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Automatic detection of mode mixing in empirical
mode decomposition using non-stationarity
detection: application to selecting IMFs of
interest and denoising
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Abstract

Empirical mode decomposition splits a signal into several intrinsic mode functions (IMF). An algorithm for the
automatic selection of the modes containing the signal of interest was recently proposed. This algorithm is based
on statistical analysis describing the noise repartition between IMFs. This algorithm uses an estimate of the signal
noise content from the energy of the first IMF, which is supposed to contain a specific part of the total noise and
to contain noise only. Mode mixing can give rise to an over-estimation of the noise in the signal. This can lead to
more IMFs to be considered as containing only noise and to be erroneously discarded before reconstruction. We
propose to use mode mixing detection based on a stationarity test applied to the first IMF. In case of mode
mixing, we propose to correct the noise estimation by extracting from the first IMF the part corresponding to the
signal of interest. The results obtained with synthetic signals as well as with real mechanical and biomedical signals
demonstrate a good performance of the approach proposed here. The first two modes do lose some of their IMF
properties in the process. We offer some comments on how these properties can be recovered if needed.

Keywords: empirical mode decomposition, mode mixing, non-stationary signal detection, mode selection,
denoising

Introduction
The use of the Hilbert-Huang transform is becoming
increasingly popular in various domains of research. The
method is based on the empirical mode decomposition
(EMD), which allows the iterative decomposition of a
signal into a series of functions that are referred to as
intrinsic mode functions (IMF) [1].
Noise in the signal of interest will result in the con-

tamination of each mode by a part of the noise. The
study of the spectral content and of the statistical char-
acteristics of the EMD modes, computed from Gaussian
white noise, led to the definition of a model that can
quantify the information content of each IMF [2]. This
model was generalized by Flandrin et al. [3] in the case
of fractional Gaussian noise. These models can be used

for denoising or for the suppression of an unwanted
baseline wander (detrending) of the signal of interest. A
fundamental hypothesis that is made, when these mod-
els are used for the above application, is that the first
IMF contains a specific part of the noise as derived
from the above models. An estimate of the energy of
the first IMF is then used to adapt the denoising algo-
rithm to the signal and to its corrupting noise. If an
error is made in estimating the actual level of noise
from the first IMF, it can seriously decrease the perfor-
mance of the algorithm.
One source of such error can be mode mixing, which

corresponds to the alternating presence of several com-
ponents of the signal of interest on the same IMF [4]. In
our application, this mixing mainly involves the high
frequency part of the noise and the first high frequency
component of the signal. This type of mixing will invali-
date the fundamental assumption of the method that
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the first IMF contains only noise and lead to an over-
estimation of the level of noise in the signal.
An algorithm that can prevent mode mixing has

recently been proposed [4]. This algorithm is, however,
limited to the EMD analysis of signals composed of
pure sinusoids. When used on signals that contain non-
stationary elements, like those commonly found in real
signals (especially those of biomedical or mechanical
origin), this algorithm does not perform well. Several
authors have, therefore, developed algorithms that are
specifically adapted to their signals. An example of this
is the algorithm proposed by Blanco-Velasco et al. [5]
for the analysis of ECG. The algorithm presented here
does not make any a priori hypothesis concerning the
nature of the signal components and therefore can be
considered as a very general alternative to existing algo-
rithms used for this purpose.
We first present shortly the classic algorithm for

selecting the pertinent modes of a signal. Then, we
introduce an improvement of this algorithm, using a sta-
tionarity test on the first IMF that allows us to make a
more robust estimate of the statistical cutoff values used
for selecting IMFs. We then present an evaluation of the
performance of our algorithm when applied to synthetic
signals and real signals obtained from mechanical and
biomedical systems.

Algorithms for IMF selection
We consider that the EMD of a signal x[n] (n = 1,..., N)
results in a set of K IMFs dk[n] (k = 1,..., K) and a resi-
dual signal r[n]. The signal x is considered to be com-
posed of a signal s[n] that is corrupted with a fractional
Gaussian noise GnfH[n]. The signal GnfH[n] is stationary
by definition.

Classic approach
A statistical model of the energy distribution of noise
between IMFs has been derived by studying the energy
in the modes of a fractional Gaussian noise after EMD
[2]. This model makes it possible to define a statistical
cutoff value, below which the IMF is not considered as
a preponderant part of the signal. With this model, the
first IMF of a signal contaminated with noise is always
considered to be purely noise. The energy of the first
IMF is simply:

WH [1] =
N∑

n=1

d21 [n] (1)

The energy of the noise in the other IMFs is then
deduced, for a given Hurst exponent H, as:

WH
[
k
]
= CH ρ

−2(1−H)k
H , K ≥ 2 (2)

with CH = WH[1]/bH, bH = 0.719 for H = 0.5, and rH
= 2.01 + 0.2 × (H - 0.5) + 0.12 × (H - 0.5)2.
Additionally, we can define with this model a confi-

dence interval TH[k]. The decomposition of fractional
Gaussian noise yields an energy distribution for a given
IMF over several noise realizations. The confidence
interval corresponds to an energy limit inside which x%
(e.g. 95 or 99%) of the noise realizations are below this
value. The confidence interval plays the role of a statisti-
cal threshold. There is a linear relationship between the
logarithm of the confidence interval and the number of
the IMF, k, given by (3):

log2(log2(TH[k])/WH[k]) = aH k + bH (3)

where, in the case of H = 0.5 and for a confidence
interval of 99%: aH = 0.45 and bH = -1.95. Values of bH,
aH, and bH can be found in [3] for other values of H.
The selection algorithm proposed by Flandrin et al. is

the following:

1. Estimate the energy of the noise WH[1] on d1[n]
2. Estimate the pure noise content, WH[2,..., k], using
the estimate in (1)
3. Estimate the confidence interval TH[1,..., k]
4. Compare the energy of the IMFs 2 to K with the
confidence interval
5. All the IMFs that have energy greater than the
confidence interval are considered to be components
of the signal and not to be pure noise.

If the desired result is to remove the noise, the signal
is partially reconstructed by summing the selected IMFs
and the residual r[n].

The proposed approach
In the absence of any mode mixing, the first IMF (d1[n])
contains noise only and is therefore stationary. If some
mode mixing is present, d1[n] is not stationary. We pro-
pose here to detect mode mixing using a test of statio-
narity. To test the stationarity of the first IMF, we used
an algorithm developed by Xiao et al. [6]. It is a general
and robust method that only requires the user to choose
the level of significance for the detection. The value we
used in this work is p = 0.05.
If mode mixing is present in the first IMF (d1[n]), it

becomes necessary to distinguish between the part of its
energy due to noise and the part due to the signal
mixed in with the IMF. To do this, we simply consider
here the first IMF to be a noisy signal. We therefore
apply a wavelet filter, fwavelet, to separate the part due to
the original signal, s[n], from the part due to noise, b[n].
The modified algorithm is thus the following:
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1. Test if d1[n] is stationary, if yes go to (4)
2. Extract from d1[n] the part that is noise b[n] and
the part that is signal s[n] by wavelet filtering (fwavelet
(x))

a. s[n] = fwavelet(d1[n])
b. b[n] = d1[n] - s[n]

3. Mode de-mixing
a. d1[n] = b[n]
b. d2[n] = d2[n] + s[n]

4. Apply the classic algorithm for selecting IMFs as
described in the previous section.

Every kind of wavelet filter could be used, e.g. discrete
wavelet filter or wavelet packet filter. The choice
depends on the characteristics of the signal of interest.
In this work we chose to use a discrete wavelet filter,
which is the simplest of all possible wavelet filters.

Evaluation of the new algorithm
1. Signals
In this work, we tested our algorithm on several kinds
of signals: a purely synthetic signal made from three
Gabor atoms, a signal generated by a vibrating ball bear-
ing, and finally, an ECG signal generated using a model
proposed by McSharry et al. [7]. We evaluated the
robustness of our method by adding Gaussian white
noise to these signals to obtain SNR values of 20, 18,
16, 14, and 12 dB. For each SNR, we studied 500
realizations.
2. IMF selection or denoising performances
We used, as an evaluation criterion, the normalized per-
cent mean square error (NPMSE) between the original
signal without noise and the reconstructed signal.
NPMSE is defined as:

NPMSE = 100 ×
∑n

i=1

(
x [i] − x̂ [i]

)2
∑n

i=1 x[i]
2

(4)

where x and x̂ are the original and the denoised sig-
nal, respectively.
We compared the ‘classic’ method (from [2]) to the

improved approach proposed in this paper. We also
compared the classic method to our approach, but with-
out adding to the reconstruction the part of the first
IMF corresponding to the signal (step 3b). In that way,
we tested separately the effect of the cutoff values cor-
rection, on the reconstruction of the signal.
We also studied the influence of the wavelet choice

and of the number of decomposition levels (step 2a) on
the performance of the new algorithm proposed. We
tested the Daubechie of order 8, Meyer and Haar wave-
lets and 5, 8, and 10 decomposition levels. In all experi-
ments, the noise estimation in the decomposition levels
was done using the heuristic variant of the Stein’s

unbiased rule. A soft threshold was then applied on
each decomposition level before the reconstruction of
the denoised original signal.
3. IMF characteristics
The IMFs and the residual signal from the first IMF are
summed up after the application of the algorithm to
reconstruct the signal. In the de-mixing step of the pro-
posed algorithm, we chose to add the part of the signal
extracted from the first IMF to the second IMF. This
addition of a part of the first IMF to the second can
make the second IMF lose some of its characteristics as
a true IMF. Although this does not affect the process of
signal reconstruction and does not diminish the quality
of the reconstructed signal, it may be important to pre-
serve the characteristics of the EMD decomposition, if
further processing of the signal is to be done. As an
example we may be interested in the Hilbert-Huang
spectrum of the different IMFs.
To clarify the issue of how much our algorithms have

induced the second IMF to differ from a true IMF, we
created a method to quantify how close the modified
IMF is to a true IMF.
If a signal (s(t)) has all the properties of an IMF, its

EMD will result in one and only one IMF that will be
identical to the signal itself. In this case, the first IMF’s
energy relative to the signal will be 100%. If the analyzed
signal is not a pure IMF, its decomposition is going to
result in several IMFs. Therefore, the energy of the first
IMF, obtained from the signal, will be increasingly smal-
ler as the signal is further away from being a pure IMF.
We therefore defined an ‘IMF-likeness’ measure to

quantify the modification to the second IMF. We first
applied EMD to the IMFi (modified second IMF) to be
tested. Then, we computed the energy of the first IMF,
obtained from this decomposition of IMFi, divided by its
original energy (energy of IMFi). If IMFi still has the
characteristics of an IMF, this ratio gives a number
close to 1, but gives a smaller value when IMFi is less
like an IMF.

Results
Figure 1 shows an example of the EMD obtained on a
synthetic signal composed of three Gabor atoms with 12
dB noise added. We can clearly see that the first IMF
contains mode mixing. Indeed, a part of the signal is
clearly evident in this mode. The energy of the IMF that
corresponds to the signal is stronger than the noise
energy. It will, therefore, lead to an over-estimation of
the noise contained in the original signal.
Figure 2 presents the estimation of the noise model

and the associated confidence interval (TH) by means of
the classic algorithm (upper panel), based on the
assumption that the first IMF contains noise only, and
by using our method (lower panel). We can easily notice
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Figure 1 EMD of a synthetic signal with 12 dB SNR.
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Figure 2 An example of the selection of modes of the signal presented in Figure 1 by the classic algorithm (above) and by the
method presented in this work (below). The estimated model and the associated confidence interval (TH) are presented as a straight line and
a dashed line, respectively. The selected IMFs are diamond shaped and the ones that are rejected are represented by squares.

Terrien et al. EURASIP Journal on Advances in Signal Processing 2011, 2011:37
http://asp.eurasipjournals.com/content/2011/1/37

Page 4 of 8



that the over-estimation of the noise level leads to the
rejection of IMFs 4 to 6, even though they clearly con-
tain a part of the original signal. To correct this, if we
detect the presence of mode mixing in the first IMF, we
propose, in the new algorithm, to separate the part cor-
responding to the signal from that corresponding to
noise. Figure 3 presents the mode de-mixing result
obtained by our algorithm. The correction of the noise
level estimation results in the appropriate selection of
IMFs 4 to 6 (Figure 2, lower panel).
Figure 4 presents the results of the robustness analysis

for the three algorithms tested: the classical method (1),
the de-mixing of IMF1 only (2), the de-mixing plus
addition of the IMF1 signal to IMF2 (3). Correcting the
noise level estimation in IMF1 (method 2) induces a
reduction of the reconstruction error when compared to
method 1 (Figure 4, upper panel). In addition, if the sig-
nal contained in the IMF1 is taken into account in
IMF2, the level of reconstruction error drops to very
small values, for all values of SNR. In all cases, the
results of our method are better than those obtained
with the classical method. We also note that the stan-
dard deviation is smaller for our methods in all cases.
Figure 4 (lower panel) presents the influence of the

choice of wavelet. We can notice that the different
wavelets influence the quality of the results. In particu-
lar, Haar’s wavelet provides the worst results. Meyer’s

and Daubechie’s wavelets give similar results even if the
error is slightly lower for Meyer’s wavelet. The error
obtained using either of these two wavelets is lower
than 5%. The number of levels of the wavelet decompo-
sition had a negligible effect on the quality of the recon-
struction (results not shown). This can be explained by
the relatively great difference in the frequency content
of the signal and of the noise contained in the first IMF
of the synthetic signal under study.
When applied to the ball bearing signal (Figure 5) or

to the simulated ECG signals (Figure 6), the results of
the algorithms are similar to those obtained for the syn-
thetic signal. The standard deviations are, however,
greater for the ECG signals than those obtained on the
other signals. This is most probably due to the high
variability of the number of QRS complexes contained
in the first IMF in different realizations of the noisy sig-
nal. For these signals, the number of levels of the wave-
let decomposition also has a very small effect on the
reconstruction error, even though the effect is higher
than the one observed for synthetic signals.
Table 1 presents the results obtained for the ‘IMF

likeness measure’ for the different signals used in this
study, with a 16 dB SNR. We can generally notice that
the signal obtained by removing the noise from the first
IMF (first denoised IMF) is not an IMF according to
our measure (Table 1, column A). It is, however, fairly
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Figure 3 An example of mode de-mixing of the first IMF by wavelet filtering using Meyer’s wavelet.
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close to being an IMF except for the case of the ECG
signals. For the mechanical (ball bearing) and ECG sig-
nals, adding the signal part of the first IMF (first
denoised IMF) to the second IMF gives better IMF-like
characteristics, according to our measure (Table 1, col-
umn B). Only for the synthetic signals, this addition
reduces the IMF likeness measure.

Conclusion
We have proposed in this paper an improvement of an
existing algorithm used for selecting the IMFs of inter-
est, which is useful in case of mode mixing that can
affect the performances of the original algorithm. The
existing algorithm uses the first IMF to provide an esti-
mate of the noise contained in each of the IMFs of an
EMD. The presence of a mixing of modes introduces
errors to this estimation and may lead to a bad selection
of the IMFs of interest. Our approach is based on the
detection of mode mixing by a test of stationarity on
the first IMF, and on the extraction of the part of the
first IMF that corresponds to pure noise. The choice of
the stationarity test and of the noise extraction algo-
rithm has to be made according to the specific signal of
interest. In this work, we chose a stationarity test based

on the statistical study of time-frequency surrogates of
the signal, and a wavelet filter for separating noise from
signal in the first IMF. These choices present the advan-
tage of not making a priori assumptions about the sig-
nals under study. The only strong hypothesis is that the
corrupting noise is stationary and stays stationary during
the decomposition process by EMD. We have shown
improved results with respect to the algorithm for sig-
nals having very different characteristics. We have
demonstrated that our algorithm is robust with respect
to noise for all of the studied signals. A de-mixing step
is used in the algorithm. We have shown, specifically for
the synthetic signals, that this step may not lead to an
improvement, depending on the application, i.e. depend-
ing on whether the signal is simply to be reconstructed
or if a further analysis of the individual IMFs using Hil-
bert spectrum is the objective of the processing. The
evaluation of the proposed IMF likeness measure could
indicate if this step is suitable for a further spectral ana-
lysis. If the measure obtained on the first denoised IMF
is higher than the one obtained on the sum of this first
denoised IMF and the second one, we would suggest
not doing the step 3b. In this case, it is more suitable to
add a new IMF corresponding to the first denoised one,
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Figure 4 Results on the synthetic signal composed of three Gabor atoms plus noise. Above: The evolution of the percentage of mean
square error (NPMSE) (±s) as obtained by using the classic method (1), by only correcting the estimate of noise in the first IMF (2) and by
correcting the estimate of noise in the first IMF and plus modification of the second IMF (3). Below: Comparison of the NPMSE obtained using
the wavelets Daubechie (Daub.), Haar and Meyer.
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Figure 5 Results on the mechanical signal from the ball bearing plus noise. Above: The evolution of the percentage of mean square error
(NPMSE) (±s) as obtained by using the classic method (1), by only correcting the estimate of noise in the first IMF (2) and by correcting the
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Figure 6 Results on the ECG signal plus noise. Above: The evolution of the percentage of mean square error (NPMSE) (±s) as obtained by
using the classic method (1), by only correcting the estimate of noise in the first IMF (2) and by correcting the estimate of noise in the first IMF
and plus modification of the second IMF (3). Below: Comparison of the NPMSE obtained using the wavelets Daubechie (Daub.), Haar and Meyer.
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before computing the Hilbert-Huang spectrum of the
signal of interest. A deeper analysis of the reasons of
these losses of IMF characteristics may help to define
more efficient strategies in order to further improve the
spectral estimation of the signals of interest.
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Table 1 Median of the relative energy (lower quartile-
upper quartile), expressed as a percentage of the first
IMF obtained after EMD of the: first denoised IMF (A),
second IMF + first denoised IMF (B)

Signal A B

Synth. 88.4% (81.9-93.3) 81.7% (78.1-85.2)

Meca. 74.3% (68.9-88.5) 90.3% (79.6-92.1)

ECG 42.5% (36-49) 85.8% (74.4-91)

Results for the synthetic signal (Synth), mecanic signal (Meca), and the ECG
signal.
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