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Abstract

The goal of contrast enhancement is to improve visibility of image details without introducing unrealistic visual
appearances and/or unwanted artefacts. While global contrast-enhancement techniques enhance the overall
contrast, their dependences on the global content of the image limit their ability to enhance local details. They
also result in significant change in image brightness and introduce saturation artefacts. Local enhancement
methods, on the other hand, improve image details but can produce block discontinuities, noise amplification and
unnatural image modifications. To remedy these shortcomings, this article presents a fusion-based contrast-
enhancement technique which integrates information to overcome the limitations of different contrast-
enhancement algorithms. The proposed method balances the requirement of local and global contrast
enhancements and a faithful representation of the original image appearance, an objective that is difficult to
achieve using traditional enhancement methods. Fusion is performed in a multi-resolution fashion using Laplacian
pyramid decomposition to account for the multi-channel properties of the human visual system. For this purpose,
metrics are defined for contrast, image brightness and saturation. The performance of the proposed method is
evaluated using visual assessment and quantitative measures for contrast, luminance and saturation. The results
show the efficiency of the method in enhancing details without affecting the colour balance or introducing
saturation artefacts and illustrate the usefulness of fusion techniques for image enhancement applications.

Keywords: contrast enhancement, image fusion, pyramidal image decomposition, Gaussian pyramid decomposi-
tion, image blending, luminance

1. Introduction
The limitations in image acquisition and transmission
systems can be remedied by image enhancement. Its
principal objective is to improve the visual appearance
of the image for improved visual interpretation or to
provide better transform representations for subsequent
image processing tasks (analysis, detection, segmenta-
tion, and recognition). Removing noise and blur,
improving contrast to reveal details, coding artefact
reduction and luminance adjustment are some examples
of image enhancement operations.
Achromatic contrast is a measure of relative variation

of the luminance. It is highly correlated to the intensity
gradient [1]. There is, however, no universal definition
for the contrast. It is well established that human con-
trast sensitivity is a function of the spatial frequency;
therefore, the spatial content of the image should be
considered while defining the contrast. Based on this

property, the local band-limited contrast is defined by
assigning a contrast value to every point in the image
and at each frequency band as a function of the local
luminance and the local background luminance [2].
Another definition accounts for the directionality of the
human visual system (HVS) in defining the contrast [3].
Two definitions of contrast measure for simple patterns
have been commonly used. The contrast for periodic
patterns, like sinusoidal gratings, is measured using
Michelson formula [4]. Weber contrast [2] is used to
measure the local contrast of a small target of uniform
luminance against a uniform background. However,
these measures are not effective for complicated scenar-
ios like actual images with different lightning conditions
or shadows [5,6]. Weber’s law-based contrast (used in
the case of simple stimuli in a uniform background [7])
led to a metric that was later developed into a suitable
measure of contrast (measure of enhancement (EME) or
the measure of enhancement by entropy EMEE [8,9])
for complex images. The Michelson contrast law was
later included to improve this measure [10].* Correspondence: amina_saleem@yahoo.com
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Contrast enhancement is based on emphasizing the
difference of brightness in an image to improve its per-
ceptual quality [11]. Contrast-enhancement techniques
can broadly be classified into two categories: direct and
indirect methods. The direct methods enhance the
details by defining a function for contrast [1,12,13].
Indirect methods, on the other hand, improve the con-
trast without defining a specific contrast term [14,15].
The direct and indirect methods are further classified as
spatial [4,16] (which directly operate on the pixels) and
frequency domain methods (operating on the image
transforms [11,16-18]). A survey of different image
enhancement techniques can be found in [5,11,17,19].
Most of these techniques are based on global histogram
modifications or local contrast transformations and edge
analysis [1,18,20-22], because of their straight forward
and intuitive implementation qualities. The global
approaches modify the pixels by a transformation func-
tion to extend the dynamic range of intensity using the
histogram of the entire image. Many versions of histo-
gram equalization (HE) have been proposed [23]. Global
HE [18,20,21] is an example of this approach (intensity
mapping) based on the intensity cumulative distribution
function such that the resulting image has a uniform
intensity distribution. It has widely been used due to its
performance and simplicity. However, this approach has
some drawbacks, as the global approach is suitable for
an overall enhancement, but local details are not high-
lighted. Moreover, as global methods use the intensity

distribution of the whole image, they can change the
average intensity to middle level giving a washed out
effect [24-26]. To overcome these limitations, the global
enhancement techniques are adapted to local enhance-
ment. Adaptive HE [18,20,21] is one of the basic local
histogram-based contrast-enhancement techniques; it
divides the original image into several non-overlapped
sub-blocks, performs a HE of each sub-block and
merges the sub-blocks using bilinear interpolation [27].
This method usually produces an undesirable checker-
board effect near the boundaries of the sub-blocks. To
counter this effect, sub-blocks are overlapped generally
at the expense of increased computation and memory
usage. As the local methods are an extension of global
enhancement techniques, inherent problems of satura-
tion and over-enhancement are not completely sup-
pressed. Figure 1 shows drawbacks of some
conventional methods for grayscale image enhancement.
The imadjust is a function in Matlab which maps the
intensity values of the image such that 1% of data are
saturated at low and high intensities (Figure 1d). It fails
to achieve any contrast enhancement but does not
introduce luminance shift or saturation. The HE (Figure
1c) and adaptive HE techniques (Figure 1b) emphasize
the details, but introduces saturation artefacts and col-
our shift.
Most of the image contrast-enhancement techniques

are applied to grayscale images. However, the evolution
of photography has increased the interest in colour

Figure 1 Band pass image amplitude for the spatial frequency 32 cycles per image. (a) Original test image; (b) CLAHE processed image;
(c) Histogram equalized; (d) imadjust; (e-h) local band-limited images corresponding to image a, b, c and d, respectively.
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imaging and consequently in colour contrast-enhance-
ment methods. The goal of colour contrast enhance-
ment in general is to produce appealing image or video
with vivid colours and clarity of details intimately
related to different attributes of perception and visual
sensation. Techniques for colour contrast enhancement
are similar to those for grayscale images. Colour imaging
may be considered as a channel-by-channel intensity
image processing scheme. This is based on the assump-
tion that we can process each of the monochrome chan-
nels separately and finally combine the results. HE-based
approaches are common for enhancing the contrast in
grayscale images. Histogram-based colour enhancement
methods have also been proposed in [28,29]. This is a
three-dimensional problem carried out in the RGB
space. However, RGB is not a suitable space because of
its poor correlation with the HVS. Moreover, indepen-
dent equalization of RGB leads to a hue shift. Another
approach to colour enhancement is to transform the
image from the RGB space to other colour spaces such
as the CIELAB, LHS, HSI, HVS, etc. However, the useful
range of saturation decreases as we move away from
medium luminance values. Conversion back to RGB can
lead to colour mismatch. HE of the intensity component
improves contrast but de-saturates areas in the image.
Similarly, the equalization of saturation alone leads to
colour artefacts. Therefore, as these methods focus on
detail improvement and not on perception of colour
enhancement, they may result in colour degradation.
Psychologically derived colour enhancement methods
are presented in [30,31]. Both these approaches consider
the HVS model where only details and dynamic range
are enhanced but colour constancy is also achieved. Job-
sen et al. [31] consider a complex HVS model to achieve
sharpening, colour constancy and dynamic range com-
pression. These approaches based on retinex theory
(such as the single scale retinex–SSR [23] and multi-
scale retinex–MSR [32]) aim to improve image render-
ing close to the original scene and to increase the local
contrast in dark regions. However, both SSR and MSR
suffer from graying out effect which may appear in large
uniform colour areas in the image [33]. Some trans-
form-based contrast-enhancement methods such as the
wavelet [34], curvelet [35] and steerable filter [33] trans-
form methods use some characteristics of the HVS to
design contrast-enhancement algorithms.
The above discussion indicates that despite many efforts,

intensity shift and over-enhancement are still drawbacks of
many enhancement methods. Some attempts [36] have
been made to design algorithms to integrate local and glo-
bal information and improve enhancement results. To
overcome these limitations, we propose to use image
fusion to combine the useful properties and suppress the
disadvantages of the various local and global contrast-

enhancement techniques, thus improving their perfor-
mance. Our approach relies on simple image quality attri-
butes like sharpness, details visibility and colour
characteristics. Metrics to measure the contrast, and col-
our characteristics of the gray scale images are defined.
The adjustable image measures for contrast and colour are
then used to guide the fusion process. A related fusion
approach is used in the context of exposure fusion in [37].
We use a similar blending strategy, but employ different
quality measures. The proposed method is tested by fusing
the output from some well-known image enhancement
algorithms like HE [23], contrast-limited adaptive HE
(CLAHE) and imadjust function.
Another difficulty in dealing with contrast-enhance-

ment algorithms is the subjective nature of image qual-
ity assessment. Subjective enhancement evaluation
involves an expert judge to identify the best result
among a number of enhanced output images. In general,
contrast enhancement is evaluated subjectively in terms
of details visibility, sharpness, appearance and noise sen-
sitivity [33]. Good contrast-enhancement algorithms aim
to provide local and global contrast improvements, low
noise amplification and enhanced images free of satura-
tion, over-enhancement and colour shift problems.
Many image quality metrics have been developed for
image distortion estimation [38] but there are only a
few ad hoc objective measures for image enhancement
evaluation [1,39]. So far, there is no suitable metric for
the objective measure of enhancement performance on
the basis of which we can sort the enhanced images
according to visual quality and detail enhancement. Sta-
tistical measures of gray level distribution of local con-
trast enhancement based on mean, variance or entropy
have not been meaningful. A measure based on the con-
trast histogram shows much greater consistency than
statistical measures [40]. Measures for contrast perfor-
mance based on HVS are proposed in [41]. In this
study, we define metrics to measure the contrast
enhancement, saturation and luminance/brightness in
an effort to define objective metrics to measure the per-
ceptual image quality of the contrast-enhanced images.
The proposed method is also used to fuse the output of
different tone mapping methods. The performance of
the method is evaluated using quantitative measures and
subjective perceptual image quality evaluation.
The article is organized as follows. The following sec-

tion introduces the defined quality measures. Section 3
describes the fusion-based method. The results are dis-
cussed in Section 4. Finally, we conclude this study and
make recommendations for future study.

2. Image quality measures
Contrast-enhancement algorithms achieve different
amounts of detail preservation. Contrast enhancement
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can lead to colour shift, washed out appearance and
saturation artefacts in regions with high signal activity
or textures. Such regions should receive less weight,
while the areas with greater details or with low signal
activity should receive higher weight during fusion. We
define image quality measures which guide the fusion
process. These measures are consolidated into a scalar
weight map to achieve the fusion goals described above.
This section is organized as follows. We first define
metrics to measure the contrast and luminance of the
enhanced images. Next, the computation of a scalar
weight map is explained.

2. 1. Contrast measure
Given an input image I(x, y) where x and y are the row
and column coordinates, respectively. The gradient vec-
tor at any pixel location p = (x, y) is calculated by apply-
ing the two-dimensional directional derivative.

∇I
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)
=
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The absolute value of the image gradient |∇I| is taken
as a simple indicator of the image contrast C and used
as a metric to calculate the scalar weight map.

|∇I| =
√
G2
x + G2

y (3)

We use first-order derivative to calculate the contrast
metric because first-order derivatives have a stronger
response to gray level step in an image and are less
sensitive to noise. A similar contrast measure based on
the local pixel intensity differences was proposed in
[42]. Other authors measure the contrast by applying a
Laplacian filter (second-order derivative) to the image
and taking the absolute value of the filter response
[37]. Second-order derivatives have a stronger response
to a line than to a step and to a point than to a line
[11]. As second-order derivative is much more aggres-
sive than first-order derivative in enhancing sharp
changes, it can enhance noise points much more than
first-order derivative. There are also some definitions
for the local contrast such as the ones defined in
[43,44] which are consistent with the HVS. Here, for
the sake of simplicity we use the gradient as a local
contrast measure.

2.2. Luminance/brightness preservation measure
Contrast enhancement often results in a significant shift
in the brightness of the image giving it a washed out
appearance, which is undesirable. The closer the intensi-
ties of the enhanced images to the mean intensity of the
original image the better they are in term of intensity
distribution. We define a metric L based on how close
the intensities of the enhanced image pixels are to the
mean intensity of the original image. L assigns a higher
value to the intensities (i) closer to the mean intensity
of the original image and vice versa such that the inten-
sities (i) closer to the mean intensity of the original
image receive a higher weight in the fused output
image. This is achieved by using a Gaussian kernel
centred on the mean image intensity of the original
image given by

L (i;mo, σ) = exp
(

− (i − mo)
2

2σ 2

)
(4)

where s is chosen as 0.2 and mo is the mean intensity
of the original image.

2.3. Scalar weight map
The problem of synthesizing a composite/fused image
translates into the problem of computing the weights for
the fusion of the source images. A natural approach is to
assign to each input image a weight that depends increas-
ingly on the salience (importance for the task at hand).
Measures of salience are based on the criteria for the par-
ticular vision task. The salience of a component is high if
the pattern plays a role in representing important infor-
mation. For the proposed fusion application, the less con-
trasted and saturated regions should receive less weight
(less salience), while interesting areas containing bright
colours and details (high visual saliency) should have
high weight. Based on this requirement, weights (for the
fusion process) are computed by combining the measures
defined (according to the visual saliency) for the contrast,
saturation and luminance. We combine these measures
(contrast, luminance) into a weight map using multiplica-
tion (AND) operation. The reason for using multiplica-
tion (AND operation) over addition (OR operation) is
that the scalar weight map should have a contribution
from all the measures (contrast, luminance) at the same
time. We tested the fusion results using different combi-
nations (linear and logarithmic operations) of the mea-
sures to compute the weight maps. However, the best
results are achieved using a multiplicative combination
for the computation of the weight map. The scalar weight
map, for each pixel that enforces the contrast and lumi-
nance characteristics all at once, is given by
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Pi,j,k = (Ci,j,k)α(Li,j,k)β (5)

where C and L are the contrast and the luminance,
respectively. The N weight maps (for N input images) Pi,
j, k are normalized such that they sum to one at each
pixel (i, j). This is given by

P̂i,j,k =
[∑N

k′=1 Pi,j,k′
]−1

(6)

We can control the influence of each measure in the
metric P using a power function, where a and b are the
corresponding weighting exponents. The subscript i, j, k
refers to pixel (i, j) in image k. If an exponent (a or b)
equals 0, the corresponding measure is not taken into
account. Pi, j, k is a scalar weight map which controls
the fusion process described in the following section.

3. Proposed image fusion-based contrast
enhancement
The main idea developed here is to use image fusion to
combine the useful properties and suppress the disad-
vantages of the various local and global contrast-
enhancement techniques. The fusion-based contrast-
enhancement scheme is summarized in Figure 2.
Image fusion generally involves selecting the most

informative areas from the source images and blending
these local areas to get the fused output images. Among
the various methods of image fusion, multi-resolution

(MR)-based approaches are widely used in practice. The
MR-based image fusion techniques are motivated by the
fact that the HVS is more sensitive to local contrast
changes (such as edges) and MR decompositions pro-
vide convenient space-scale localization of these
changes. A generic MR fusion scheme uses fusion rules
to construct a composite MR representation from the
MR representations of the different input images. The
fused image is constructed by applying an inverse
decomposition.
A straight forward approach is to fuse the input

images as a weighted blending of the input images. The
N input images can be fused by computing a weighted
average along each pixel using weights computed from
the quality metrics:

Fi,j =
∑N

k=1
Ŵi,j,kIi,j,k (7)

where Ik and Ŵk are the kth input image in the
sequence and the kth weight map, respectively, and Fi, j
is the composite image. The values of the N weight
maps are normalized such that they sum to one at each
pixel (i, j).

Ŵi,j,k =
[∑N

k′=1 Wi,j,k′
]−1

Wi,j,k (8)

However, the weighted blending in Equation (6) can
produce disturbing seams in the fused image whenever
weights vary quickly. A number of methods for seamless
blending of images are proposed in [37,45-47]. MR-
based blending techniques are more suitable in avoiding
seams as they blend image features rather than intensi-
ties. To achieve seamless blending, a technique (based
on MR pyramid decomposition) proposed in [48] is
developed for combining two or more images into a lar-
ger image mosaic. The authors show that MR-based
blending eliminates visible seams between component
images, avoids artefacts (such as blurred edge and dou-
ble exposure effect) which appear in the case of
weighted average blending technique. The fusion
method introduced in [37] is also inspired by the pyra-
midal decomposition scheme proposed in [49] and the
blending introduced in [48]. It blends the pyramid coef-
ficients based on a scalar weight map. This technique
decouples the weighting from the actual pyramid con-
tents, which makes it easier to define the quality mea-
sures. We select the MR scheme proposed in [37] as we
want to guide the fusion of contrast-enhanced images
by weighing them according to a weight map (computed
from quality metrics defined for luminance, saturation
and contrast of the enhanced images). We can use any
quality measures that can be computed per pixel or in a
very small neighbourhood.

Figure 2 Method flow chart.
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The images are first decomposed using a Laplacian
pyramid decomposition of the original image into a
hierarchy of images such that each level corresponds to
a different band of image frequencies [49]. The Lapla-
cian pyramid decomposition is a suitable MR decompo-
sition for the present task as it is simple, efficient and
better mirrors the multiple scales of processing in the
HVS. The next step is to compute the Gaussian pyramid
of the weight map. Blending is then carried out for each
level separately. Let the lth level in a Laplacian pyramid
decomposition of an image A and the Gaussian pyramid
of image B be represented by L{A}l and G{B}l, respec-
tively. Each level l of the resulting Laplacian pyramid is
computed as a weighted average of the original Lapla-
cian decompositions for level l, with the lth level of the
Gaussian pyramid of the scalar weight map as the
weights.

L {F}li,j =
∑N

k=1 G
{
Ŵ

}l

i,j,k
L {I}li,j,k (9)

where N is the number of images. The pyramid L{F}l

is then collapsed to obtain the fused image F.
The performance of MR decomposition techniques

depends upon the number of decomposition levels (or
the depth of analysis). The required level of decomposi-
tion is related to the spatial extent of the objects in the
input images and the observation distance. It is not pos-
sible to compute the optimal depth of analysis. In gen-
eral, the larger the objects of interest in an image, the
higher the number of decomposition levels should be.
For our simulations, we fix the number of decomposi-
tion levels to 5.
The proposed method can be summarized in the fol-

lowing steps.
Step 1: Calculate the image quality measures defined

(Equations 3 and 4) above for each of the input images.

Step 2: For each image obtain the scalar weight map
(Equation 5) and the normalized scalar weight map
using (Equation 6).
Step 3: Decompose the input images using Laplacian

pyramid decomposition.
Step 4: Obtain the fused pyramid as a weighted aver-

age of the original Laplacian decompositions for each
level l, with the lth level of Gaussian pyramid of the
weight map (calculated in Equation 6) serving as the
weights (Equation 9).
Step 5: Reconstruct image from the fused Laplacian

pyramid.
An overview of the fusion/blending technique is given

in Figure 3.
Fusion can be used to improve the deficiencies of some

existing enhancement methods. There are various techni-
ques for image fusion and the selection of a particular
one depends upon the application. The problem of fusion
is actually how to define the weights and the combination
rules for the fusion process. A simple approach to fusion
is to build a composite image as a weighted average of
the source/input images. The weights are computed on
the basis of salience dictated by the particular vision task.
Numerous methods for defining the weights and other
arithmetic signal combinations exist [50,51]. We first
selected the weights (weight map) for the contrast-
enhancement fusion problem. The next logical step is to
fuse the images by applying weighted blending (as given
in Equation 7). However, this results in seams in the
fused image. To overcome this problem, we use an MR-
based blending technique proposed in [48] to seamlessly
blend two or more images into a larger image mosaic.
The salience of each sample position in the pyramid is
dictated by the scalar weight map.
The images to be fused are first decomposed into a set

of band-pass filtered component images. Next, the

Figure 3 Overview of the fusion/blending methodology.
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Gaussian pyramid of the weight map is computed. The
composite pyramid is constructed as a weighted average
of the Laplacian decomposition for each level by weight-
ing them with the Gaussian pyramid of the weight map.
The Gaussian pyramid is computed to make the weight
map less sensitive to rapid fluctuations.

4. Results and discussion
This section presents the simulation results obtained
with the proposed fusion method and compares it to
other methods. The criteria of comparison are (1) con-
trast enhancement and (2) the extent to which each
algorithm preserves the original image appearance (in
the sense that it should not produce any new details or
structure on the image) without introducing unwanted
artefacts. The comparison criteria and verification pro-
cedure include quantitative measures as well as visual
inspection. The first part briefly describes the metrics to
assess the performance of contrast-enhancement meth-
ods. These metrics are then used to compare the results
of the proposed approach with other existing methods
of contrast enhancement.

4.1. Performance evaluation of the proposed method
4.1.1. Contrast evaluation metrics
The contrast-enhancement performance is measured by
calculating the second-order entropy and a new contrast
metric proposed in the article.
4.1.1.1. Entropy Entropy has been used to measure the
content of an image, with higher values indicating
images which are richer in details. The first-order
entropy corresponds to the global entropy as used in
[52,53] for gray level image thresholding. The first-order
entropy however suffers from a drawback as it does not
take into account the image spatial correlation. The sec-
ond-order entropy was defined in [54] using a co-occur-
rence matrix, used to capture transitions between gray
levels. A dispersed and sparse co-occurrence matrix cor-
responds to a rich image (with greater detail) in the
sense of information theory, whereas a compact co-
occurrence matrix (where values are concentrated
around the diagonal) reveals an image with less detail.
We therefore calculate the second-order entropy using a
co-occurrence matrix as a means to estimate the con-
trast enhancement. Given an image I of size m × n with
L gray levels, the co-occurrence matrix T of the image
is an L × L matrix which contains information about
the transition of intensities between adjacent pixels. Let
ti, j be the element corresponding to row i and column j
of the matrix T defined as

ti,j =
∑n−1

l=0

∑m−1
k=0 δ(l, k) (10)

where

δ (l, k) = 1 if

⎛
⎝ I (l, k) = i, I (l, k + 1) = j

and/or
I (l, k) = i, I (l + 1, k) = j

⎞
⎠

δ (l, k) = 0 otherwise

(11)

The probability of co-occurrence pi, j of gray levels (i,
j) is estimated by

pi,j =
ti,j∑L−1

k=0

∑L−1
l=0 tl,k

(12)

and the second-order entropy H is estimated by

H = −∑
j

∑
i pi,jlog2(pi,j) (13)

4.1.1.2. Edge content-based contrast metric We pro-
pose another metric as a quantitative measure of the
contrast. Human contrast sensitivity is highly dependent
on spatial frequency. Based on this, a nonlinear model
proposed in [2] uses the concept of local band-limited
contrast to simulate how the HVS processes information
contained in an image. This model generates a simula-
tion of what a person with a given contrast sensitivity
would see when looking at an image. The first step is to
break the image into its constituent band-pass filtered
components (as done in the brain according to [55]) by
filtering the original image’s frequency spectrum with a
concentric log-cosine filter. A local band-limited con-
trast image is generated for 2, 4, 8, 16 and 32 cycles per
image. The pixel values, or contrasts, in each contrast
image were compared to the threshold value measured
in the contrast sensitivity test corresponding to the
appropriate frequency. The images obtained by this pro-
cess are called threshold images, and are added together
along with the lowest frequency component to complete
the simulation. The resulting image is representative of
what a person with a particular threshold response
would see when looking at an image [2]. We generate
the images corresponding to enhanced image using
Peli’s simulation and setting the threshold values calcu-
lated for a person with normal vision. These images
represent what a person with normal vision will see
when looking at an image. Second, we calculate the EC
for the images processed using Peli’s simulation. Image
processing techniques emphasize that edges are the
most prominent structures in a scene as they cannot
easily be predicted. Changes in contrast are relevant
because they occur at the most informative pixels of the
scene [56]. In [56], the authors gave precise definitions
of edges and other texture components of images. In
[57], a metric edge content (EC) is used to estimate the
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blur in image for the multi-focus image fusion problem.
The measure EC accumulates the contrast changes of
different strength inside an area r, and is given by

EC =
1
r2

∫ x+
r

2
x−

r
2

dx′ ∫ y+
r

2
y−

r
2

dy′
∣∣∇I(x, y)

∣∣ (14)

The discrete formulation is represented by the follow-
ing expression

EC =
1

(m × n)

∑
x

∑
y

∣∣∇I(x, y)
∣∣ (15)

where m × n represents the size of the image block
for which we calculate the EC and 1 ≤ x ≤ m and 1 ≤ y
≤ n. The bi-dimensional integral on the right-hand side,
defined on the set of pixels contained in a square of lin-
ear size r, is a measure of that square. It is divided by
the factor r2, which is the Lebesque measure (denoted
by l) of a square of linear size r. Contrast changes are
distributed over the images in such a way that the EC
has large contributions even from pixels that are very
close together. The EC accumulates all the contrast
changes giving a quantitative measure for contrast
enhancement achieved by different algorithms. Thus,
the proposed metric accumulates the contrast changes,
as perceived by the human observer to get a quantitative
measure of the contrast enhancement achieved by differ-
ent algorithms. The values of the EC for the original and
enhanced tire images are given in Table 1. We see that
EC gives an objective measure of the detail enhance-
ment. Highest value of EC corresponds to the histogram
equalized image.
This phenomenon is clearly illustrated in Figure 1. A

test image (Figure 1a) and the images after enhancement
using the CLAHE, HE and imadjust function are shown
in Figure 1b-d, respectively. The band-pass amplitude
images (for a spatial frequency of 32 cycles per image)
are generated by filtering the spectrum of the image
with a log-cosine filter and are shown in Figure 1e-h.
We use the band-pass filtered images as it is believed
that the contrast at a spatial frequency or a band of spa-
tial frequencies depends on the local amplitude at that
frequency. The images show the detail enhancement
achieved by different enhancement methods. Note the
increase in the contrast for the CLAHE image as shown
in Figure 1f.
4.1.2. Luminance evaluation metric
To measure how the global appearance of the image has
changed, the deviation of the mean intensity of the
enhanced image from the mean intensity of the original
image is computed. A similar measure has been used in
[58] called the absolute mean brightness error (AMBE)

which measures the deviation of the mean intensity of
the enhanced image (mc) from the mean intensity of the
original image (mo).

AMBE = |mc − mo| (16)

4.1.3. Saturation evaluation metric
We measure the saturation by computing the number of
saturated pixels ns (black or white pixels which were not
saturated before) after applying contrast enhancement
[59]. The saturation evaluation measure (h) is defined as

η =
ns

(m × n)
(17)

where m × n is the size of the image.
The goal of contrast enhancement is to increase the

contrast, without saturating the pixels (loosing visual
information) or causing a significant shift in the image
brightness. Hence, good results are described by high
values of EC and low values for AMBE and h.

4.2. Grayscale image enhancement
The proposed method is applied to various grayscale
images by fusing the output from local and global con-
trast-enhancement methods. For testing the results, we
select the output of three enhancement algorithms for
performing fusion, i.e. the HE method, CLAHE and the
imadjust function. HE spreads out intensity values over
the brightness scale in order to achieve higher contrast.
It is suited for images that are low contrasted (narrow
histogram centred towards the middle of the gray scale),
dark (histogram components concentrated towards the
low side of the gray scale) and bright (where the compo-
nents of the histogram are biased towards the high side
of the gray scale). However, for images with narrow his-
togram and fewer grayscales, the increase in the
dynamic range results in an adverse effect of increased
graininess and patchiness. CLAHE, unlike HE, involves
selecting a local neighbourhood centred around each
pixel, calculating and equalizing the histogram of the
neighbourhood, and mapping the centred pixel based on
the equalized local histogram. The contrast enhance-
ment can be limited in order to avoid amplifying the
noise which might be present in the image. CLAHE was
originally developed for medical imaging and has been
successful for the enhancement of portal images [60]. It

Table 1 Metric EC for the contrast-enhanced images

Image EC

Test image 0.0383

HE 0.0481

CLAHE 0.0683

imadjust 0.0477
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gives good performance for images with segments with
different average gray levels. In general, the HE-based
methods are often used to achieve better quality images
in black and white colour scales in medical applications
such as digital X-rays, magnetic resonance imaging
(MRI) and computed tomography scans. Some histo-
gram-based methods (such as CLAHE) result in noise
amplification and saturation in dark and bright regions.

They are therefore often used together with other ima-
ging processing techniques. The intensity adjustment-
based contrast-enhancement techniques (such as the
Matlab imadjust function [61]) map image intensity
values to a new range. The imadjust function increases
the contrast of the image by mapping the values (to new
values) such that, by default, 1% of the data are satu-
rated at low and high intensities. The imadjust function

Figure 4 Comparison of classical enhancement algorithm. the original image (a), CLAHE (b), HE (c), intensity mapped image (d), proposed
method (e).
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improves the contrast of the images with narrow histo-
grams. However, it fails to be effective in improving the
contrast for images in which the values are already
spread out. First, we calculate the quality metrics using
the metrics defined in Equations (3), (4) and (5). The
weights in the fusion process are then adjusted accord-
ing to the value of these metrics to get the fused output
image.
Figures 4 and 5 illustrate the results obtained for the

test images. Figures 4a and 5a are the original images.

Figures 4 and 5b-e represent the contrast-enhanced
images (enhanced using the CLAHE [62], HE [23,63],
imadjust and the proposed fusion technique,
respectively).
The visual assessment of the processed images (Fig-

ures 4 and 5e) shows that the fusion-based method
enhances the local and global details in the image with
negligible saturation and over-enhancement problems.
The proposed method also produces a minimum change
in the global outlook. It can be noticed that histogram-

Figure 5 Comparison of classical enhancement algorithm. the original image (a), CLAHE (b), imadjust (c), HE (d), proposed method (e).
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based methods HE (Figures 4 and 5c) and CLAHE (Fig-
ures 4 and 5b) produce significant colour shift in many
areas of the images. The HE method results in satura-
tion and over-enhancement reducing the details. In the
CLAHE method, the local details are better enhanced
than HE; however, the image looks unnatural. The
imadjust method (Figures 4 and 5d) does not provide
any significant contrast enhancement but retains the
image outlook and does not result in over-enhancement,
colour shift or saturation. The fused image (Figures 4
and 5e) gives better local and global detail enhancement;
it suppresses the over-enhancement and saturation pro-
blem while retaining the brightness or the outlook of
the image.
The visual assessment is supplemented by calculating

quantitative metrics (for contrast enhancement evalua-
tion discussed in Sections 4.1-4.3) for the test images (in
Figures 4 and 5a) and the enhanced images. The results
in Table 2 show that histogram-based methods give
good detail enhancement but poor saturation and lumi-
nance preservation performance. Similarly, the imadjust
function results in good luminance preservation but no
detail enhancement. The values of contrast, luminance
and saturation measures for the contrast-enhanced
images are presented in Table 2. The results show that
our method gives the best performance compromise
between the different attributes of contrast enhance-
ment, i.e. detail enhancement, luminance preservation
and saturation suppression, resulting in good perceptual
quality of the enhanced image.
The results of the proposed method are tested on

some remote sensing and medical images. The MRI
image of the human spine and the enhanced MRI
images are shown in Figure 6. Figure 7 shows an Ariel
image. The enhanced image removes the haze influence,
increases the visibility of the landscape and retains the
original appearance of the image (Figure 7e). A typical

remote sensing image and the images after enhancement
with the proposed and some global and local methods
are shown in Figure 8.
Another potential application of the proposed fusion

methodology is to fuse the output of different tone map-
ping algorithms to improve their performance. Tone
mapping techniques are used to convert real-world
luminance to displayable luminance. Various tone map-
ping algorithms have been proposed in the scientific lit-
erature. For illustration, we choose three tone mapping
operators applied to an image (taken from the Max-
Planck Institut fur Informatik [64]). The Ward’s opera-
tor [65] maximizes the contrast (Figure 9c) while the
Tumblin’s operator [66] preserves the luminosity of the
scene (Figure 9b) and the Reinhard’s operator [67] aims
to mimic photographic techniques (Figure 9a). The
Ward operator enhances the contrast but it saturates
the light sources. The Tumblin’s operator preserves the
luminance but fails to achieve significant contrast

Table 2 AMBE, EC, saturation and second-order entropy
values for the enhanced grayscale images

Image EC AMBE Saturation Entropy

Test image in Figure 4 0.0372 3.2331

HE 0.0548 0.1508 3.60 4.2073

CLAHE 0.0636 0.1311 3.54 4.1527

Proposed method 0.0537 0.1159 3.59 4.0078

imadjust 0.0474 0.0827 0.00 3.5967

Image EC AMBE Saturation Entropy

Test image in Figure 5 0.0401 3.6281

HE 0.0531 0.1327 1.52 4.2510

CLAHE 0.0698 0.0410 0.06 4.4609

Proposed method 0.0581 0.0396 0.37 4.2702

imadjust 0.0531 0.0492 1.33 4.0464

Figure 6 (a) MRI of the human spine (b-e) Enhanced image using
CLAHE, HE, imadjust and the proposed method, respectively.
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enhancement. The fusion of the results of the above
tone mapping operators shown in Figure 9d achieves
good contrast enhancement while preserving the lumi-
nance (without introducing saturation artefacts).

4.3. Colour image enhancement
The evolution of photography has increased the interest
in colour imaging and consequently in colour contrast-
enhancement methods. The goal of colour contrast
enhancement in general is to produce appealing image
or video with vivid colours and clarity of details inti-
mately related to different attributes of visual sensation.
Most techniques used for colour contrast enhancement
are similar to those for grayscale images [28,29]. How-
ever, most of these methods extract image details but
can lead to colour temperature alterations, light condi-
tion changes and may result in unnaturally sharpened
images. Taking into account the different deficiencies of
the colour enhancement methods, we extend the

concept of fusion to colour images to overcome some of
their most annoying drawbacks.
For coloured images, the scalar weight map is com-

puted as

Pi,j,k = (Ci,j,k)α(Li,j,k)β(Si,j,k)γ (18)

where C, L and S are the contrast, luminance and satura-
tion, respectively, and Pi, j, k is the scalar weight map. The
contrast metric is calculated in the same way as the grays-
cale images by first converting from RGB to grayscale. The
luminance metric for colour images is computed by apply-

ing Gaussian weighting (given by exp

(
−(i − mo)

2

2σ 2

)
,

where s is chosen as 0.2) to each colour channel sepa-
rately and then multiplying to yield the metric L [37]. The
saturation (which is equivalent to vividness) is computed

Figure 7 (a) Ariel image (b-e) Enhanced image using CLAHE, HE,
imadjust and the proposed method, respectively.

Figure 8 (a) Digital Ariel photograph (b-e) Enhanced image using
CLAHE, HE, imadjust and the proposed method, respectively.
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as the standard deviation within the R, G, B channels at
each pixel [37].
The fusion of the coloured images can be performed

by representing images in different colour spaces (such
as the RGB, HSV and Lab colour spaces). However, we
achieve the best results in the RGB colour space by fus-
ing/blending each of the R, G and B channels separately.
The other advantage of fusing images in this (RGB)
space is its simplicity (as fusion can be performed with-
out the requirement of transformations between the
RGB and other colour spaces).
Different types of natural images were tested and the

results confirm an encouraging performance. As a first
example, we present the fusion of some conventional
image enhancement methods like histogram, adaptive
histogram methods and show how fusion can be applied
to improve the performance. The ambience of image is
maintained after enhancement without introducing any
saturation and halo effect due to over-enhancement.
Figures 10, 11 and 12 present results for three test
images. The values of the metrics, AMBE, second-order
entropy, EC and saturation (calculated for the luminance
component by converting from RGB to Lab colour
space) are given in Table 3.
4.3.1. Tone mapping for high dynamic range images
Next, we extend the concept of fusion for tone mapping
of the High Dynamic Range (HDR) images. Halo arte-
facts and graying out are some of the issues in HDR
image rendering. There is a compromise between the
increase in local contrast and rendition of the image: a
strong increase in local contrast leads to artefacts,
whereas a weak increase in local contrast does not pro-
vide the expected improvement of detail visibility. These
issues are addressed by a number of local and global
tone mapping methods. A survey of some of these
methods is given in [68].

Global tone mapping methods approximate the HVS
nonlinearity to compensate for the display characteris-
tics and produce visually appealing images and the local
operators improve local features of the image. We apply
image fusion to fuse information from the output of dif-
ferent tone mapping algorithms with different strengths
and weaknesses and different reproduction goals. Some
test results are shown below.

Figure 9 Fusion of local tone mapped images. Tone mapped image using (a) Reinhard, (b) Tumblin, (c) Ward operator and (d) the proposed
method.

Figure 10 Fusion of classical enhancement algorithm. the
original image (a), CLAHE (b), HE (c), intensity mapped image (d),
proposed method (e).
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Figure 13 shows the fusion of the Gamma correction
(global tone mapping) and Reinhard’s (local) tone map-
ping methods. Figure 14 presents the fusion of the
image from the output of local tone mapping operators,
Ward operator which is known to maximize the con-
trast, the Tumblin operator which preserves the lumin-
osity and the Reinhard operator which mimics the
photographic techniques. The results of fusion are
shown in Figure 14d.
Finally, we present a comparison of the fusion result

with only the contrast (a = 1, b = 0, g = 0), saturation
(a = 0, b = 1, g = 0) or luminance measures (a = 0, b =
0, g = 1) used to compute the scalar weight map. We
note that if an exponent a, b or g equals 0, the corre-
sponding measure is not taken into account in the cal-
culation of the weight map. The results are presented in
Figure 15. Figure 15a shows the original image and the
fused images with the contrast measure (Figure 15b),
the saturation measure (Figure 15c) and the luminance
measure (Figure 15d) used in the calculation of the
weight map. The result in Figure 15b shows that the
contrast image retains the details (e.g. in the waves and
the clouds) which are not as obvious in the saturation
and luminance images. However, the overall image
appears dark and saturated. The saturation measure
(alone) results in a dark image with lesser detail but the

image is unsaturated. The luminance image retains the
luminance closest to that of the original image (trees
and the grass region) which is less so for the contrast
and saturation images. In general, we get the best per-
formance in terms of balance between detail enhance-
ment, luminance preservation and saturation when all
the measures (contrast, saturation and luminance) con-
tribute in the weight map calculation.

Figure 11 Fusion of classical enhancement algorithm. the
original image (a), CLAHE (b), HE (c), intensity mapped image (d),
proposed method (e).

Figure 12 Fusion of classical enhancement algorithm. the
original image (a), CLAHE (b), HE (c), intensity mapped image (d),
proposed method (e).

Table 3 AMBE, EC, saturation and second-order entropy
values for the enhanced colour images

Image EC AMBE Saturation Entropy

Test image in Figure 10 0.0242 0.32452 3.2331

HE 0.0384 0.1023 0.0778 3.9383

CLAHE 0.0486 0.1090 0.0000 4.0788

Proposed method 0.0260 0.0517 0.0000 3,2474

imadjust 0.0281 0.0852 0.0305 3.4606

Image EC AMBE Saturation Entropy

Test image in Figure 11 0.0160 2.9197

HE 0.0256 0.1278 0.9750 3.6043

CLAHE 0.0350 0.1006 0.0000 3.5406

Proposed method 0.0260 0.0521 0.0005 3.5406

imadjust 0.0184 0.0920 0.5335 3,1218
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4.4. Other potential applications
There are only a few ad hoc objective measures for image
enhancement evaluation. There is also no satisfying
metric for the objective measure of enhancement perfor-
mance on the basis of which we can sort the enhanced
images according to visual quality and detail enhance-
ment. Subjectively, the contrast-enhancement methods
are evaluated based on detail visibility, appearance and
noise sensitivity. Similarly, it is difficult to assess the per-
formance of different tone mapping methods with differ-
ent strengths and weaknesses and different reproduction
goals. Tone mapping methods are evaluated on the basis
of rendering performance, tone compression, natural
appearance, colour saturation and overall brightness. The
contrast improvement achieved by tone mapping and
contrast-enhancement methods can be evaluated using
the metric defined for detail/contrast. This metric is also
used in this study for the evaluation of the contrast
(improvement) performance of different enhancement
algorithms. Another original application is the potential
use of this method to improve the readability of time-fre-
quency images in the analysis and classification of non-

stationary signals such as EEG signals by selecting and
defining more precise features [69,70].

5. Conclusion and perspectives
This article presents a novel fusion-based contrast-
enhancement method for grayscale and colour images.
This study demonstrates how a fusion approach can
provide the best compromise between the different attri-
butes of contrast enhancement in order to obtain per-
ceptually more appealing results. In this way, we can
fuse the output of different traditional methods to pro-
vide an efficient solution. Results show the effectiveness
of the proposed algorithm in enhancing local and global
contrasts, suppressing saturation and over-enhancement
artefacts while retaining the original image appearance.
The aim is not to compare different fusion methodolo-
gies or performance comparison using different quality
metrics, but rather to introduce the idea of improving
the performance of image enhancement methods using
image fusion. The proposed fusion-based enhancement
methodology is especially well suited for non-real-time
image processing applications that demand images with

Figure 13 Fusion of local and global tone mapped images. (a) Original image; (b) Gamma corrected image; (c) Tone mapped image using
Reinhard’s operator; (d) proposed method.

Figure 14 Fusion of local tone mapped images. Image tone mapped using (a) Reinhard; (b) Tumblin; (c) Ward operator; (d) proposed
method.
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high quality. The results are promising and image fusion
methods open a new perspective for image-enhance-
ment applications.
As a perspective, we intend to incorporate noise

amplification aspect into the proposed method and to
test and compare the results with different fusion meth-
odologies and contrast metrics. We will also test the
results by fusing the output from some other local and
global methods. We intend to pay special attention to
develop a quantitative measure to the performance eva-
luation of contrast-enhancement algorithms based on
the different metrics defined in the article.
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