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Abstract

Discrete Mittag-Leffler function Eᾱ(λ, z) of order 0 <a ≤ 1, E1̄(λ, z) = (1 − λ)−z, l ≠

1, satisfies the nabla Caputo fractional linear difference equation
C∇α

0 x(t) = λx(t), x(0) = 1, t ∈ N1 = {1, 2, 3, . . .}.

Computations can show that the semigroup identity

Eᾱ(λ, z1)Eᾱ(λ, z2) = Eᾱ(λ, z1 + z2)

does not hold unless l = 0 or a = 1. In this article we develop a semigroup
property for the discrete Mittag-Leffler function Eᾱ(λ, z) in the case a ↑ 1 is just the
above identity. The obtained semigroup identity will be useful to develop an
operator theory for the discrete fractional Cauchy problem with order a Î (0, 1).

Keywords: Caputo fractional difference, discrete Mittag-Leffler function, discrete
nabla Laplace transform, convolution

1 Introduction and Preliminaries
The fractional calculus started to be investigated deeply in both theorical and applied

view points. One of the main reasons of the fast development of this type of calculus

is that it incorporates, as a particular case, the classical calculus. Starting from this

interesting point it is natural to ask if there is an extension of the fractional calculus

and even more precisely if this generalization could find us new dimensions of some

problems within the complex systems which up to now were not solved properly as in

Biology, nanotechnology and medicine [1-6]. Mittag-Leffler functions play a very

important role in the theory of fractional differential equations [1-4].

Recently there is a huge effort on the line of discretizing the fractional calculus

operators and its applications in the control theory and the corresponding variational

principles [9-17]. In our opinion the discrete fractional operators can play a crucial

role both from the theoretical and applied point of view. However the combinations of

the techniques from both fields are not always straithforward namely because the frac-

tional operators are non-local. However, we expect that this new unification will pro-

vide new tools in understanding the hyper-complex dynamical systems.

In this article, the main aim is to establish a semi-group property for discrete Mittag-

Leffler functions.

This article is organized as follows: The rest of this section contains definitions and

preliminary concepts regarding the rising factorial function, the discrete Mittaf-Leffler
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functions, Caputo fractional difference and the discrete convolution. In Section 2, we

find the nabla discrete transforms of certain discrete Mittag-Leffler functions by mak-

ing use of the discrete convolution theorem, which will be helpful to proceed in

obtaining our main results. Finally, Section 3 deals with a semigroup property for dis-

crete Mittag-Leffler functions and some examples are given to illustrate our results.

For the sake of the nabla fractional calculus we have the following definition

Definition 1. (i) For a natural number m, the m rising (ascending) factorial of t is

defined by

tm̄ =
m−1∏

k=0

(t + k), t0̄ = 1. (1)

(ii) For any real number the a rising function is defined by

tᾱ =
�(t + α)

�(t)
, t ∈ R\{. . . ,−2,−1, 0}, 0ᾱ = 0 (2)

Regarding the rising factorial function we observe the following:

(i)

∇(tᾱ) = αtα−1 (3)

(ii)

∇t(s − t)ᾱ = α(s − ρ(t))α−1, (4)

where r(t) = t - 1.

Definition 2. The nabla discrete Laplace transform for a function f defined on N0is

defined by

N f (z) =
∞∑

t=1

(1 − z)t−1f (t) (5)

If f(t, s) is a function of two variables, we state explicitly to specify to which para-

meter we apply the transform.

Lemma 1. [11]For any α ∈ R\{. . . ,−2,−1, 0},

• (i) N (tα−1)(z) = �(α)
sα

, |1 - z| < 1,

• (ii) N (tα−1b−t)(z) = bα−1�(α)
(s+b−1)α , |1 - z| <b.

Definition 3. (Nabla Discrete Mittag-Leffler) For λ ∈ Rand a, b, z ∈ Cwith Re(a) >0,
the nabla discrete Mittag-Leffler functions are defined by

Eα,β(λ, z) =
∞∑

k=0

λk zkα+β−1

�(αk + β)
. (6)

For b = 1, it is written that

Eᾱ(λ, z) � Eα,1(λ, z) =
∞∑

k=0

λk zkα

�(αk + 1)
. (7)
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Definition 4. For 0 < a ≤ 1 the a-order Caputo fractional derivative of a function f,

which is defined on N0, is defined by

C∇α
0 f (t) = ∇−(1−α)

0 ∇f (t)

=
1

�(1 − α)

t∑

s=1

(t − ρ(s))−α∇f (s),

where r(s) = s - 1 and ∇−α
0 f (t) = 1

�(α)

∑t
s=1 (t − ρ(s))α−1f (s)is the nabla left frac-

tional sum of order a.
Note that if f is defined on N0, then C∇α

0 f (t) is defined on N1 = {1, 2, 3, . . .}.
Example 1. Let 0 < a ≤ 1, a ∈ Rand consider the nabla left Caputo nonhomogeneous

fractional difference equation

C∇α
0 y(t) = λy(t) + f (t), y(0) = a0, t ∈ N0. (8)

The solution of (8) has the form

y(t) = a0Eᾱ(λ, t) +
t∑

s=1

Eα,α(λ, t − ρ(s))f (s). (9)

Remark 1. If we solve the nabla discrete fractional system (8) with a = 1 and a0 = 1

we obtain the following solution

y(t) =
∞∑

k=0

λk t
k̄

k!
+

t∑

s=1

∞∑

k=0

λk (t − ρ(s))k̄

k!
f (s).

The first part of the solution is the nabla discrete exponential function
�

eλ(t, 0) = (1 − λ)−t. For the sake of more comparisons see reference ([18], p. 118).

Definition 5. Let s ∈ R, 0 < a <1 and f : N0 → Rbe a function. The nabla discrete

convolution of gα
s (t) = (t + s)ᾱwith f is defined by

(gα
s ∗ f )(t) =

t∑

τ=1

(t + s − ρ(τ ))ᾱf (τ ). (10)

2 Discrete Laplace of Mittag-Leffler Type and Convolution Type Functions
Proposition 1. For any α ∈ R\{. . . ,−2,−1, 0}, s ∈ Rand f defined on N0we have

(N (gα
s ∗ f ))(z) = (N gα

s )(z)(N f )(z). (11)

Proof.

(N (gα
s ∗ f ))(z) =

∞∑

t=1

(1 − z)t−1
t∑

τ=1

(t + s − ρ(τ ))ᾱf (τ )

=
∞∑

τ=1

∞∑

t=τ

(1 − z)t−1(t + s − ρ(τ ))ᾱf (τ )

=
∞∑

τ=1

∞∑

r=s+1

(1 − z)r+τ−s−2rᾱ f (τ )

=
∞∑

τ=1

(1 − z)τ−1f (τ )
∞∑

r=s+1

(1 − z)r−1−srᾱ

= (N gα
s )(z)(N f )(z).

(12)

□
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Lemma 2. Let f be defined on N0. Then

(N∇(f (t))(z) = z(N f )(z) − f (0). (13)

Proof.

(N∇(f (t))(z) =
∞∑

t=1

(1 − z)t−1f (t) −
∞∑

t=1

(1 − z)t−1f (t − 1)

=
∞∑

t=1

(1 − z)t−1f (t) −
∞∑

t=0

(1 − z)tf (t)

= (N f )(z) − f (0) − (1 − z)
∞∑

t=1

(1 − z)t−1f (t)

= (N f )(z) − f (0) − (1 − z)(N f )(z)

= z(N f )(z) − f (0).

(14)

□
Lemma 3. Let f be defined on N0and 0 < a ≤ 1. Then

(N C∇α
0 f )(z) = zα(N f )(z) − zα−1f (0). (15)

Proof. By the help of Lemma 1, Proposition 1 and Lemma 2 we have

(N C∇α
0 f )(z) = (N 1

�(1 − α)
g−α
0 ∗ ∇f )(z)

= zα−1(N∇f )(z)

= zα−1[z(N f )(z) − f (0)]

= zα(N f )(z) − zα−1f (0).

(16)

□
Lemma 4. Let 0 < a ≤ 1 and f be defined on N0. Then,

(i) (NEᾱ(λ, t))(z) = zα−1

zα−λ
.

(ii) (NEα,α(λ, t))(z) = λ2

zα−λ

Proof. (i) From Example 1 we know that

C∇α
0Eᾱ(λ, t) = λEᾱ(λ, t).

Apply the nabla discrete Laplace transform to both sides, then Lemma 3 yields that

zα(NEᾱ(λ, t))(z) − zα−1 = λ(NEᾱ(λ, t))(z).

Hence, it follows.

(ii) First it is easy to see that ∇Eᾱ(λ, t) = −λ−1Eα,α(λ, t). If we apply N and make use

of (i) and Lemma 2, then we have that

NEα,α(λ, t))(z) = λ[z(NEᾱ(λ, t))(z) − Eᾱ(λ, 0)]

= λ[
zα

zα − λ
− 1]

=
λ2

zα − λ
.

□
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3 A discrete Mittag-Leffler Semigroup Property
By direct calculations it can be showed that the following semigroup property for

discrete Mittag-Leffler functions

Eᾱ(λ, z1)Eᾱ(λ, z2) = Eᾱ(λ, z1 + z2)

does not hold unless l = 0 or a = 1. For more consistency, we next show how cer-

tain discrete Mittag-Leffler functions do not satisfy the above mentioned semigroup

property.

Example 2. For 0 < a ≤ 1 and l ≠ 1 we have

Eᾱ(λ, 1) =
∞∑

k=0

λk1αk

�(αk + 1)
=

∞∑

k=0

λk =
1

1 − λ

and

Eᾱ(λ, 2) =
∞∑

k=0

λk(αk + 1) =
1 + λ(α − 1)

(1 − λ)2
.

Then, clearly

Eᾱ(λ, 1)Eᾱ(λ, 1) �= Eᾱ(λ, 1 + 1)

Theorem 1. For every real l and 0 < a <1 the following holds

α

s∑

τ=1

t∑

r=1

(t + s − ρ(τ ) − ρ(r))−α−1Eᾱ(λ, τ )Eᾱ(λ, r) =

t+s∑

τ=1

(t + s − ρ(τ ))−αEᾱ(λ, τ ) −
s+1∑

τ=1

(t + s − ρ(τ ))−αEᾱ(λ, τ ) −
t∑

τ=1

(t + s − ρ(τ ))−αEᾱ(λ, τ ),

(17)

for all t, s ∈ N1.

Proof. For the sake of simplicity we set f (t) = Eᾱ(λ, t). By Definition 4 we have that

for all t, s ∈ N1,

C
t ∇α

0 f (t + s) =
1

�(α − 1)

t∑

τ=1

(t − ρ(τ ))−α∇τ f (τ + s)

=
1

�(α − 1)

t+s∑

τ=s+1

(t + s − ρ(τ ))α−1∇τ f (τ )

= C
r ∇α

0 f (r)|r=t+s − 1
�(α − 1)

s∑

τ=1

(t + s − ρ(τ ))−α∇τ f (τ )

= λf (t + s) − 1
�(α − 1)

s∑

τ=1

(t + s − ρ(τ ))−α∇τ f (τ ).

(18)

In the last equality the fact that Eᾱ(λ, t) solves Eq.(8) is used. Applying the nabla dis-

crete transform N with respect to t to both sides of (18), we get by Lemma 3 that

zα(N fs)(z) − zα−1f (s) = λ(N fs)(z) − 1
�(−α)

s∑

τ=1

(N (t + s − ρ(τ ))−α)(z)∇τ f (τ ), (19)

where (N fs)(z) and (N (t + s − ρ(τ ))−α)(z) are the nabla discrete transforms of f(t +

s) and (t + s − ρ(τ ))−α with respect to t, respectively. By applying the nabla summation
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by parts and making use of (4) we have that

s∑

τ=1

(N (t + s − ρ(τ ))−α)(z)∇τ f (τ ) =

f (τ )(N (t + s − τ )−α)(z)|sτ=0 − α

s∑

τ=1

(N (t + s − ρ(τ ))−α−1)(z).

(20)

By Lemma 1 (i), we arrive at

s∑

τ=1

(N (t + s − ρ(τ ))−α)(z)∇τ f (τ ) =
f (s)�(1 − α)

z1−α
− (N (t + s)−α)(z)

− α

s∑

τ=1

(N (t + s − ρ(τ ))−α−1)(z),

(21)

which combining with the equality (19) leads to that

�(1 − α)zα−1(N fs)(z) =

zα−1

zα − λ
(N (t + s)−α)(z) − α

s∑

τ=1

(N (t + s − ρ(τ ))−α−1)(z)
zα−1

zα − λ
f (τ ).

(22)

Then applying the inverse nabla discrete Laplace transform to both sides of (22), we

get that

t∑

τ=1

(t − ρ(τ ))−αf (τ + s) =

t∑

τ=1

(t + s − ρ(τ ))−αf (τ ) + α

s∑

τ=1

t∑

r=1

f (r)(t + s − ρ(τ ) − ρ(r))−α−1f (τ ).

(23)

Arranging the limit of the sum in the left hand sum of (23) and making use of Pro-

position 1 it follows that

s+t∑

τ=s+1

(t − ρ(τ ))−αf (τ ) =

t∑

τ=1

(t + s − ρ(τ ))−αf (τ ) + α

s∑

τ=1

t∑

r=1

f (r)(t + s − ρ(τ ) − ρ(r))−α−1f (τ ).

(24)

Splitting the sum in the left hand side of (24) yields directly equality (17).

□
Remark 2. We note that for a = 1, the summations in (17) are divergent. However, it

can be shown that the semigroup property for E1̄(λ, t) = êλ(t, 0) = (1 − λ)−t is just the

limit case state of equality (17) as a ↑ 1. Indeed, if we multiply both sides of (17) with

(1 - a) and use summation by parts, then, letting a ↑ 1 we get that the limit state of

the left is E1̄(λ, t)E1̄(λ, s)and of the right is E1̄(λ, t + s).
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