)i+1

)H) − E
((

y(B)i

)∗(
y(B)i+1

)T)

+E
(
y(B)i

(
y(A)i+1

)H) + E
(
y(A)i

(
y(B)i+1

)H) + E
((

y(B)i

)∗(
y(A)i+1

)T) + E
((

y(A)i

)∗(
y(B)i+1

)T)
⎞⎟⎟⎟⎠

(73)
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and given that R is real and symmetric:

E
((

y(A)i

)∗(
y(A)i+1

)T) = E
((

y(B)i

)∗(
y(B)i+1

)T)
= σx,iσx,i+1RH = σx,iσx,i+1R

(74)

where σx,i = σs |ci|. Therefore, the sum of the first four
terms in (73) is zero. Regarding the following four terms, it
can be proved after some mathematical manipulation that[
E
(
y(A)
i

(
y(B)

i+l

)H)]
k,m

= σx,iσx,i+l(−1)i+l

×
∞∑

u=−∞
huhu− M

2 +Mεe
−2π j luM

= σx,iσx,i+l(−1)i+l(−1)
⌊
1+ l

2

⌋
j

×
∞∑

u=−∞
huhu− M

2 +Mε sin
(
2πu
M

)

� σx,iσx,i+l(−1)i+l(−1)
⌊
1+ l

2

⌋
jgsinMε−M

2

(75)

This result is achieved using the symmetry of the proto-
type FIR filter. Matrix T is defined in order to store the
outcome for σx,i = 1, σx,i+l = 1. With unification of the
sign manipulation factors, the matrix elements are given
by

[
Ti,l

]
k,m =

{ j(−1)i+1gsin
M(m−k)−M

2
, l = 1

j(−1)igsinM(m−k)−M
2
, l = −1 (76)

Based on (76) and given the fact thatT is purely imaginary,
it is also concluded that[
E
((

y(A)i

)∗(
y(B)i+l

)T)]
k,m

=
(
σx,iσx,i+l

[
Ti,l

]
k,m

)∗

= −σx,iσx,i+l
[
Ti,l

]
k,m

E
(
y(B)i+l

(
y(A)i

)H) = σx,iσx,i+lTH
i,l, E

((
y(B)i+l

)∗(
y(A)i

)T)
= −σx,iσx,i+lTH

i,l

(77)

Combining (77) and (74) in (73), the result is given by

E
(
yoqami

(
yoqami+1

)H) = 0N (78)

Thus, if the MDFT filter bank output after the operators
� (•) and 
 (•) is used, then all the signal vectors that par-
ticipate in the detection procedure are uncorrelated. The
observation vector is defined as

yoqam =
[ (

yoqam0
)T (

yoqam1
)T

. . .
(
yoqam1

)T ]T
(79)

where due to the independence of signals, reordering is
not needed. The covariance matrix of yoqam is the follow-
ing LN × LN matrix:

E
(
yoqam

(
yoqam

)H) =

⎡⎢⎢⎢⎢⎣
σ 2
x,0IN 0N . . . 0N

0N σ 2
x,1IN

...
...

. . . 0N
0N . . . 0N σ 2

x,L−1IN

⎤⎥⎥⎥⎥⎦
(80)

The form of this matrix leads to the pleasant conclusion
that the weighted energy detector (with proper scaling
for each filter path) is the Neyman-Pearson optimum
detector. The metric of the detector is given by

Toqam (y) = σ 2
s

σ 2
w

L−1∑
i=0

|ci|2
σ 2
s |ci|2 + σ 2

w

(
y(oqam)
i

)H
y(oqam)
i

(81)

The metric distribution can be extracted by

• With the use of the analytical method of (55), (56)
and (58) using as eigenvalues the detector weights, i.e.

λ
oqam/H0
i = σ 2

s |ci|2(
σ 2
w + σ 2

s |ci|2
)

λ
oqam/H1
i = σ 2

s |ci|2
σ 2
w

(82)

• Or using the FFT-based numerical integration with

ϕT(yoqam/Hm) (ω) =
L−1∏
i=0

(
1 − jλoqam/Hm

i ω
)−N

for the

outcomesm = 0, 1.

In Figure 5, the histogram of the simulated OFDM-
OQAM detector metric is compared with the
theoretically calculated distribution. Both methods of dis-
tribution calculation return practically identical results.
A very similar figure can be extracted for the Neyman-
Pearson detector for uniform DFT filter banks, since both
optimal detectors have identical metric distributions. The
results of the two optimum Neyman-Pearson detectors
for the uniform DFT and the MDFT filter bank present
similar performance since in both cases the maximum
possible amount of information is used. The MDFT filter
bank uses double computational workload for filtering.
However, in most cases for relatively large sample sets
and L > 3, the matrix multiplications for the computation
of the uniform DFT metric lead to heavier computa-
tional burden. Therefore, in general, the OFDM-OQAM
optimum detection is favourable.
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Figure 5 Distribution fit example for the Neyman-Pearson detection metric for an MDFT filter bank.

5 Energy detection in the uniformDFT filter bank
The optimum detector for an MDFT filter bank in
Section 4 is proven to be a weighted (per subchannel)
energy detector. Although the performance is identical,
the uniform DFT optimum detector is much more com-
plicated since it involves multiplications with the matrix
C−1. In this section, the use of the weighted energy detec-
tor in a uniform DFT is investigated. It can be proved that
the weighted energy detector is optimal if R = 0; however,
this is not possible in a DFT filter bank with a root-Nyquist
prototype filter.
The weighted energy detector as a filter bank-based

algorithm was presented in [26], where it was assumed
that the subchannel filter outputs are uncorrelated and
that themetric performance is determined using Gaussian
distributions. It is also claimed that the weighted energy
detector operation with optimal weights is similar to the
maximum ratio combining (MRC) for independent vari-
ables; however, the optimal weights are not determined.
The MRC consideration is proved to be the correct and
optimum approach for the OFDM-OQAM detector in
Section 4, where filter outputs are uncorrelated. In this
section, an extension and generalization of the weighted
energy detector is performed. The subchannel filter out-
puts are considered correlated, a fact that is inevitable for
uniform DFT filter banks. Moreover, accurate and ana-
lytic distributions for the metric under H0 and H1 are
extracted based on probability theory.

The metric of the weighted energy detector is given by

Ted (y) = σ 2
s

σ 2
w

L−1∑
i=0

|ci|2
σ 2
s |ci|2 + σ 2

w
yHi yi =

L−1∑
i=0

Ti (yi) (83)

For zero-mean complex Gaussian input, additive white
noise and root-Nyquist prototype filter, the output for
each subchannel is proved to follow the distributions
below:

H0 : Ti (yi) ∼ G
(
N ,

σ 2
s |ci|2

σ 2
s |ci|2 + σ 2

w

)
H1 : Ti (yi) ∼ G

(
N ,

σ 2
s |ci|2
σ 2
w

) (84)

Since independence between samples from the adjacent
filters yi+1 and yi−1 is not possible, the performance of
the detector will be inferior to the detector in Section 3.
The hysteresis of the detector depends on the transition
bandwidth and the roll-off of the prototype filter.
Therefore, Ted (y) is a sum of weighted, correlated

gamma variables. In order to extract the metric distribu-
tion, it is necessary to calculate the correlation coefficient
for the energy between the outputs of two adjacent fil-
ter paths. According to [37] (Jensen approximation), it is
claimed that for a stream of N pairs of samples of Gaus-
sian variables zk = (zk1, zk2) with (μ = 0, σ = 1) that
are mutually correlated (but each one has uncorrelated
time samples), then the correlation of the energies u1 =
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N−1∑
k=0

∣∣z2k1∣∣, u2 =
N−1∑
k=0

∣∣z2k2∣∣ can be calculated by

pu1u2 = 1
N

N−1∑
n=0

q2n (85)

where the qns are the normal correlations for variables
(zk1, zk2). Jensen’s result is valid for real random variables
with standard normal distribution. However, it can eas-
ily be proved through the correlation coefficient that the
same formula is valid for 2N-length real normal variables
with μ = 0, σ 2 = 1/2. Since a N-complex normal vector
is equivalent with a 2N-real vector, the Jensen’s corollary
can be used for the current analysis.
Normal correlations are themeans to quantify the linear

relationship between two multivariate random variables.
The normal correlations can be calculated if the joint
covariance matrix of the two random variables is known.
Specifically, for known covariance matrix,[

Cx1x1 Cx1x2
Cx2x1 Cx2x2

]
, for the variables x1, x2 (86)

the normal correlation squares are given as the eigenval-
ues of the matrix:

C−1
x1x1Cx1x2C

−1
x2x2Cx2x1wx = q2x1x2wx

C−1
x2x2Cx2x1C−1

x1x1Cx1x2wy = q2x1x2wy
(87)

wherewx,y are the respective eigenvectors. The problem is
to calculate the correlation coefficient between the ener-
gies of N output samples from adjacent filter banks. The
covariance matrix yi, yi+1 is given by (Section 3):

E
([

yHi yHi+1
] [ yi

yi+1

])
= σ 2

s

[ |ci|2IN |ci| |ci+1|R
|ci| |ci+1|RH |ci+1|2IN

]
(88)

Given that R is hermitian, it can be proved from (87)
that the vector q2yiyi+1 is also the vector of eigenvalues of
matrix R2. The correlation coefficient can be extracted as
the sum of the squares of normal correlations. Since the
matrix trace (Tr) is equal to the sum of the eigenvalues, it
is proved that

Tr
[
R2] =

N−1∑
n=0

q2yiyi+1,n (89)

The correlation coefficient is equal to the mean of the R2

eigenvalues, i.e. pyiyi+1 = Tr
[
R2]

/N
Another important note is that since the correlation

coefficient does not depend on the radio channel coeffi-
cients, it is the same for every pair of adjacent subchannel
outputs. It is also noted that for non-directly adjacent
subchannels, the correlation coefficient is assumed to be
zero. Once again, the analysis in [36] can be followed in
order to extract the metric distribution. According to [36],

if {ui}L−1
i=1 is a set of L-correlated gamma variables with

equal degrees of freedom and known correlation coeffi-
cients, then the PDF can be expressed analytically. Unlike
the results in Sections 3 and 4 where an identity correla-
tion matrix is considered, in this case, the positive definite
matrix Ced that expresses the correlations is given by [36]

Ced =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 √p 0 . . . 0
√p 1 √p

...

0 √p 1
. . . 0

...
. . . . . . √p

0 . . . 0 √p 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(90)

The tridiagonal matrix is an L × L matrix. As a next step,
the diagonal matrix Ded is defined according to the rule:

Ded = diag
([

σ 2
s |c0|2

σ 2
s |c0|2+σ 2

w
. . .

σ 2
s |cL−1|2

σ 2
s |cL−1|2+σ 2

w

])
, forH0

Ded = diag
([

σ 2
s |c0|2
σ 2
w

. . .
σ 2
s |cL−1|2

σw
w

])
, forH1

(91)

The distributions are calculated by (55), (56), (58) and
(66) using the eigenvalues λ

ed/H0
i and λ

ed/H1
i that are cal-

culated from the matrix: Aed = DedCed. Since Aed is
tridiagonal, the eigenvalues can be calculated iteratively
[38]. A distribution fit example for the weighted energy
detector metric is presented in Figure 6.
In [26], it is mentioned that for uncorrelated, inde-

pendent subchannel filter outputs, the weighted energy
detector can be seen as an approximation of the matched
filtering. This is accurate for theOFDM-OQAMNeyman-
Pearson (NP) detector where subchannel independence is
proved. More specifically, if the ‘approximately flat radio
channel per subchannel’ assumption is valid and the radio
channel can be adequately described by the ci parame-
ters, then the matched filter approximation is exceptional.
As the channel frequency selectivity increases, the devia-
tion from the matched filter performance also increases.
However, in the common case of correlated filter out-
puts, the deviation from the matched filter performance
is significant. Since the weighted energy detector met-
ric ignores the correlation of the output samples, it fails
to perfectly align the decision metrics in order to max-
imize probability of detection. This is achieved by the
NP optimal detector of Section 3. In terms of diver-
sity, the weighted energy detector is transformed into
an non-optimal MRC that ignores the existed correla-
tion among the diversity branches. Despite the fact that
the weighted energy detector is outperformed by the NP
detector, the selection of weights that depends on the
SNR per subchannel provides significant advantages over
the conventional energy detector. The integration of the
radio channel effects in the detector with the use of the
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Figure 6 Distribution fit example for the weighted energy detector matrix for uniform DFT filter bank.

ci parameters is essential, despite the fact that it is based
on the ‘approximately flat radio channel’ approxima-
tion. Thus, the performance degradation of the weighted
energy detector from the NP optimal detector is much
smaller than the achieved improvement from the perfor-
mance of the conventional energy detector, as presented in
Figure 7.

6 Coloured noise
An important weakness of many detectors is that they are
not robust in the existence of coloured noise. Coloured
noise may be the result of interference caused by remote
PSs or CRs, it may be caused by various electronic noise
sources or it may appear due to filter leakage and spurious
emissions of users operating in adjacent spectrum bands
[5]. In this section, additive coloured Gaussian noise is
assumed. In AWGNmodels, the noise samples are uncor-
related. Coloured noise can be on the other handmodelled
as the result of filtering AWGN samples. When the noise
reaches the receiver, it is subjected also to filtering from
the filter bank. Similarly to the assumption regarding the
primary signal, the noise variance is considered approxi-
mately constant for the bandpass zone of each filter path.
Therefore, the coloured noisemodelling can be performed
with the following relationships:

Scw
(
f
) = Sww

(
f
) ∣∣V (

f
)∣∣2∣∣H (

f − fi
)∣∣2 ⇒

Scw
(
f
) � σ 2

w
∣∣V (

f
)∣∣2∣∣H (

f − fi
)∣∣2 (92)

where Scw is the PSD of the coloured noise, Sww is the
AWGN PSD, V

(
f
)
is the transfer function that colours

the noise,H
(
f
)
is the prototype filter transfer function for

the filter bank. Similarly to the assumption for frequency
selective channels expressed in (11), it can be assumed
that the additive noise at the output of each filter of the
bank is also white with variance given by

σ 2
w,i = σ 2

w
∣∣V (

fi
)∣∣

BW

∞∫
−∞

∣∣H (
f − fi

)∣∣2df (93)

where BW is the overall bandwidth.
Coloured noise may be the result of the following:

(a) out-of-band emissions and adjacent channel inter-
ference, (b) aliasing effects and (c) non-uniform dis-
tribution of interferences from remote cells and access
points. Filter bank-based sensing can robustly detect sig-
nals under coloured noise. The diagonal matrix �w can
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be defined that contains the (assumed constant) noise
variance per subchannel. For the uniform DFT Neyman-
Pearson detector, the matrix �w is defined as

�w =
[

�
(0)
w 0
0 �

(1)
w

]
, where

�(0)
w = diag

[
σw,0IN σw,2IN . . . σw,L−2IN

]
�(1)

w = diag
[
σw,1IN σw,3IN . . . σw,L−1IN

] (94)

Under these circumstances, the standard deviationmatrix
�y for the incoming signal under H1 is given by �y =(
�2 + �2

w
)1/2. The detection metric can be written as

T (y) = yH
(
C−1
w − C−1

y

)
y =

= yH�−1
w

(
C−1 + �w�−1

y C−1�−1
y �w

)
�−1

w y

(95)

The result in (95) shows that with simple weighting of the
observation samples by y′ = �−1

w y, the problem is trans-
formed to the equivalent Neyman-Pearson detector with

AWGN.More specifically, the equivalent AWGNproblem
is defined with σ 2

w = 1 and
∣∣c′i∣∣ = |c′i|

σw,i
.

7 Practical implementation of the detectors
7.1 The locally most powerful test
The main disadvantage of the sensing techniques
described in the previous sections is that the detector
should know the signal variance for each subchannel (the
received signal power and the channel coefficient). In
real-world implementations, the optimal detectors can be
approximated with the use of estimates; however, these
detectors are only optimal asymptotically. In case the
information for the signal variance is missing or primar-
ily when the subchannel variances are extremely small
(linearly expressed SNR→ 0), then the locally most pow-
erful test can be used for detection. A composite detection
problem is considered to have a uniformly LMP detec-
tor, when both the metric and the threshold for a given
PFA do not depend on unknown parameters (in this
case the variances). Unfortunately, these cases are very
rare.
In this section, the LMP detector is formed for a uni-

formDFT filter bank. The observation vector is defined as
in (5) but the binary problem is now defined as follows:

Figure 7 ROC curve PD vs. PFA for detection under AWGN.
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For: H0 :

y = [w0 . . . wL−2 | w1 . . . wL−1]T

For: H1 :
y = [θ0s0 + w0 . . . θL−2sL−2 + wL−2 | θ1s1

+ w1 . . . θL−1sL−1 + wL−1]T

(θ = [θ0 . . . θL−2 | θ1 . . . θL−1])

(96)

The noise is defined as in the previously described detec-
tors. On the other hand, the signals si are considered
standard complex normal variables. Each signal is mul-
tiplied with a θi parameter close to zero. Due to the
filtering, the outputs of the adjacent subchannels are cor-
related through the matrix C (24). The binary problem is
formulated as

H0 : θ = 0L,1

H1 : θ > 0L,1
(97)

where the vector inequality has the following meaning:
If there is a primary signal in the specific subchannels,
it should be θi > 0 for all i = 0, 1 . . .L − 1. Using the
procedure defined in [24,39], it is found that since the
vector θ contains a set of L parameters, the extraction of
the LMP test becomes extremely complicated. This prob-
lem can be bypassed using a simple consideration. Since
θ values are extremely small (near to zero), they can be
assumed as approximately equal and therefore, a scalar
parameter θ common for all the subchannel outputs can
be used. This is also verified by the fact that the LMP tests
for simple structures (e.g. two filters, one sample per filter
for the decision) are identical either if L parameters or a
single parameter is assumed. Thus, the binary problem is
simplified:

H0 : θ = 0

H1 : θ > 0
(98)

According to Section 3 and using the common scalar
parameter θ , the observation vector distributions are
given by

H0 : y ∼ N (
0,Cw = σ 2

wC
)

H1 : y ∼ N (
0,Cy = �C� + σ 2

wC = (
θ2 + σ 2

w
)
C
)
(99)

Since θ → 0, the PDF can be approximated using the
Taylor series for θ(0) = 0:

ln
(
f (y; θ/H1)

) � ln
(
f (y; θ = 0/H1)

)+

θ
∂
(
ln

(
f (y; θ/H1)

))
∂θ

∣∣∣∣∣
θ=0

+ θ2

2
∂2

(
ln

(
f (y; θ/H1)

))
∂θ2

∣∣∣∣∣
θ=0

(100)

where only the two first terms of the series are kept. It is
proved using ln

(
f (y; θ = 0/H1)

) = ln
(
f (y/H0)

)
that

ln
(
f (y; θ/H1)

) � ln
(
f (y/H0)

) − NL
σ 2
w

+ 1
σ 2
w
yHC−1y

(101)

Therefore, the detector decides using the following
inequality:

Tlmp (y) = yHC−1y
H1
≷
H0

υ ′ = σ 2
w ln (υ) + NL (102)

With the definition of the interim variable z as in (45), it
can be proved that

Tlmp (y) = σ 2
wz

H�
1/2UHC−1U�

1/2z = σ 2
wz

Hz (103)

which means that t = Tlmp (y/H0) ∼ G (
NL, σ 2

w
)
and the

PFA is provided by

PFA
(
υ ′) = 1 −

γ
(
NL, υ′

σ 2
w

)
� (NL)

(104)

Since θ remains unknown, the accurate calculation of PD
is not possible for the LMP test.
The prescribed procedure can be followed for the

extraction of the LMP detector for MDFT filter banks. In
this case, the covariance matrix is approximated by

Coqam = (
σ 2
w + θ2

)
INL (105)

and the LMP metric is given by

Tlmp
(
yoqam

) = yHoqamyoqam
H1
≷
H0

υ ′ = σ 2
w ln (υ) + NL

(106)

which is the simple energy detector. The PFA can be calcu-
lated from (104) with σw = 1. Therefore, the MDFT filter
bank has a uniformly LMP test.

7.2 The GLRT detector
In a real-world implementation of the Neyman-Pearson
detectors, the CR receiver is assumed to have no knowl-
edge regarding the primary signal. In this section, an
approximation of the optimal detectors using estimates
is attempted. The receiver is assumed to know the noise
power and the distribution family (zero mean complex
Gaussian) for the primary signal underH1. This is a com-
posite hypothesis test since the PDF under H1 depends
on L unknown parameters. The LMP, although it ensures
constant PFA, does not fully exploit the available infor-
mation and it does not provide information or control
over the achieved PD. Another approach is the General-
ized Likelihood Ratio Test - GLRT. The GLRT decides
using the log-likelihood ratio (as in the Neyman-Pearson
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detectors) and the maximum likelihood estimates (MLE)
of the unknown distribution parameters.

LG (y) = f
(
y/̂θ ,H1

)
f (y/H0)

, where

f
(
y/̂θ ,H1

) = max
θ̂

(
f
(
y; θ̂/H1

)) (107)

where θ̂ is a vector containing the estimates of the
unknown parameters under H1. The MLE is unbiased
and asymptotically optimum and efficient. The basic
definition of the GLRT defines that both estimation (of
the parameters) and detection of the signal is based on
the information from the observation vector. However,
the results can be significantly improved using memory,
i.e. previous observation vectors. The estimation proce-
dure is assigned to each subchannel separately. The use of
the joint y distribution for estimation is avoided, since the
estimation gain is very small compared to the increase of
computational workload.
Per receiver subchannel, the signal is considered to be a

white Gaussian variable, where the channel coefficient is
replaced with parameter θi. TheMLE is proved to be equal
to

θ̂2i = yHi yi
N

− σ 2
w (108)

The variance of the MLE θ̂2i under H1 can be given by

var
[
θ̂2i

]
=

(
σ 2
w+θ2i

)2
N , where θ2i is the exact value of the

parameter. In this case, the MLE is the best possible esti-
mate since it can be proved that it is equal with the
Cramer-Rao bound. However, the estimator has a basic
weakness. The estimate of (108) can take a negative value
for a given measurement when θ2i tends to zero. For these
cases, the estimate is considered unacceptable and it is
rejected.

Asmentioned before, the estimate can be improvedwith
the use of previous measurements. Nevertheless, in spec-
trum sensing applications the specific tactic may bring
instability. Let us consider the case of transition from H1
toH0. Thus, the previous observation vectors carry a pri-
mary signal (+ noise), but the current vector will contain
only noise. The use of the current vector for parameter
estimation will lead to higher estimation error. Therefore,
the algorithm presented in Figure 8 is proposed.
Based on this algorithm, the initialization of the detec-

tor is made using the LMP test. When the LMP detects a
primary signal, the GLRT detector is enabled. Each time
a new detection is performed, the estimate from the pre-
vious measurements is used to built the detector. If the
outcome of the new decision is alsoH1, then the estimate
is updated using the current measurement. In order to
update the estimate, a recursive MLE scheme can be used
with a forgetting factor α ∈ [ 0 1 ]. More specifically, the
updated estimate is given by

θi (tn+1) = αθi (tn) + (1 − α)

(
yHi yi
N

− σ 2
w

)+
(109)

where the superscript (+) indicates that the current esti-
mate is used only if positive; otherwise, it is set to zero.
The forgetting factor also allows the detector to adjust
in power variations of the incoming signal due to the
time-variant nature of the radio channel.
In modern wireless systems, the use of time division

multiple access, time duplexing and the bursty mode of
data transmission indicate that a transceiver may perform
interrupted transmissions. Thus, ifH0 is decided, then the
previous estimate should be kept in order for the GLRT
to operate when/if the primary signal reappears. On the
other hand, if a different primary user occupy the channel,
then the outcomes are the following:

Figure 8 A block diagram describing an implementable design of the GLRT detector.
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• If the new signal is more powerful, then the GLRT
(with the old signal estimate) will most probably
decide onH1.

• If the new signal is less powerful, it becomes more
probable to have a missed detection. In order to
control this effect, an empirical scheme can be
defined. It is assumed that the estimate of the signal
power is partially reduced every time the outcome
H0 is repeated. A rule that can be used for example is

θi (tn+1) = β(n−δ)+θi (tn) (110)

with β ∈ [ 0 1 ] a power reduction factor and δ a
coefficient that defines the number of repeated H0
decisions that will activate the power reduction
mechanism of the estimate.

8 Simulation results
The evaluation of the sensing algorithms is realized with
the use of the receiver operating characteristic (ROC)
curves. These figures depict the tradeoff between the PFA
and the PD, as well as the relationship between the PD or
the PFA vs. the SNR. The specifications of the system that
was used for simulation are presented in Table 1.
In order to have a reference point during the evaluation,

an equivalent - commonly used - detector was imple-
mented: the energy detector for a single primary channel.
This energy detector does not use the filter bank at all.
It covers a specific primary channel (that is spanned by
L = 4 or 8 filter paths) and accumulates the incoming

Table 1 Simulation parameters

Values/description

Number of subchannels of the filter
bank over the entire bandwidth

32

Number of primary channels over
the entire bandwidth

8 or 4

Number of subchannels per
primary channel

4 or 8

Coefficients for the prototype filter 101

Roll-off for the prototype filter 0.8

Noise AWGN

Primary transmission White Gaussian random
variable; single carrier
transmission

Filter type for the Uniform DFT Root Nyquist

Design algorithm for the DFT filter
bank

[40]

Filter type in the OFDM-OQAM
receiver

MDFT with PR

Design algorithm for theMDFT filter
bank

[41]

Radio channels Rayleigh paths with
exponential PDP

signal (or noise) energy. In order to fairly compare the
filter bank-based sensor and the energy detector, the fol-
lowing matching is made. Since the filter bank collects N
samples from each of the L subchannels that span the pri-
mary channel, the equivalent energy detector will collect
LN samples directly from the PS channel. Calculation of
the thresholds and the theoretical estimation of the PFA
and PD is made through the well-known energy detector
distributions [24].
At first, the ROC curve (PD vs. PFA) for a system with

M = 32, L = 4 and N = 8 is presented in Figure 7.
As expected, the optimum detectors provide the best PD
vs. PFA tradeoff. Moreover, since both optimum detectors
(for uniform DFT and MDFT filter banks) have identi-
cal distributions, their performance is very similar. A very
detailed observation of the curve will show that theMDFT
filter bank performs slightly better. This is due to the
fact that the matrix inversions and multiplications for the
uniform DFT metric may result in small precision error.
On the other hand, the weighted energy detector prac-

tically fills the gap between the optimal detectors and the
equivalent PS channel energy detector. It is noted that
the weighted energy detector performs satisfactorily and
presents stability.
Another conclusion that can be derived is that the theo-

retical calculations fit the simulation results exceptionally.
It must be noted that the used radio channel responses
were produced using a model with exponential PDP (λ =
0.5, 24 coefficients). Hence, although the channel impulse
responses were not ideally constructed to fit the approx-
imately flat radio channel per subchannel approximation,
the detector performed as predicted with high accuracy.
On the other hand, the radio channel frequency selectivity
acted destructively for the energy detector that monitors
the entire wideband primary channel and degraded its
performance.
In Figure 9, the respective figure for PD vs. SNR for

the same scenario is also presented. Figure 9 supports
the aforementioned concluding remarks and confirms the
superiority of the optimal detectors over the SNR values.
In order to better understand and evaluate the perfor-

mance of the detectors over frequency selective channels,
the following test was performed. The configuration of
Table 1 was assumed with four PS channels, eight filters
per subchannel and N = 4. Channels with exponential
PDP were tested, and the parameter λ was used as a mea-
sure of frequency selectivity, since small λ value means
large delay spread and consequently high frequency selec-
tivity. In case the approximately flat radio channel per
subchannel assumption is true, the estimated PD value
from the simulation tests is expected to coincide with
the theoretically calculated value. Otherwise, deviation
from the theoretical value will occur. During the sim-
ulation campaign, λ varied from 0.2 to 3 (Cmax = 48
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Figure 9 ROC curve PD vs. SNR for detection under AWGN.

Figure 10Mean squared error between the achieved PD and the theoretically calculated PD.
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paths for all cases). For each λ and for SNR= 0.125, 0.25,
0.5 and 1, a set of 4,000 channels was produced and the
mean squared error between the theoretically calculated
and the estimated via simulation PD was calculated. The
target PFA was set to 0.1. The results are presented in
Figure 10. It is noted that for presentation reasons, since
the results for the optimumdetectors are very similar, only
the mean square PD error for the OFDM-OQAMdetector
is provided.
The following conclusions can be derived. The error

increases with frequency selectivity (as λ decreases); how-
ever, in every case, even when the frequency selectivity
is significantly high (e.g. λ = 0.2), the mean square
error remains lower than 0.001. Therefore, it is con-
cluded that even in cases where the ‘approximately flat’
assumption is not valid, the segmentation of the signal in
several subchannels (L = 8) using a filter bank acts ben-
eficially for the spectrum sensing algorithm. Moreover,
the error depends on the SNR and more particularly

on the achieved PD value for the specific SNR. It is
observed that as the PD value approaches 0 or 1, the mean
square error decreases significantly (e.g. SNR= 0 dB).
Error maximization is achieved for the SNR values that
correspond to a probability of detection near PD = 0.5
(SNR = 0.25). SNRs that provide intermediate PD values
may have similar error values (SNR = 0.125 and 0.5). A
significant observation of the simulation tests is that the
PD error is biased. This means that the achieved PD will be
lower than the theoretically calculated, as expected, since
the proposed detectors are optimum. Therefore, the mean
square error of the PD can be used as a measure of perfor-
mance degradation of the detector due to the deviation of
the radio channel from the approximately flat assumption.
The weighted energy detector presents similar

behaviour. However, it can be seen that the error floor,
as λ increases, is higher than the one achieved by the NP
detectors. Moreover, the error reduction slope is signifi-
cantly smaller, whichmeans that despite the fact that error

Figure 11 ROC curve for detection under coloured noise with the use of the MDFT-filter bank.
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values are generally higher, the weighted energy detector
is not significantly affected by frequency selectivity. In
addition, for low λ values (high frequency selectivity) and
with the exception of SNR = 0 dB, the mean square error
for the weighted energy detector becomes less or equal to
the error values of the NP detectors. The exception for
SNR = 0 dB can be justified by the fact that the average
PD value is not that close to unity as in the case of the NP
detector (0.996), and therefore the error levels are higher
for the whole range of λ values. It can be concluded that
the weighted energy detector has a higher (biased) error
floor; however, it is more resilient in frequency selective
environments, as far as the PD error is concerned. It is
also noted that for all the studied cases, since AWGN was
assumed, the target PFA = 0.1 that depends only on the
noise distribution was achieved with great accuracy.
The operation of the optimum detector under coloured

noise is evaluated in Figures 11 and 12, where the
number of samples per subchannel was set to 4 and
SNR = −1.6 dB. In Figure 12, the targeted PFA was set to
0.05.
Noise becomes frequency selective with the same proce-

dure that models the Gaussian incoming PS signal. Hence,
before entering the filter bank, the noise samples are
filtered with a predefined impulse response. In the results
presented in Figures 11 and 12, Rayleigh channels with
exponential PDP (λnoise = 1.6, λsignal = 1) were used for

the generation of the noise and signal vector respectively.
This scenario practically simulates a remote interferer or
a different CR transmission.
In Figures 11 and 12, the MDFT Neyman-Pearson

detector performance is depicted, since the optimal uni-
form DFT detector performs similarly. Moreover, the
performance of the detector under white noise is also
presented. It is noticed that the filter bank detector in
the existence of coloured noise follows quite accurately
the performance of the white noise detector due to the
fact that coloured noise support can be seamlessly inte-
grated in the optimum detector. The small degradation is
caused from the increase of the overall ambiguity due to
the frequency selectivity of the noise.
On the other hand, the degradation of the equiv-

alent PS channel energy detector is quite noticeable.
The lack of robustness under coloured noise is typical
in many common and popular detectors. At the same
time, the detector fails to achieve the desired PFA levels.
Since the noise is correlated, the distribution used for
threshold calculation by the energy detector is wrong,
causing degradation in the PFA performance. A similar
phenomenon does not appear in the filter bank sensor.
In Figures 11 and 12, the performance of the matched
filter detector for the PS channel is also depicted as
an upper limit for the performance of the detection
schemes.

Figure 12 PFA vs. SNR with the use of four samples per observation vector per subchannel.
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Figure 13Mean squared error between achieved PFA and target PFAfor coloured noise.

In order to quantify the effect of frequency selectivity on
the NP detector with coloured noise and compare it with
the AWGN detector, extended simulation tests were per-
formed. A significant difference in the performance of the
detector over coloured noise compared with the equiva-
lent AWGN detector is the fact that there is an error in
the achieved PFA. PFA error was not present in the AWGN
detector, since the distribution of themetric underH0 was
accurate and it was not affected by the frequency selectiv-
ity of the signal. However in this case, the approximately
flat per subchannel assumption is also used for the sta-
tistical description of the coloured noise vector, and it is
expected to affect the PFA performance of the detector.
During the simulation campaign, λsignal (the exponential

factor of the PDP for the signal) varied from 0.2 to 3, while
λnoise (the exponential factor of the PDP for the noise) var-
ied from 0.8 to 3. For each pair of parameters, a set of
2,000 channels was produced and the estimated via sim-
ulation PFA was calculated and compared with the target
PFA = 0.1. The results are presented in Figure 13.
In Figure 13, it becomes clear that since the metric

under H0 is not affected by the validity of the approx-
imately flat assumption of the PS signal, the PFA error
does not depend on λsignal. Simulation results also indicate
that the PFA error does not depend on the SNR since
lower SNR values may indicatemore powerful noise; how-
ever, they do not affect the adequacy of the approximately
flat assumption for the noise vector. On the other hand,

Figure 14Mean squared error between the achieved PD and the theoretically calculated PD for coloured noise.
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Figure 15 ROC curve for various implementations of the GLRT detector and the LMP test.

Figure 16 Simulated PFA vs. targeted PFA for various implementations of GLRT and LMP detectors.
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PFA error depends on the parameter λnoise that is used
to colour the noise. Lower λnoise values indicate strongly
selective noise and thus the PFA error increases due to
deviation from the approximately flat per subchannel
assumption. It is seen that e.g. for λnoise = 0.8, the mean
square error is larger than 0.0001 which means that the
deviation from the target PFA may be higher than 1%. This
deviation may significantly affect the PD performance of
the detector as presented in Figure 14.
In Figure 14, it can be seen that the mean square error

between the achieved PD and the theoretically calculated
PD in most cases is significantly increased compared
with the AWGN scenario. Moreover, the PD error now
increases as the SNR is reduced in contrast with the
AWGN case where the error depended on the PD value
for a given SNR. This happens due to the fact that as the
SNR decreases, the overlap of the distributions under H0
and H1 grows. The PFA error practically moves the deci-
sion threshold.When the distribution overlap is large, the
produced PD error due to the threshold offset will also
be larger. It is also noticed that when noise frequency
selectivity increases, PD error also increases due to the

fact that under H1, the metric distribution is affected by
the validity of the approximately flat assumption for both
PS signal and noise. An exception in the comparison of
PD error over coloured and white noise is observed for
SNR = −6 dB when λsignal is lower than 0.4 and
λnoise = 2.5. Figure 10 shows that error wasmaximized for
SNR = −6 dB. During the simulation tests for coloured
noise, it was shown that the PFA error for high λnoise
values is biased and the achieved PFA will be actually
smaller than the targeted. Smaller PFA means increase
of the PD value. This increase of the PD value counter-
acts with the biased PD error due to PS signal frequency
selectivity. Therefore, in the specific case, the PD error of
the coloured noise detector is smaller than the AWGN
case.
Finally, in Figures 15, 16, 17, the ROC curves that evalu-

ate the performance of the GLRT detector are presented.
Various versions of the GLRT are implemented. In the
first version, estimation and detection are performed over
the same observation vector. In the rest of the cases, the
detection is performed using previous estimation results
with a varying forgetting factor (from 0.75 to 0.99). The

Figure 17 Simulated PFA vs. the SNR value for targeted PFA = 0.1 for various implementations of GLRT and LMP detectors.
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GLRT performance is compared with the LMP test. All
detectors are applied to the system of Table 1 using four
samples per subchannel as the observation vector and
eight subchannels per PS signal.
From Figure 15, it is noticed that the memoryless GLRT

achieves greater PD. However, this result is misleading. In
Figures 16 and 17, it can be seen that not only the mem-
oryless GLRT, but also GLRT implementations with short
memory, fail to achieve the target PFA that is defined by
the Neyman-Pearson optimum detector. Therefore, it is
concluded that the GLRT is generally biased towards the
positive outcome H1. These figures also indicate that the
main disadvantage of the GLRT detector is its weakness to
follow the targeted PFA.
It is clear that the PFA value achieved by the memo-

ryless GLRT is heavily diverged by the targeted PFA. As
the SNR increases, the actual PFA seems to asymptotically
approach the targeted value. The LMP, by definition, com-
plies accurately with the required targeted SNR, but on
the other hand it is lacking in PD performance. The GLRT
implementations with memory converge relatively fast to
a value that it is close to the desired PFA, while they main-
tain higher PD values compared to the LMP. Increase of
the forgetting factor over 0.95 does not provide significant
improvement.

9 Conclusions
This paper provided the theoretical framework for the
analysis and design of filter bank-based detectors for
spectrum sensing applications in cognitive radios. The
optimal detectors for uniform DFT and modified DFT
filter banks were developed and evaluated. Moreover,
the simple but non-optimal weighted energy detector for
uniform DFT filter banks was analysed. The filter-bank-
based sensing techniques were proved (through simu-
lations) robust under coloured noise. In addition, they
exploit the radio channel frequency selectivity to improve
their performance. Finally, implementable sensors using
the Locally Most Powerful and the Generalized Likeli-
hood Radio tests were proposed and evaluated through
simulation.
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