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Abstract
In this paper, we applied the homotopy analysis method (HAM) to solve the modified
Kawahara equation. Numerical results demonstrate that the methods provide
efficient approaches to solving the modified Kawahara equation. It is shown that the
method, with the help of symbolic computation, is very effective and powerful for
discrete nonlinear evolution equations in mathematical physics.
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1 Introduction
In the past several decades, the investigation of traveling-wave solutions for nonlinear
equations has played an important role in the study of nonlinear physical phenomena.
Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction, and convec-
tion are very important in nonlinear wave equations. In recent years, many authors paid
attention to study solitonic solutions of nonlinear equations by using a variety of powerful
methods such as the variational iterationmethod (VIM) [, ] and homotopy perturbation
method (HPM) [, ]. Exp-function method [–], sine-cosine method [], and homoge-
neous balance method [–] have been proposed for obtaining exact and approximate
analytic solutions.
The aim of this paper is to directly apply the optimal HAM [, ] to reconsider the

traveling-wave solution of the Kawahara equation. The method used here contains three
convergence-control parameters to accelerate the convergence of homotopy series solu-
tion. The optimal convergence-control parameters can be determined by minimizing the
averaged residual error. The results obtained in this paper show that the solutions given
by the optimal HAM give much better approximations and converge much faster than
those given by the usual HAM. The homotopy analysis method (HAM) [–] is a gen-
eral analytic approach to get series solutions of various types of nonlinear equations, in-
cluding algebraic equations, ordinary differential equations, partial differential equations,
differential-integral equations, differential-difference equation, and coupled equations of
them.

2 The homotopy analysis method
In this paper, we use the homotopy analysis method to solve the problem.
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This method was proposed by the Chinese mathematician Liao []. We apply Liao’s
basic ideas to the nonlinear partial differential equations. Let us consider the nonlinear
partial differential equation

ND
(
u(x, t)

)
= . (.)

Based on the constructed zero-order deformation equation, we give the following zero-
order deformation equation in the similar way:

( – q)L
(
U(x, t;q) – u(x, t)

)
= qhND

(
U(x, t;q)

)
, q ∈ [, ],h �= . (.)

L is an auxiliary linear integer-order operator and it possesses the property L(C) = . U is
an unknown function. Expanding U in Taylor series with respect to q, one has

U(x, t;q) = u(x, t) +
∞∑
m=

um(x, t)qm, (.)

where

um(x, t) =
∂mU(x, t;q)

∂qm

∣∣∣∣
q=

. (.)

As h = –, Eq. (.) becomes

( – q)L
(
U(x, t;q) – u(x, t)

)
+ qNDU(x, t;q) = , q ∈ [, ], (.)

which is used mostly in the homotopy perturbation method (HPM) [–]. Thus, HPM
is a special case of HAM.
Differentiating the equation m times with respect to the embedding parameter q and

then setting q =  and finally dividing them by m!, we have the mth-order deformation
equation

L
[
um(x, t) – χmum–(x, t)

]
= hRm

[�um–(x, t)
]
, (.)

where

Rm
[�um–(x, t)

]
=


(m – )!

∂m–ND(U(x, t;q))
∂qm–

∣∣∣∣
q=

(.)

and

χm =

⎧⎨
⎩
, m ≤ ,

, m > .
(.)

These equations can be easily solved with software such as Maple, Matlab and so on.
The mth-order deformation Eq. (.) is linear, and thus can be easily solved, especially

by means of a symbolic computation software such as Maple, Matlab and so on.
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3 Test problem
We first consider the modified Kawahara equation []

ut + uux + puxxx + quxxxxx = , (.)

where p, q are nonzero real constants. We solve the nonlinear partial differential equation
with the HAMmethod. We consider Eq. (.) with initial condition

u(x, ) =
p√
–q

sech(Kx), (.)

where K = 


√
–p
q is constant. The exact solution is given for modified Kawahara equation

by []

u(x, t) =
p√
–q

sech
(
K(x – ct)

)
(.)

with c = q–p
q .

Furthermore, Eq. (.) suggests defining the nonlinear fractional partial differential op-
erator

ND
(
u(x, t;q)

)
= ut(x, t;q) +

(
u(x, t;q)

)ux(x, t;q)
+ puxxx(x, t;q) + quxxxxx(x, t;q). (.)

Applying the above definition, we construct the zeroth-order deformation equation

( – q)L
(
u(x, t;q) – u(x, t)

)
= hqNDu(x, t;q). (.)

For q =  and q =  respectively, we can write

u(x, t; ) = u(x, t) = u(x, ), v(x, t; ) = u(x, t). (.)

According to Eqs. (.)-(.), we gain the mth-order deformation equation

L
(
um(x, t) – xmum–(x, t)

)
= hNR

(�um–(x, t)
)
, (.)

where

NR
(
um(x, t)

)
= Dtum–(x, t) +

j∑
i=

uiuj–i
m–∑
j=

(um––j)x(x, t)

+ p(um–)xxx(x, t) + q(um–)xxxxx(x, t). (.)

Now, the solution of Eq. (.) form ≥  becomes

um(x, t) = χmum–(x, t) + hL–NR
[�um–(x, t)

]
. (.)
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Table 1 The numerical results for the approximate solutions obtained by HPM [4] and HAM in
comparison with the exact solutions of (3.1)

X Time HPM HAM Exact solution

–0.5 0.02 9.474889415e–4 9.474889415e–4 9.474889415e–4
–2.5 0.04 9.483868961e–4 9.483868961e–4 9.483773375e–4
0.0 0.06 9.486832980e–4 9.486832980e–4 9.486831272e–4
2.5 0.08 9.483868961e–4 9.483868961e–4 9.484055589e–4
5.0 1.0 9.474984315e–4 9.474984315e–4 9.475453144e–4

Figure 1 The surface of the exact solutions to Eq. (3.1) obtained in this work.

From Eqs. (.), (.), and (.), for h = –, we now successively get

u(x, t) =



p sech(Kx) tanh(kx)kt√
–qq

+ p
(
–
p sech(Kx) tanh(kx)k√

–q

+
p sech(Kx) tanh(kx)k( – tanh(kx))√

–q

)
t

+
(
p sech(Kx) tanh(kx)k√

–q
+
,p sech(Kx) tanh(kx)k( – tanh(kx))√

–q

–
p sech(Kx) tanh(kx)k( – tanh(kx))√

–q

)
qt.

As shown in Table , we note through the results of the preceding table that the solutions
we have obtained are very precise and that we have compared our solution (HAM) to
HPM and exact solution. HAM is easily more than the other method. It is obvious that
two components only were sufficient to determine the exact solution of Eq. (.). Figures 
and  show the evolution results. From Figures  and , it is easy to conclude that the so-
lution continuously depends on the derivative. Where, Figures  and  are approximation
and exact solution respectly. The exact solution of this test problem is as follows []:

u(x, t) =
p√
–q

sech
(
K(x – ct)

)
.

4 Conclusions
In this paper, we applied the homotopy analysis method to the Kawahara equation. The
homotopy analysis method was successfully used to obtain the exact solutions of Kawa-
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Figure 2 The approximation solutions to Eq. (3.1) obtained in this work.

hara equation. As a result, some new generalized solitary solutions with parameters are
obtained. It may be important to explain some physical phenomena by setting the param-
eters as special values. Finally, the method is straightforward, concise, and is a powerful
mathematical method for solving nonlinear problems.
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