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Abstract

In this article, we establish some stability criteria for the polar linear Hamiltonian
dynamic system on time scales

x�(t) = α(t)x(σ (t)) + β(t)y(t), y�(t) = −γ (t)x(σ (t)) − α(t)y(t), t ∈ �

by using Floquet theory and Lyapunov-type inequalities.
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1 Introduction
A time scale is an arbitrary nonempty closed subset of the real numbers ℝ. We assume

that � is a time scale. For t ∈ � , the forward jump operator σ : � → � is defined by

σ (t) : inf{s ∈ � : s > t} , the backward jump operator ρ : � → � is defined by

ρ(t) : sup{s ∈ � : s < t} , and the graininess function μ : � → [0,∞} is defined by μ(t)

= s(t) - t. For other related basic concepts of time scales, we refer the reader to the

original studies by Hilger [1-3], and for further details, we refer the reader to the

books of Bohner and Peterson [4,5] and Kaymakcalan et al. [6].

Definition 1.1. If there exists a positive number ω Î ℝ such that t + nω ∈ � for all

t ∈ � and n Î ℤ, then we call � a periodic time scale with period ω.

Suppose � is a ω-periodic time scale and 0 ∈ � . Consider the polar linear Hamilto-

nian dynamic system on time scale �

x�(t) = α(t)x(σ (t)) + β(t)y(t), y�(t) = −γ (t)x(σ (t)) − α(t)y(t), t ∈ �, (1:1)

where a(t), b(t) and g(t) are real-valued rd-continuous functions defined on � .

Throughout this article, we always assume that

1 − μ(t)α(t) > 0, ∀ t ∈ � (1:2)

and

β(t) ≥ 0, ∀ t ∈ �. (1:3)
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For the second-order linear dynamic equation

[p(t)x�(t)]� + q(t)x(σ (t)) = 0, t ∈ �, (1:4)

if let y(t) = p(t)xΔ (t), then we can rewrite (1.4) as an equivalent polar linear Hamilto-

nian dynamic system of type (1.1):

x�(t) =
1

p(t)
y(t), y�(t) = −q(t)x(σ (t)), t ∈ �, (1:5)

where p(t) and q(t) are real-valued rd-continuous functions defined on � with p(t) >

0, and

α(t) = 0, β(t) =
1

p(t)
, γ (t) = q(t).

Recently, Agarwal et al. [7], Jiang and Zhou [8], Wong et al. [9] and He et al. [10]

established some Lyapunov-type inequalities for dynamic equations on time scales,

which generalize the corresponding results on differential and difference equations.

Lyapunov-type inequalities are very useful in oscillation theory, stability, disconjugacy,

eigenvalue problems and numerous other applications in the theory of differential and

difference equations. In particular, the stability criteria for the polar continuous and

discrete Hamiltonian systems can be obtained by Lyapunov-type inequalities and Flo-

quet theory, see [11-16]. In 2000, Atici et al. [17] established the following stablity cri-

terion for the second-order linear dynamic equation (1.4):

Theorem 1.2 [17]. Assume p(t) > 0 for t ∈ � , and that

p(t + ω) = p(t), q(t + ω) = q(t), ∀ t ∈ �. (1:6)

If ∫ ω

0
q(t)�t ≥ 0, q(t) �≡ 0 (1:7)

and [
p0 +

∫ ω

0

1
p(t)

�t
] ∫ ω

0
q+(t)�t ≤ 4, (1:8)

then equation (1.4) is stable, where

p0 = max
t∈[0,ρ(ω)]

σ (t) − t

p(t)
, q+(t) = max{q(t), 0}, (1:9)

where and in the sequel, system (1.1) or Equation (1.4) is said to be unstable if all

nontrivial solutions are unbounded on � ; conditionally stable if there exist a nontrivial

solution which is bounded on � ; and stable if all solutions are bounded on � .

In this article, we will use the Floquet theory in [18,19] and the Lyapunov-type

inequalities in [10] to establish two stability criteria for system (1.1) and equation (1.4).

Our main results are the following two theorems.

Theorem 1.3. Suppose (1.2) and (1.3) hold and

α(t + ω) = α(t), β(t + ω) = β(t), γ (t + ω) = γ (t), ∀ t ∈ �. (1:10)
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Assume that there exists a non-negative rd-continuous function θ (t) defined on �

such that

|α(t) | ≤ θ(t)β(t), ∀ t ∈ �[0,ω] = [0,ω] ∩ �, (1:11)

∫ ω

0
[γ (t) − θ2(t)β(t)] �t > 0, (1:12)

and

∫ ω

0
|α(t) |�t+

[∫ ω

0
β(t)�t

∫ ω

0
γ +(t)�t

]1/2

< 2. (1:13)

Then system (1.1) is stable.

Theorem 1.4. Assume that (1.6) and (1.7) hold, and that∫ ω

0

1
p(t)

�t
∫ ω

0
q+(t)�t ≤ 4. (1:14)

Then equation (1.4) is stable.

Remark 1.5. Clearly, condition (1.14) improves (1.8) by removing term p0.

We dwell on the three special cases as follows:

1. If � = � , system (1.1) takes the form:

x′(t) = α(t)x(t) + β(t)y(t), y′(t) = −γ (t)x(t) − α(t)y(t), t ∈ �. (1:15)

In this case, the conditions (1.12) and (1.13) of Theorem 1.3 can be transformed into∫ ω

0

[
γ (t) − θ2(t)β(t)

]
dt > 0, (1:16)

and

∫ ω

0
|α(t) |dt+

[∫ ω

0
β(t)dt

∫ ω

0
γ +(t)dt

]1/2

< 2. (1:17)

Condition (1.17) is the same as (3.10) in [12], but (1.11) and (1.16) are better than

(3.9) in [12] by taking θ (t) = |a (t)|/b (t). A better condition than (1.17) can be found

in [14,15].

2. If � = �, system (1.1) takes the form:

�x(n) = α(n)x(n + 1) + β(n)y(n), �y(n) = −γ (n)x(n + 1) − α(n)y(n), n ∈ �. (1:18)

In this case, the conditions (1.11), (1.12), and (1.13) of Theorem 1.3 can be trans-

formed into

|α(n)| ≤ θ(n)β(n), ∀ n ∈ {0, 1, . . . ,ω − 1}, (1:19)

ω−1∑
n=0

[
γ (n) − θ2(n)β(n)

]
> 0, (1:20)
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and

ω−1∑
n=0

|α(n)| +
[

ω−1∑
n=0

β(n)
ω−1∑
n=0

γ +(n)

]1/2

< 2. (1:21)

Conditions (1.19), (1.20), and (1.21) are the same as (1.17), (1.18) and (1.19) in [16], i.

e., Theorem 1.3 coincides with Theorem 3.4 in [16]. However, when p(n) and q(n) are

ω-periodic functions defined on �, the stability conditions

0 ≤
ω−1∑
n=0

q(n) ≤
ω−1∑
n=0

q+(n) ≤ 4∑ω−1
n=0

1
p(n)

, q(n) �≡ 0, ∀n ∈ {0, 1, . . . ,ω − 1} (1:22)

in Theorem 1.4 are better than the one

0 <

ω−1∑
n=0

q(n) ≤
ω−1∑
n=0

q+(n) <
4∑ω−1

n=0
1

p(n)

(1:23)

in [16, Corollary 3.4]. More related results on stability for discrete linear Hamiltonian

systems can be found in [20-24].

3. Let δ > 0 and N Î {2, 3, 4, ...}. Set ω = δ + N, define the time scale � as follows:

� =
⋃
k∈�

[kω, kω + δ] ∪ {kω + δ + n : n = 1, 2, . . . ,N − 1}. (1:24)

Then system (1.1) takes the form:

x′(t) = α(t)x(t) + β(t)y(t), y′(t) = −γ (t)x(t) − α(t)y(t), t ∈
⋃
k∈�

[kω, kω + δ), (1:25)

and

�x(t) = α(t)x(t + 1) + β(t)y(t), �y(t) = −γ (t)x(t + 1) − α(t)y(t),

t ∈
⋃
k∈�

{kω + δ + n : n = 0, 1, . . . ,N − 2}. (1:26)

In this case, the conditions (1.11), (1.12), and (1.13) of Theorem 1.3 can be trans-

formed into

|α(t)| ≤ θ(t)β(t), ∀t ∈ [0, δ] ∪ {δ + 1, δ + 2, . . . , δ +N − 1}, (1:27)

∫ δ

0

[
γ (t) − θ2(t)β(t)

]
dt +

N−1∑
n=0

[
γ (δ + n) − θ2(δ + n)β(δ + n)

]
> 0, (1:28)

and
(∫ δ

0
|α(t)|dt +

N−1∑
n=0

|α(δ + n)|
)

+

[(∫ δ

0
β(t)dt +

N−1∑
n=0

|β(δ + n)|
) (∫ δ

0
γ +(t)dt +

N−1∑
n=0

|γ +(δ + n)|
)]1/2

< 2.

(1:29)

2 Proofs of theorems
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Let u(t) = (x(t), y(t))⊤, us(t) = (x(s(t)), y(t))⊤ and

A(t) =
(

α(t) β(t)
−γ (t) −α(t)

)
.

Then, we can rewrite (1.1) as a standard linear Hamiltonian dynamic system

u�(t) = A(t)uσ (t), t ∈ �. (2:1)

Let u1(t) = (x10(t), y10(t))
⊤ and u2(t) = (x20(t), y20(t))

⊤ be two solutions of system (1.1)

with (u1(0), u2(0)) = I2. Denote by F(t) = (u1(t), u2(t)). Then F(t) is a fundamental

matrix solution for (1.1) and satisfies F(0) = I2. Suppose that a(t), b(t) and g(t) are ω-

periodic functions defined on � (i.e. (1.10) holds), then F(t + ω) is also a fundamental

matrix solution for (1.1) ( see [18]). Therefore, it follows from the uniqueness of solu-

tions of system (1.1) with initial condition ( see [9,18,19]) that

�(t + ω) = �(t)�(ω), ∀ t ∈ �. (2:2)

From (1.1), we have

(det�(t))� =

∣∣∣∣x�
10(t) x

�
20(t)

y10(t) y20(t)

∣∣∣∣ +
∣∣∣∣x10(σ (t)) x20(σ (t))y�10(t) y�20(t)

∣∣∣∣ = 0, ∀t ∈ �. (2:3)

It follows that det F(t) = det F(0) = 1 for all t ∈ � . Let l1 and l2 be the roots (real

or complex) of the characteristic equation of F(ω)

det(λI2 − �(ω)) = 0,

which is equivalent to

λ2 − Hλ + 1 = 0, (2:4)

where

H = x10(ω) + y20(ω).

Hence

λ1 + λ2 = H, λ1λ2 = 1. (2:5)

Let v1 = (c11, c21)
⊤ and v2 = (c12, c22)

⊤ be the characteristic vectors associated with

the characteristic roots l1 and l2 of F(ω), respectively, i.e.

�(ω)vj = λjvj, j = 1, 2. (2:6)

Let vj(t) = F(t)vj, j = 1, 2. Then it follows from (2.2) and (2.6) that

vj(t + ω) = λjvj(t), ∀t ∈ �, j = 1, 2. (2:7)

On the other hand, it follows from (2.1) that

v�j (t) = ��(t)vj

=
(
u�
1 (t), u

�
2 (t)

)
vj

= A(t)
(
uσ
1 (t), u

σ
2 (t)

)
vj

= A(t)vσj (t), j = 1, 2.

(2:8)
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This shows that v1(t) and v2(t) are two solutions of system (1.1) which satisfy (2.7).

Hence, we obtain the following lemma.

Lemma 2.1. Let F(t) be a fundamental matrix solution for (1.1) with F(0) = I2, and

let l1 and l2 be the roots (real or complex) of the characteristic equation (2.4) of F(ω).

Then system (1.1) has two solutions v1(t) and v2(t) which satisfy (2.7).

Similar to the continuous case, we have the following lemma.

Lemma 2.2. System (1.1) is unstable if |H| > 2, and stable if |H| < 2.

Instead of the usual zero, we adopt the following concept of generalized zero on time

scales.

Definition 2.3. A function f : � → � is said to have a generalized zero at t0 ∈ �

provided either f(t0) = 0 or f(t0)f(s(t0)) < 0.

Lemma 2.4. [4]Assume f , g : � → � are differential at t ∈ �
k . If fΔ(t) exists, then f(s

(t)) = f(t) + μ(t)fΔ(t).

Lemma 2.5. [4] (Cauchy-Schwarz inequality). Let a, b ∈ � . For f,g Î Crd we have

∫ b

a

∣∣f (t)g(t)∣∣ �t ≤
[∫ b

a
f 2(t)�t ·

∫ b

a
g2(t)�t

]1
2

.

The above inequality can be equality only if there exists a constant c such that f(t) =

cg(t) for t ∈ �[a, b] .

Lemma 2.6. Let v1(t) = (x1(t), y1(t))
⊤ and v2(t) = (x2(t), y2(t))

⊤ be two solutions of sys-

tem (1.1) which satisfy (2.7). Assume that (1.2), (1.3) and (1.10) hold, and that exists a

non-negative function θ(t) such that (1.11) and (1.12) hold. If H2 ≥ 4, then both x1(t)

and x2(t) have generalized zeros in �[0,ω] .

Proof. Since |H| ≥ 2, then l1 and l2 are real numbers, and v1(t) and v2(t) are also

real functions. We only prove that x1(t) must have at least one generalized zero in

�[0,ω] . Otherwise, we assume that x1(t) > 0 for t ∈ �[0,ω] and so (2.7) implies that

x1(t) > 0 for t ∈ � . Define z(t): = y1(t)/x1(t). Due to (2.7), one sees that z(t) is ω-peri-

odic, i.e. z(t + ω) = z(t), ∀t ∈ � . From (1.1), we have

z�(t) =
x1(t)y�1 (t) − x�

1 (t)y1(t)
x1(t)x1(σ (t))

=
−γ (t)x1(t)x1(σ (t)) − α(t)[x1(t) + x1(σ (t))]y1(t) − β(t)y21(t)

x1(t)x1(σ (t))

= −γ (t) − α(t)
[
y1(t)
x1(t)

+
y1(t)

x1(σ (t))

]
− β(t)

[
y1(t)
x1(t)

y1(t)
x1(σ (t))

]

= −γ (t) − α(t)
[
z(t) +

y1(t)
x1(σ (t))

]
− β(t)z(t)

[
y1(t)

x1(σ (t))

]
.

(2:9)

From the first equation of (1.1), and using Lemma 2.4, we have

[1 − μ(t)α(t)]x1(σ (t)) = x1(t) + μ(t)β(t)y1(t), t ∈ �. (2:10)

Since x1(t) > 0 for all t ∈ � , it follows from (1.2) and (2.10) that

1 + μ(t)β(t)z(t) = 1 + μ(t)β(t)
y1(t)
x1(t)

= [1 − μ(t)α(t)]
x1(σ (t))
x1(t)

> 0, (2:11)
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which yields

y1(t)
x1(σ (t))

=
[1 − μ(t)α(t)]z(t)
1 + μ(t)β(t)z(t)

. (2:12)

Substituting (2.12) into (2.9), we obtain

z�(t) = −γ (t) +
[−2α(t) + μ(t)α2(t)]z(t) − β(t)z2(t)

1 + μ(t)β(t)z(t)
. (2:13)

If b(t) > 0, together with (1.11), it is easy to verify that

[−2α(t) + μ(t)α2(t)]z(t) − β(t)z2(t)
1 + μ(t)β(t)z(t)

≤ α2(t)
β(t)

≤ θ2(t)β(t); (2:14)

If b(t) = 0, it follows from (1.11) that a(t) = 0, hence

[−2α(t) + μ(t)α2(t)]z(t) − β(t)z2(t)
1 + μ(t)β(t)z(t)

= 0 = θ2(t)β(t). (2:15)

Combining (2.14) with (2.15), we have

[−2α(t) + μ(t)α2(t)]z(t) − β(t)z2(t)
1 + μ(t)β(t)z(t)

≤ θ2(t)β(t). (2:16)

Substituting (2.16) into (2.13), we obtain

z�(t) ≤ −γ (t) + θ2(t)β(t). (2:17)

Integrating equation (2.17) from 0 to ω, and noticing that z(t) is ω-periodic, we

obtain

0 ≤ −
∫ ω

0

[
γ (t) − θ2(t)β(t)

]
�t,

which contradicts condition (1.12). □
Lemma 2.7. Let v1(t) = (x1(t), y1(t))

⊤ and v2(t) = (x2(t), y2(t))
⊤ be two solutions of sys-

tem (1.1) which satisfy (2.7). Assume that

α(t) = 0, β(t) > 0, γ (t) �≡ 0, ∀t ∈ �, (2:18)

β(t + ω) = β(t), γ (t + ω) = γ (t), ∀t ∈ �, (2:19)

and ∫ ω

0
γ (t)�t ≥ 0. (2:20)

If H2 ≥ 4, then both x1(t) and x2(t) have generalized zeros in �[0,ω] .

Proof. Except (1.12), (2.18), and (2.19) imply all assumptions in Lemma 2.6 hold. In

view of the proof of Lemma 2.6, it is sufficient to derive an inequality which contra-

dicts (2.20) instead of (1.12). From (2.11), (2.13), and (2.18), we have

1 + μ(t)β(t)z(t) = 1 + μ(t)β(t)
y1(t)
x1(t)

=
x1(σ (t))
x1(t)

> 0 (2:21)
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and

z�(t) = −γ (t) − β(t)z2(t)
1 + μ(t)β(t)z(t)

. (2:22)

Since z(t) is ω-periodic and g(t) ≢ 0,, it follows from (2.22) that z2(t) ≢ 0 on �[0,ω] .

Integrating equation (2.22) from 0 to ω, we obtain

0 = −
∫ ω

0

[
γ (t) +

β(t)z2(t)
1 + μ(t)β(t)z(t)

]
�t < −

∫ ω

0
γ (t)�t,

which contradicts condition (2.20). □
Lemma 2.8. [10]Suppose that (1.2) and (1.3) hold and let a, b ∈ �

k with s(a) ≤ b.

Assume (1.1) has a real solution (x(t), y(t)) such that x(t) has a generalized zero at end-

point a and (x(b), y(b)) = (�1x(a), �2y(a)) with 0 < κ2
1 ≤ κ1κ2 ≤ 1and x(t) ≢ 0 on

�[a, b] . Then one has the following inequality

∫ b

a

∣∣α(t)∣∣ �t +

[∫ b

a
β(t)�t

∫ b

a
γ +(t)�t

]1/2

≥ 2. (2:23)

Lemma 2.9. Suppose that (2.18) holds and let a, b ∈ �
k with s(a) ≤ b. Assume (1.1)

has a real solution (x(t), y(t)) such that x(t) has a generalized zero at end-point a and

(x(b), y(b)) = (�x(a), �y(a)) with 0 <�2 ≤ 1 and x(t) is not identically zero on �[a, b] .

Then one has the following inequality

∫ b

a
β(t)�t

∫ b

a
γ +(t)�t > 4. (2:24)

Proof. In view of the proof of [10, Theorem 3.5] (see (3.8), (3.29)-(3.34) in [10]), we

have

x(a) = −ξμ(a)β(a)y(a), (2:25)

x(τ ) = (1 − ξ)μ(a)β(a)y(a) +
∫ τ

σ (a)
β(t)y(t)�t, σ (a) ≤ τ ≤ b, (2:26)

ϑ1μ(a)β(a)y2(a) +
∫ b

σ (a)
β(t)y2(t)�t =

∫ b

a
γ (t)x2(σ (t))�t, (2:27)

and

2|x(τ )| ≤ ϑ2μ(a)β(a)|y(a)| +
∫ b

σ (a)
β(t)|y(t)|�t, σ (a) ≤ τ ≤ b, (2:28)

where ξ Î [0, 1), and

ϑ1 = 1 − ξ + κ2ξ , ϑ2 = 1 − ξ + |κ|ξ . (2:29)

Let |x(τ*)| = maxs(a)≤τ≤b |x(τ)|. There are three possible cases:

(1) y(t) ≡ y(a) ≠ 0, ∀ t ∈ �[a, b] ;

(2) y(t) ≢ y(a), |y(t)| ≡ |y(a)|, ∀ t ∈ �[a, b] ;
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(3) |y(t)| ≢ |y(a)|, ∀ t ∈ �[a, b] .

Case (1). In this case, � = 1. It follows from (2.25) and (2.26) that

x(b) = (1 − ξ)μ(a)β(a)y(a) +
∫ b

σ (a)
β(t)y(t)�t

= y(a)

[
(1 − ξ)μ(a)β(a) +

∫ b

σ (a)
β(t)�t

]

= x(a) + y(a)
∫ b

a
β(t)�t

�= x(a),

which contradicts the assumption that x(b) = �x(a) = x(a).

Case (2). In this case, we have

2|x(τ )| < ϑ2μ(a)β(a)|y(a)| +
∫ b

σ (a)
β(t)|y(t)|�t, σ (a) ≤ τ ≤ b (2:30)

instead of (2.28). Applying Lemma 2.5 and using (2.27) and (2.30), we have

2|x(τ ∗)|

< ϑ2μ(a)β(a)|y(a)| +
∫ b

σ (a)
β(t)|y(t)|�t

≤
{[

ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

] [
ϑ1μ(a)β(a)y2(a) +

∫ b

σ (a)
β(t)y2(t)�t

]}1/2

=

{[
ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

] ∫ b

a
γ (t)x2(σ (t))�t

}1/2

≤ |x(τ ∗)|
[(

ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

) ∫ b

a
γ +(t)�t

]1/2

.

(2:31)

Dividing the latter inequality of (2.31) by |x(τ*)|, we obtain

[(
ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

)∫ b

a
γ +(t)�t

]1/2

> 2. (2:32)

Case (3). In this case, applying Lemma 2.5 and using (2.27) and (2.28), we have

2|x(τ ∗)|

≤ ϑ2μ(a)β(a)|y(a)| +
∫ b

σ (a)
β(t)|y(t)|�t

<

{[
ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

] [
ϑ1μ(a)β(a)y2(a) +

∫ b

σ (a)
β(t)y2(t)�t

]}1/2

=

{[
ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

] ∫ b

a
γ (t)x2(σ (t))�t

}1/2

≤ |x(τ ∗)|
[(

ϑ2
2

ϑ1
μ(a)β(a) +

∫ b

σ (a)
β(t)�t

) ∫ b

a
γ +(t)�t

]1/2

.

(2:33)

Dividing the latter inequality of (2.33) by |x(τ*)|, we also obtain (2.32). It is easy to

verify that
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ϑ2
2

ϑ1
=
[1 − ξ + |κ|ξ]2
1 − ξ + κ2ξ

≤ 1.

Substituting this into (2.32), we obtain (2.24). □
Proof of Theorem 1.3. If |H| ≥ 2, then l1 and l2 are real numbers and l1l2 = 1, it

follows that 0 < min{λ2
1,λ

2
2} ≤ 1 . Suppose λ2

1 ≤ 1 . By Lemma 2.6, system (1.1) has a

non-zero solution v1(t) = (x1(t), y1(t))
⊤ such that (2.7) holds and x1(t) has a generalized

zero in �[0,ω] , say t1. It follows from (2.7) that (x1(t1 + ω), y1(t1 + ω)) = l1(x1(t1), y1
(t1)). Applying Lemma 2.8 to the solution (x1(t), y1(t)) with a = t1, b = t1 + ω and �1 =

�2 = l1, we get

∫ t1+ω

t1
|α(t)|�t +

[∫ t1+ω

t1
β(t)�t

∫ t1+ω

t1
γ +(t)�t

]1/2

≥ 2. (2:34)

Next, noticing that for any ω-periodic function f(t) on � , the equality∫ t0+ω

t0
f (t)�t =

∫ ω

0 f (t)�t

holds for all t0 ∈ � . It follows from (3.1) that

∫ ω

0
|α(t)|�t +

[∫ ω

0
β(t)�t

∫ ω

0
γ +(t)�t

]1/2

≥ 2. (2:35)

which contradicts condition (1.13). Thus |H| < 2 and hence system (1.1) is stable. □
Proof of Theorem 1.4. By using Lemmas 2.7 and 2.9 instead of Lemmas 2.6 and 2.8,

respectively, we can prove Theorem 1.4 in a similar fashion as the proof of Theorem

1.3. So, we omit the proof here. □
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