Liu et al. Advances in Difference Equations 2012,2012:164 ® Advances in Difference Equations
http://www.advancesindifferenceequations.com/content/2012/1/164 a SpringerOpen Journal

RESEARCH Open Access

The zeros of differential-difference
polynomials of certain types

Xin Ling Liu', Li Na Wang? and Kai Liu'

"Correspondence:
liukai418@126.com
'Department of Mathematics,
Nanchang University, Nanchang,
Jiangxi 330031, PR. China

Full list of author information is
available at the end of the article

@ Springer

Abstract

In this paper, the zero distribution of differential-difference polynomials

@)z + 1% and [f(2)" A% will be considered. The results can be seen as the
differential-difference analogues of Hayman conjecture.
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1 Introduction and main results
In this paper, we use the basic notations of Nevanlinna theory [1, 2]. Given a meromorphic
function f(z), recall that a(z) # 0,00 is a small function with respect to f(z) if T(r,«) =
S(r.f), where S(r,f) is used to denote any quantity satisfying S(r,f) = o(T(r,f)),and r — 00
outside of a possible exceptional set of finite logarithmic measure.

A Borel exceptional polynomial of f(z) is any polynomial p(z) satisfying

log" N(r, 7=1-—)
A(f(2) - p(2)) = limsup —lear UGRAC)
r—>00 ogr

< p(f),

where A(f(z) — p(z)) is the exponent of the convergence of zeros of f(z) — p(z) and p(f) is
the order of f(z). In the following, we assume that ¢ is a nonzero complex constant, n and
k are positive integers unless otherwise specified.

The zero distribution of differential polynomials is a classical topic in the theory of mero-
morphic functions. Hayman [3, Theorem 10] firstly considered the value distribution of
f"f" —1, where f is a transcendental function. Then later this topic was considered by sev-
eral authors such as [4, 5].

Theorem A ([5, Theorem 1]) Let f be a transcendental meromorphic function. If n > 1,
then f"'f' — 1 has infinitely many zeros.

(fn+l)/

n+l

Since f”f’ can be written as Wang and Fang [6] improved Theorem A by proving

the following result.

Theorem B ([6, Corollary1]) Letf be a transcendental meromorphic function. If n > k +1,
then (f*)© — 1 has infinitely many zeros.

The difference logarithmic derivative lemma, given by Chiang and Feng [7, Corol-
lary 2.5], Halburd and Korhonen [8, Theorem 2.1], [9, Theorem 5.6], plays an important
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part in considering the difference analogues of Nevanlinna theory. With the development
of difference analogue of Nevanlinna theory, many authors paid their attention to the zero
distribution of difference polynomials [10-18]. Laine and Yang [12, Theorem 2] firstly
considered the zero distribution of f(z)"f(z + ¢) — a, where a is a nonzero constant, Liu
and Yang [13, Theorems 1.2 and 1.4] also considered the zeros of f(z)"f(z + ¢) — p(z) and
f@"Af — p(z), where Af :=f(z + ¢) — f(2) and p(z) is a nonzero polynomial. These re-
sults are summarized in Theorem C below, and they can be seen as difference analogues
of Theorem A.

Theorem C Let f be a transcendental entire function of finite order and p(z) be a nonzero
polynomial. If n > 2, then f(2)"f (z + ¢) — p(2) has infinitely many zeros. If f is not a periodic
function with period ¢ and n > 2, then f(2)" Af — p(2z) has infinitely many zeros.

As the results on the difference analogues of Theorem B, Liu, Liu and Cao [14] investi-
gated the zeros of [f(2)"f(z + ¢)]®¥ — a(z) and [f(2)" Af]® — a(z), where a(z) is a nonzero
small function with respect to f(z). Some results can also be found in [16] on the case that

a(z) is a nonzero polynomial.

Theorem D ([14, Theorems 1.1 and 1.3]) Letf be a transcendental entire function of finite
order and o/(z) be a nonzero small function with respect to f(z). If n > k + 2, then [f (2)"f(z +
0)]® — «(z) has infinitely many zeros. If f is not a periodic function with period ¢ and n >
k + 3, then [f(2)" Af1® — a(2) has infinitely many zeros.

However, we remark that the zeros of [f(2)"f(z + ¢)]© or [f(2)"Af]® were not men-
tioned in [14, 16]. We will consider this problem in this paper, some ideas of proofs partially
relying on the ideas used in [14, 16].

It is easy to know that if f has infinitely many zeros, then f(2)"f (z + ¢) must have infinitely
many zeros. In fact, we mainly get some results on the case that n = 1. The following ex-
ample shows that f(z)f (z + ¢) can admit infinitely many zeros, however, [f(z)f (z + ¢)]® has
finitely many zeros.

Example 1 Suppose that e = —1 and f(z) = € + 1. Then f(z)f(z + ¢) = 1 — % has infinitely
many zeros, but [f(2)f (z + ¢)]®) = —2%¢** has no zeros.

What conditions will guarantee that [f(z)f(z + ¢)]®) can admit infinitely many zeros?
Obviously, the value 1 is the Borel exceptional value of f(z) in Example 1. Here, we obtain

the following result.

Theorem 1.1 Letf be a finite order transcendental entire function with a Borel exceptional
polynomial q(z). Then the following statements hold.
(i) Ifq(z) = 0, then [f(2)f (z + ¢)]® has no nonzero Borel exceptional value.
(ii) If q(z) # 0 and deg(q(z)) < ]5(, then [f(2)f (z + ¢)]® has infinitely many zeros, except
in the case f(z) = Aq(z)e** + q(z) and € = -1, where A is a nonzero constant.
(iii) If deg(q(2)) > %, then [f (2)f (z + ¢)]% has infinitely many zeros.

Remark 1 (1) If g(z) = 0, then [f(2)f(z + ¢)]® can admit finitely or infinitely many zeros.
For example, if f(z) = ze? and €° = 2, then [f(2)f (z + ¢)]® = p(z)e** has finitely many zeros,
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where p(z) is a polynomial in z. If f(z) = (¢* + l)ez2 and e° = -1, thus the value 0 is a Borel
exceptional value of f(z), then [f(z)f (z+¢)] = [(4z+2¢) - (5z+ 2c)e22]ez2 +z+9” hag infinitely
many zeros, but A([f(2)f(z + ¢)]') =1 < p([f(2)f (z + ¢)]) = 2.

(2) From Example 1, we know that the exceptional case in (ii) can occur.

If f has finitely many zeros, then f(z)"f(z + ¢) must have finitely many zeros; however,
f(@)"A¢f can admit infinitely many zeros. The following example shows that the zero dis-
tribution of f(2)" A f is different from that of f(z)"f(z + ¢).

Example 2 Suppose that e¢ = -1 and f(z) = ¢ . Then f(@)"f(z + ¢) has no zeros, but
F@)"Af = e D2 (¢22¢+¢ _1) has infinitely many zeros.

Chen [10] investigated the problem: what conditions will guarantee that f(z)" A f have
infinitely many zeros. From the following Example 3, we know that the zero distribution
of [f(2)" Af1% may be different from that of f(2)" Af.

Example 3 Suppose that f(z) = € + z of p(f) =1 and e° = 1. Then f(z) A.f = c(e® + z) has
infinitely many zeros, but [f(z) A.f]® = ce? has no zeros, where k > 2.

Thus, it is natural to consider what conditions can guarantee that [f(2)" A f]* have in-
finitely many zeros. We obtain the following theorems.

Theorem 1.2 Let f be a transcendental entire function with finite order, n > 2, A f 0.
Iff(2) has finitely many zeros and p(f) #1, then [f(2)" Af1® has infinitely many zeros. If
[f(2) has finitely many zeros and p(f) = 1, then [f(2)" Af1*) has finitely many zeros.

In the case of n =1, by using a similar method as in the proof of Theorem 1.1, we have

the following result.

Theorem 1.3 Let f be a finite-order transcendental entire function with a Borel excep-
tional polynomial q(z), k be a positive integer, A f % 0. Then the following statements hold.

(i) Ifq(z) = 0, then [f(2) Af1% has no nonzero Borel exceptional value.

(i) If q(z) # 0 and deg q(z) < ]%1, then [f(2) Af1® has infinitely many zeros, except in
the case f(z) = Ae** + q(z) and € = 1, where q(z) is not a constant and A is a nonzero
constant.

(iii) Ifdegq(z) > K then [f(2) Af1® has infinitely many zeros.

— o

Remark 2 From Example 3, we know that the exceptional case in (ii) can occur.

2 Some lemmas
The first lemma is the characteristic function relationship between f(z) and f(z + c), pro-

vided that f(z) is a transcendental meromorphic function of finite order.

Lemma 2.1 ([7, Theorem 2.1]) Let f(z) be a transcendental meromorphic function of finite
order. Then

T(r,f(z + c)) =T(r,f) +S(r.f). (2.1)
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From (2.1) and the classical result of Nevanlinna theory, we know that p(f) = p(f(z+c¢)) =
p(f®).

Following Hayman [19, pp.75-76], we define an ¢-set E to be a countable union of discs
not containing the origin and subtending angles at the origin whose sum is finite. If E is
an ¢-set, then the set of r > 1 for which the circle S(0,r) meets E has finite logarithmic

measure.

Lemma 2.2 ([20]) Let g(z) be a transcendental meromorphic function of p(g) <1, h > 0.
Then there exists an e-set E such that

gz+c) und g(z+c¢)

—1 asz— o0inC\E,
glz+c) ()

uniformly in c for |c| < h. Further, E may be chosen so that for large z & E, the function g
has no zeros or poles in |{ —z| < h.

Lemma 2.3 ([2, Theorem 1.62]) Let fi(z) be meromorphic functions, fi(z) (k =1,2,...,n—1)
be not constants, satisfying Z]'ilf,» =landn=> 3. Iff,(z) #0, and

ZN(r, }) +(n=1)Y N(r.f) < (> + 0V) T(r,fi),
j=1 / j=1

where . <1, k=1,2,...,n-1, then f,(z) = 1.

Lemma 2.4 ([2, Theorem 1.51]) Letfi(z) (j=1,2,...,n) (n > 2) be meromorphic functions,
g(2) (=1,2,...,n) be entire functions satisfying
() XL fDes =0,
(it) when1<j<k <n, gi(z) — g(2) is not a constant,
(iti) whenl1<j<m1<h<k<mn, T(r.f;)=o(T(r,e® %)) (r — oo, r ¢ E), where
E C (1,00) is of finite linear measure or finite logarithmic measure. Then f;(z) = 0
G=12,...,n).

For the proofs of Theorems 1.1 and 1.3, we need the following results, which are related
to the growth of solutions of linear difference equations. Here, we give the versions with
small changes of the type of equations; the proofs are similar.

Lemma 2.5 ([7, Theorem 9.2]) Let A¢(2),...,A,(2) be entire functions such that there exists
an integer I, 0 <1 < n, such that

p(Ai2) > . SJmsag;;”p(A;(Z))'

Iff(2) is a nontrivial meromorphic solution of the equation
An@y(z+cn) +- -+ A1(2)y(z + 1) + Ao (2)y(2) = 0,

then p(f) > p(Ai(2)) + L
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Lemma 2.6 ([21, Theorem 1.2]) Let Py(2),...,P,(2z) be polynomials, P,(z)Py(z) # 0 and
satisfy

deg(P,(2) + - -+ + Py(2)) = max{deg Pj(z) :j = 0,...,n} > 1. (2.2)
Then every finite order meromorphic solution f (z) (# 0) of the equation

Pu@)f(z+ca) + -+ Pi2)f (z+ 1) + Po(2)f(2) = 0 (2.3)
satisfies p(f) > 1.

3 Proofs of Theorem 1.1 and Theorem 1.3
The ideas for the proof of Theorem 1.1 and Theorem 1.3 are similar, here we just give a
complete proof of Theorem 1.1.

Since ¢(z) is a Borel exceptional polynomial of f(z), the transcendental entire function
f(z) with finite order can be written as f(z) = g(z) + h(z)e*® , where « is a nonzero constant
and /(z) is a nonzero entire function with A(k) < p(h) < p(f) = s. Hence,

flz+c)=qlz+c)+h(z+ c)eo‘(“”)s =q(z+c)+ hl(z)eo‘zs, (3.1)
where
hl(Z) _ h(Z+ C)ea(Cslzs‘lc+CszzS_252+m+C§_lzcs_1+c’), (32)

and p(h) < p(f) = s. Assume that [f(z)f(z + ¢)]©¥ has finitely many zeros. Then from
Hadamard’s factorization theorem and Lemma 2.1, we have

[F@fz+0]" = A)e, (3.3)

where A(z) is an entire function with finitely many zeros and p(A4) < s, B is a nonzero
constant. For any positive integer &, from (3.1) and (3.3), we get

[(42) + h(@)e* ) (q(z + ©) + m(2)e**)]|® — A@)e” = 0, (3.4)
which implies that

[9(2)q(z + ¢) + gD (2)e* +q(z + )h(z)e*”

+ (2 (27" - Az)e” = 0. (3.5)
Thus, we get
Di(2)e*% + Dy(2)e*% — A(z)e” = —[q(z)q(z + c)](k), (3.6)

where Dj(z) are differential polynomials of /(2), /11 (2), q(2), q(z + ¢) and p(D;(2)) <s,j =1,2.
Case (i). If g(z) = 0, then [f(2)f(z + ¢)]® = Dy(2)e**%, where p(D,(z)) < s. This implies
that the value 0 is a Borel exceptional value of [f(z)f(z + ¢)]%. Since entire functions have
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at most one Borel exceptional value, the function [f(z)f(z + ¢)]¥ has no nonzero finite
Borel exceptional value.

Case (ii). If deg(gq(2)) < g and ¢(z) # 0, then [g(2)g(z + ¢)]® = 0. From Lemma 2.4, we
get Di(z) =0 and D,(z) — A(z) = 0. We will prove that B (z) := q(2)h1(z) + q(z + c)h(z) =0,
where p(Bi(z)) <s. If k =1, then

Bj(2) + asz*'By(z) = 0. (3.7)
Thus, the nontrivial solution B;(z) of differential equation (3.7) satisfies p(Bi(z)) = s, which

is a contradiction with p(B;(z)) < s, thus By(z) = 0. If k = 2, let g(2) = B;(2) + asz* ' By (2).
Then

g(2) +asz'g(z) = 0. (3.8)

This implies that p(g(z)) = s, a contradiction with p(g(z)) < p(B1(z)) < s. Thus g(z) = 0 and
Bi(z) = 0. Using this method for any positive integer k, we can get B;(z) =0, and so

Q(Z+ Oh(z) + q(z)h(z + c)ea(Cslzs’lc+C_;22S’2c2+'.~+C§’lzc"1+cg) =0.
We get s = 1, from Lemma 2.5 and p(h) < s, thus the above equation implies that

q(z + )h(z) + q(2)h(z + c)e* = 0. (3.9)

Combining (3.9), p(h) < s =1 with Lemma 2.6, we get the degree of g(z + ¢) + g(z)e*° must
be less than the degree of g(z) if g(z) is a nonconstant polynomial or g(z) is a constant. If
q(z) is a nonconstant polynomial, then ¢*¢ = —1. Hence,

q(z + )h(z) — q(2)h(z + c) =0,

which implies that ZEZZ; = %, thus H(z) = % is a periodic function with period c. Since
p(H) = p(h) <1, thus H(z) must be a constant A, which implies that /(z) must be a poly-
nomial of the form k(z) = Aq(z).

If g(z) is a constant, we have h(z) + h(z + c)e** = 0. From Lemma 2.2 and p(h) <s =1, we
get e*¢ = —1. Thus A(z) must be a constant, hence /(z) and ¢(z) are both constants, and so
we may write /(z) = Aq(z).

Case (iii). If deg(q(z)) > %, then [g(z)q(z + ¢)]% # 0. Combining pDj(2) <s,j=1,2,
p(A(2)) < s with (3.6) and Lemma 2.3, we get

[Da(2) - A2) ] = -[q(2)q(z + 0)]
or
Dy(2)e” = —[q2)q(z + 0],

which is impossible. Thus [f(2)"f(z + ¢)]*’ has infinitely many zeros. The proof of Theo-
rem 1.1 is completed.
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4 Proof of Theorem 1.2

Suppose that p(f) #1 and f has finitely many zeros. Thus, from Hadamard’s factorization
theorem, f(z) can be written as f(z) = g(z)e"?, where g(z) # 0, h(z) are polynomials, and
deg(h(z)) > 2. Suppose that [f(z)" Af]% has finitely many zeros. Then

[g(Z)ng(Z + c)e z)+h(z+c) g(z)n+1 (n+1)h(z) ] =g (Z)e (41)
which implies that
@ (Z)enh(z)+h(z+c +g (z)e (n+1)h (z)ehl (2) _ -0, (4'2)

where g,(z), g3(z) are nonzero polynomials.

To avoid a contradiction with Lemma 2.4, we get nh(z) + h(z + ¢) — i (z) and (n + 1)h(z) -
I (z) are constants. Thus, we get hi(z + ¢) — h(z) is a constant, then deg(/(z)) = 1, a contra-
diction with deg(h(z)) > 2.

If f has ﬁnitely many zeros and p(f) = 1, which implies that f(z) = p(z)e**. Thus,
[f(2)" Af1® = p1(2)e"*V has finitely many zeros, where p;(z) is a nonzero polynomial.

Thus, we have completed the proof of Theorem 1.2.
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