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Abstract
This paper deals with the existence and uniqueness of solutions of the fourth-order
periodic boundary value problem

{
u(4)(t) = f (t,u(t),u′′(t)), t ∈ [0, 1],

u(i)(0) = u(i)(1), i = 0, 1, 2, 3,

where f : [0, 1]×R×R → R is continuous. Under two-parameter nonresonance
conditions described by rectangle and ellipse, some existence and uniqueness results
are obtained by using fixed point theorems. These results improve and extend some
existing results.
MSC: 34B15
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1 Introduction andmain results
In mathematics, the equilibrium state of an elastic beam is described by fourth-order
boundary value problems. According to the difference of supported condition on both
ends, it brings out various fourth-order boundary value problems; see []. In this paper,
we deal with the periodic boundary value problem (PBVP) of the fourth-order ordinary
differential equation

u()(t) = f
(
t,u(t),u′′(t)

)
,  ≤ t ≤ , ()

u(i)() = u(i)(), i = , , , , ()

where f : [, ] × R × R → R is continuous. PBVP ()-() models the deformations of an
elastic beam in equilibrium state with a periodic boundary condition. Owing to its im-
portance in physics, the existence of solutions to this problem has been studied by many
authors; see [–].
Throughout this paper, we denote that I = [, ], R = (–∞, +∞), Z = {. . . , –,–, ,

, , . . .}, N = {, , . . .}, N* = N ∪ {}. In [–], authors showed the existence of solutions
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to Eq. () under the boundary condition

u() = u() = u′′() = u′′() = . ()

At first, the existence of a solution to two-point boundary value problem (BVP) ()-() was
studied by Aftabizadeh in [] under the restriction that f is a bounded function. Then,
under the following growth condition:

∣∣f (t,u, v)∣∣ ≤ a|u| + b|v| + c, a,b, c > ,
a
π +

b
π < ,

Yang in [, Theorem ] extended Aftabizadeh’s result and showed the existence to BVP
()-(). Later, Del Pino and Manasevich in [] further extended the result of Aftabizadeh
and Yang in [, ] and obtained the following existence theorem.

Theorem A Assume that the pair (α,β) satisfies

α

(kπ )
+

β

(kπ )
�= , ∀k ∈N, ()

and that there are positive constants a, b, and c such that

amax
k∈N


|(kπ ) – α – β(kπ )| + bmax

k∈N
(kπ )

|(kπ ) – α – β(kπ )| < , ()

and f satisfies the growth condition

∣∣f (t,u, v) – (αu – βv)
∣∣ ≤ a|u| + b|v| + c, ∀t ∈ I,u, v,∈ R.

Then BVP ()-() possesses at least one solution.

Condition ()-() trivially implies that

a + b(kπ )

|(kπ ) – α – β(kπ )| < , ∀k ∈N. ()

It is easy to prove that condition () is equivalent to the fact that the rectangle

R(α,β ;a,b) = [α – a,α + a]× [β – b,β + b]

does not intersect any of the eigenlines of the two-parameter linear eigenvalue problem
corresponding to BVP ()-().
In [], Ma applied Theorem A to PBVP ()-() successfully and obtained the following

existence theorem.

Theorem B Assume that the pair (α,β) satisfies

α + β(kπ ) �= (kπ ), ∀k ∈ N*, ()
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and that there are positive constants a, b, and c such that

amax
k∈N*


|(kπ ) – α – β(kπ )| + bmax

k∈N*

(kπ )

|(kπ ) – α – β(kπ )| < , ()

and f satisfies the growth condition

∣∣f (t,u, v) – (αu – βv)
∣∣ ≤ a|u| + b|v| + c, ∀t ∈ I,u, v,∈ R. ()

Then PBVP ()-() has at least one solution.

Condition ()-() concerns a nonresonance condition involving the two-parameter lin-
ear eigenvalue problem (LEVP)

⎧⎨
⎩u()(t) + βu′′(t) – αu(t) = , t ∈ I,

u(i)() = u(i)(), i = , , , .
()

In [], it has been proved that (α,β) is an eigenvalue pair of LEVP () if and only if α +
β(kπ ) = (kπ ), k ∈N*. Hence, for each k ∈N*, the straight line

�k =
{
(α,β)|α + β(kπ ) = (kπ )

}
is called an eigenline of LEVP (). Condition ()-() trivially implies that

a + b(kπ )

|(kπ ) – α – β(kπ )| < , ∀k ∈ N*. ()

It is easy to prove that condition () is equivalent to the fact that the rectangle R(α,β ;a,b)
does not intersect any of the eigenline �k of LEVP (). Hence, we call () and () the two-
parameter nonresonance condition described by rectangle, which is a direct extension
from a single-parameter nonresonance condition to a two-parameter one.
The purpose of this paper is to improve and extend the above-mentioned results. Dif-

ferent from the two-parameter nonresonance condition described by rectangle, we will
present new two-parameter nonresonance conditions described by ellipse and circle. Un-
der these nonresonance conditions, we obtain several existence and uniqueness theorems.
The main results are as follows.

Theorem  Assume that the pair (α,β) satisfies (). If there exist positive constants a, b,
and c such that () and

∣∣f (t,u, v) – (αu – βv)
∣∣ ≤ √

au + bv + c, ∀t ∈ I,u, v ∈ R ()

hold, then PBVP ()-() has at least one solution.

When the partial derivatives fu and fv exist, if
√
u + v is large enough such that

(
fu(t,u, v), –fv(t,u, v)

) ∈ E(α,β ;a,b), ∀t ∈ I,
√
u + v ≥ R, ()
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where E(α,β ;a,b) = {(x, y)| (x–α)
a + (y–β)

b ≤ } is a certain ellipse, and the corresponding
close rectangle R(α,β ;a,b) satisfies

R(α,β ;a,b)∩ �k = ∅, ∀k ∈N*, ()

by the theorem of differential mean value, we easily see that (), (), and () hold. Hence,
by Theorem , we have the following corollary.

Corollary  Assume that the partial derivatives fu and fv exist in I ×R×R. If there exists
an ellipse E(α,β ;a,b) such that () holds for a positive real number R large enough, and
the corresponding close rectangle R(α,β ;a,b) satisfies (), then PBVP ()-() has at least
one solution.

Condition () is weaker than condition (), but condition () is stronger than condi-
tion (). Hence, Theorem  and Corollary  partly improve Theorem B.
In the nonresonance condition of Theorem , condition () can be weakened as

√
a + b(kπ )

|(kπ ) – α – β(kπ )| < , ∀k ∈ N*. ()

In this case, we have the following results.

Theorem  Assume that the pair (α,β) satisfies (). If there exist positive constants a, b,
and c such that () and () hold, then PBVP ()-() has at least one solution.

Condition () is equivalent to the fact that

E(α,β ;a,b)∩ �k = ∅, ∀k ∈ N*. ()

Condition () indicates that the ellipse E(α,β ;a,b) does not intersect any of the eigenline
�k of LEVP (). Hence, we call () and () the two-parameter nonresonance condition
described by ellipse, which is another extension of a single-parameter nonresonance con-
dition. Similar to Corollary , we have the following corollary.

Corollary  Assume that the partial derivatives fu and fv exist in I × R × R. If there ex-
ists an ellipse E(α,β ;a,b) such that () and () hold for a positive real number R large
enough, then PBVP ()-() has at least one solution.

Theorem  Assume that the partial derivatives fu and fv exist in I ×R×R. If there exists
an ellipse E(α,β ;a,b) such that () and

(
fu(t,u, v), –fv(t,u, v)

) ∈ E(α,β ;a,b), ∀t ∈ I,u, v ∈ R, ()

hold, then PBVP ()-() has a unique solution.

In Theorem , Theorem , and Corollary , we present a new two-parameter nonres-
onance condition described by ellipse, which is another extension of a single-parameter
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nonresonance condition. As a special case, we replace the ellipse E(α,β ;a,b) by a circle

B(α,β ; r) =
{
(x, y)|(x – α) + (y – β) ≤ r

}
, r > ,

and obtain the following results.

Corollary  Assume that there exist a circle B(α,β ; r) and a positive constant c such that

B(α,β ; r)∩ �k = ∅, ∀k ∈N*, ()

and f satisfies the growth condition

∣∣f (t,u, v) – (αu – βv)
∣∣ ≤ r

√
u + v + c, ∀t ∈ I,u, v ∈ R. ()

Then PBVP ()-() has at least one solution.

Condition () indicates that the circle B(α,β ; r) does not intersect any of the eigenline
�k of LEVP (). Hence, we call condition ()-() the two-parameter nonresonance con-
dition described by circle, which is also an extension of a single-parameter nonresonance
condition. Similarly to Corollary  and Theorem , we have the following corollaries.

Corollary  Assume that the partial derivatives fu and fv exist in I ×R×R. If there exists
a circle B(α,β ; r) such that () and

(
fu(t,u, v), –fv(t,u, v)

) ∈ B(α,β ; r), ∀t ∈ I,
√
u + v ≥ R ()

hold for a positive real number R large enough, then PBVP ()-() has at least one solution.

Corollary  Assume that the partial derivatives fu and fv exist in I ×R×R. If there exists
a circle B(α,β ; r) such that () and

(
fu(t,u, v), –fv(t,u, v)

) ∈ B(α,β ; r), ∀t ∈ I,u, v ∈ R ()

hold, then PBVP ()-() has a unique solution.

2 Preliminaries
Let (α,β) be not eigenvalue pair of LEVP (), i.e., (α,β) /∈L :=

⋃+∞
k= �k . For any h ∈ L(I),

we consider the linear periodic boundary value problem (LPBVP)

⎧⎨
⎩u()(t) + βu′′(t) – αu(t) = h(t), t ∈ I,

u(i)() = u(i)(), i = , , , .
()

By the Fredholm alternative, LPBVP () has a unique solution u ∈H(I). If h ∈ C(I), then
the solution u ∈ C(I). We define an operator T by

Th = u, ∀h ∈ L(I).

http://www.boundaryvalueproblems.com/content/2013/1/14
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Then T : L(I) → H(I) is a bounded linear operator, and we call it the solution operator
of LPBVP (). By compactness of the embedding H(I) ↪→ H(I), T : L(I) → H(I) is a
compact linear operator.
Let a,b > . We choose an equivalent norm in the Sobolev space H(I) by

‖u‖Ea,b =
√
a‖u‖ + b‖u′′‖

and denote the Banach space H(I) reendowed norm ‖ · ‖Ea,b by Ea,b.

Lemma  Let (α,β) /∈ L. Then the solution operator of LPBVP () T : L(I) → Ea,b is a
compact linear operator and its norm satisfies

‖T‖B(L(I),Ea,b) ≤ max
k∈N*

√
a + b(kπ )

|(kπ ) – α – β(kπ )| . ()

Proof We only need to prove that () holds.
Since {ekπ it|k ∈ Z} is a complete orthogonal system of L(I), every h ∈ L(I) can be

expressed by the Fourier series expansion

h(t) =
∞∑

k=–∞
hk · ekπ it ,

where hk =
∫ 
 h(s)e

kπ is ds, k ∈ Z. By the Parseval equality, we have

‖h‖ =
∞∑

k=–∞
|hk|,

where ‖ · ‖ is the norm in L(I). Now, by uniqueness of the Fourier series expansion, the
solution u = Th of LPBVP () has the Fourier series expansion

u(t) =
∞∑

k=–∞

hk
(kπ ) – α – β(kπ )

· ekπ it ,

and u′′ can be expressed by the Fourier series expansion

u′′(t) = –
∞∑

k=–∞

(kπ )hk
(kπ ) – α – β(kπ )

· ekπ it .

Hence, by the Parseval equality, we have

‖u‖ =
∞∑

k=–∞

|hk|
|(kπ ) – α – β(kπ )| , ()

∥∥u′′∥∥
 =

∞∑
k=–∞

(kπ )|hk|
|(kπ ) – α – β(kπ )| . ()

http://www.boundaryvalueproblems.com/content/2013/1/14
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From () and (), we have

‖Th‖Ea,b = ‖u‖Ea,b = a‖u‖ + b
∥∥u′′∥∥

 =
∞∑

k=–∞

(a + b(kπ ))|hk|
|(kπ ) – α – β(kπ )|

≤
(
max
k∈N*

√
a + b(kπ )

|(kπ ) – α – β(kπ )|
)

·
∞∑

k=–∞
|hk|

=
(
max
k∈N*

√
a + b(kπ )

|(kπ ) – α – β(kπ )|
)

· ‖h‖.

This implies that () holds. The proof of Lemma  is completed. �

Lemma  Let α,β /∈L and a,b > . Then the rectangle R(α,β ;a,b) satisfies condition ()
if and only if condition () holds.

Proof Condition () holds

⇔ (α – a,β – b) and (α + a,β + b) on the same side of every eigenline �k ,
⇔ (kπ ) – (α – a) – (β – b)(kπ ) and (kπ ) – (α + a) – (β + b)(kπ ) have the same

sign,
⇔ ((kπ ) – α – β(kπ )) – (a + b(kπ )) > ,
⇔ a+b(kπ )

|(kπ )–α–β(kπ )| < .

The proof of Lemma  is completed. �

Lemma  Let α,β /∈ L and a,b > . Then the ellipse E(α,β ;a,b) satisfies condition () if
and only if condition () holds.

Proof Condition () holds

⇔ for ∀θ ∈ [, π ], (α – a cos θ ,β – b sin θ ) and (α + a cos θ ,β + b sin θ ) on the same side of
every eigenline �k ,

⇔ (kπ ) –(α–a cos θ )–(β –b sin θ )(kπ ) and (kπ ) –(α+a cos θ )–(β +b sin θ )(kπ )

have the same sign,
⇔ ((kπ ) – α – β(kπ )) – (a cos θ + b sin θ (kπ )) > ,
⇔ |a cos θ+b sin θ (kπ )|

|(kπ )–α–β(kπ )| < ,

⇔ maxθ∈[,π ] |a cos θ+b sin θ (kπ )|
|(kπ )–α–β(kπ )| < ,

⇔
√

a+b(kπ )
|(kπ )–α–β(kπ )| < .

The proof of Lemma  is completed. �

3 Proof of themain results

Proof of Theorem  We define a mapping F : Ea,b → L(I) by

F(u)(t) = f
(
t,u(t),u′′(t)

)
– αu(t) + βu′′(t). ()

It follows from () that F : Ea,b → L(I) is continuous and satisfies

∥∥F(u)∥∥ ≤ ‖u‖Ea,b + c, ∀u ∈ Ea,b. ()

http://www.boundaryvalueproblems.com/content/2013/1/14
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Therefore, the mapping defined by

Q = T ◦ F : Ea,b → Ea,b ()

is a completely continuous mapping. By the definition of the operator T , the solution of
PBVP ()-() is equivalent to the fixed point of the operator Q.
From (), (), and Lemma , it follows that ‖T‖B(L(I),Ea,b) < . We choose R ≥

c·‖T‖B(L(I),Ea,b)
–‖T‖B(L(I),Ea,b)

. Let B(θ ,R) = {u ∈ Ea,b|‖u‖Ea,b ≤ R}. Then for any u ∈ B(θ ,R), from ()

and (), we have

‖Qu‖Ea,b =
∥∥T(

F(u)
)∥∥

Ea,b
≤ ‖T‖B(L(I),Ea,b) ·

∥∥F(u)∥∥

≤ ‖T‖B(L(I),Ea,b) ·
(‖u‖Ea,b + c

)
≤ ‖T‖B(L(I),Ea,b) · (R + c) ≤ R.

Therefore, Q(B(θ ,R)) ⊂ B(θ ,R). By the Schauder’s fixed point theorem, Q has at least one
fixed point in B(θ ,R), which is a solution of PBVP ()-(). �

By Lemma , we can obtain the following existence result:

Corollary  Assume that the pair (α,β) satisfies (). If there exist positive constants a, b,
and c such that () and () hold, then PBVP ()-() has at least one solution.

Proof of Theorem  Let F : Ea,b → L(I) be amapping defined by (). Then it follows from
() that F : Ea,b → L(I) is continuous and satisfies

∥∥F(u)∥∥ ≤ ‖u‖Ea,b + c, ∀u ∈ Ea,b.

Thus, the mappingQ = T ◦F : Ea,b → Ea,b is completely continuous. By using (), (), and
Lemma , a similar argument as in the proof of Theorem  shows that Q has at least one
fixed point in B(θ ,R), which is the solution of PBVP ()-(). �

Proof of Theorem  Let F : Ea,b → L(I) be defined by (). Then F : Ea,b → L(I) is con-
tinuous. For any u,u ∈ Ea,b, from (), we have

∣∣F(u) – F(u)
∣∣ = ∣∣f (t,u,u′′


)
– αu + βu′′

 –
[
f
(
t,u,u′′


)
– αu + βu′′


]∣∣

=
∣∣(fu – α)(u – u) + (fv + β)

(
u′′
 – u′′


)∣∣

=
∣∣∣∣ fu – α

a
· a(u – u) +

fv + β

b
· b(u′′

 – u′′

)∣∣∣∣

≤
√
(fu – α)

a
+
(fv + β)

b
·
√
a(u – u) + b

(
u′′
 – u′′


)

≤
√
a(u – u) + b

(
u′′
 – u′′


).
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It follows from the above that ‖F(u)–F(u)‖ ≤ ‖u –u‖Ea,b . Thus,Q = T ◦F : Ea,b → Ea,b

is a continuous mapping and it satisfies

∥∥Q(u) –Q(u)
∥∥
a,b =

∥∥T(
F(u) – F(u)

)∥∥
Ea,b

≤ ‖T‖B(L(I),Ea,b) ·
∥∥F(u) – F(u)

∥∥


≤ ‖T‖B(L(I),Ea,b)‖u – u‖Ea,b .

It follows from () and Lemma  that () holds. By () and Lemma , it is easy to see
that ‖T‖B(L(I),Ea,b) < . Hence, Q : Ea,b → Ea,b is a contraction mapping. By the Banach
contraction mapping principle, Q has a unique fixed point, which is the unique solution
of PBVP ()-(). �

As in Corollary , in Theorem  we can use condition () to replace condition (), and
in Theorem , we use condition () to replace condition ().
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