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Abstract
The purpose of this paper is to establish fixed-point theorems for the sum of two
operators A and B, where the operator A is assumed to be contractive with respect to
the measure of weak noncompactness, while B is an ϕ-nonlinear contraction. In the
last section, we apply such results to study the existence of solutions to a nonlinear
Hammerstein integral equation in L1 space.
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1 Introduction
The existence of fixed points for the sum of two operators has been followed with interest
for a long time. In , to study the existence of solutions of nonlinear equations of the
form

Ax + Bx = x, x ∈M,

Krasnosel’skii [] first proved operator A + B has a fixed point wheneverM is a nonempty
closed convex subset of Banach space X and the operators A and B satisfy:

(i) A is continuous onM, and A(M) is relatively compact,
(ii) B is a k-contraction with k ∈ [, ),
(iii) A(M) + B(M) ⊂M.
In , Darbo [] extended the Schauder fixed-point theorem to the setting of non-

compact operators, introducing the notion of k-set contraction. It is not hard to see that
the Krasnosel’skii theorem is a particular case of the Darbo theorem. Namely, it appears
that A+B is a k-set contraction with respect to the Kuratowskii measure of noncompact-
ness. In , Sadovskii [] gave a fixed-point result more general than the Darbo theorem
using the concept of condensing operator.
In , De Blasi [] introduced the concept of measure of weak noncompactness.

Emmanuele [] established a Sadovskii-type fixed-point result using the concept of
ω-condensing with respect to the measure of weak noncompactness, in which the weak
continuity of the operator is required. Recently, Garcia-Falset and Latrach established a
new version of Sadovskii-type fixed-point theorem for the weakly sequentially continuous
operators (see [, Lemma .]).
On the other hand, since the weak continuity condition is usually not easy to verify,

Latrach et al. [, ] established generalizations of the Schauder, Darbo and Krasnosel’skii
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fixed-point theorems for the weak topology. Their analysis uses the concept of the Blasi
measure of weak noncompactness. Moreover, and in contrast to previous works, to prove
the new versions of the fixed-point theorems, they neither assume the weak continuity
nor the weakly sequential continuity of the operators.
The purpose of this paper is to establish several fixed-point theorems for the sum of

two operators under ω-condensing. By relaxing the condition of weak compactness of
operators, these results extend and supplement some previous ones in the literatures.
This paper is organized as follows. In Section , we gather some notions and prelimi-

nary facts which will be needed in our further considerations. In Section , on the basis
of a Sadovskii-type fixed-point theorem for ω-condensing operators and its variant on
whole space, we discuss several fixed-point theorems for the sum of A + B, where A is a
ω-contraction and B is an ϕ-nonlinear contraction. In Section , we apply such results to
study the existence of solutions to a nonlinear Hammerstein integral equation in L space.

2 Preliminaries
We first gather together some notations and preliminary facts of some weak topology fea-
ture which will be needed in our further considerations. Let B(X) be the collection of all
nonempty bounded subsets of a Banach space X, and letW(X) be the subset of B(X) con-
sisting of all weakly compact subsets of X. Also, let Br denote the closed ball in X centered
in  and with radius r.
De Blasi [] introduced the map ω : B(X)→R+ defined by

ω{M} = inf
{
r >  : ∃W ∈W(X) :M ⊂W +Br

}
forM ∈ B(X).

Before we launch into the details, we recall some important properties needed hereafter
for the sake of completeness (for the proofs, we refer the reader to [] and []).

Lemma . Let M,M and M be in B(X); we have:
(a) ω{M} ≤ ω{M} wheneverM ⊂M.
(b) ω{M} =  if and only ifMw ∈W(X), where Mw is the weak closure ofM.
(c) ω{Mw} = ω{M}.
(d) ω{co(M)} = ω{M} where co(M) refers to the convex hull ofM.
(e) ω{λM} = |λ|ω{M}, for all λ ∈R.
(f ) ω{M +M} ≤ ω{M} +ω{M}.
(g) ω{M ∪M} =max{ω{M},ω{M}}.
(h) If (Mn)∞n= is a decreasing sequence of nonempty, bounded and weakly closed subsets

of X with limn→∞ ω{Mn} = , then limn→∞
⋂∞

k=Mn 	= ϕ and ω{⋂n
k=Mn} = , i.e.,⋂∞

k=Mn is relatively weakly compact.

Themap ω{·} is called the De Blasi measure of weak noncompactness. In [], Appell and
De Pascale proved that in L-spaces ω{·} has the following form:

ω{M} = lim sup
ε→

{
sup
ψ∈M

[∫
D

∥∥ψ(t)
∥∥
X dt :meas(D) ≤ ε

]}
(.)

for all bounded subsets M of L(�;X), where X is a finite dimensional Banach space and
meas(·) denotes the Lebesgue measure.
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Throughout this paper, X denotes a Banach space;D(T) andR(T), respectively, denote
the domain and range of operator T ; and ω{S} denotes the De Blasi measure of weak
noncompactness of bounded subset S.

Definition . An operator T : D(T) ⊂ X → X is said to be ω-contractive (or a ω-α-
contraction) if it maps bounded sets into bounded sets, and there exists some α ∈ [, )
such that ω{T(S)} ≤ αω{S} for all bounded sets S in D(T).
An operator T :D(T) ⊂ X → X is said to be ω-condensing if it maps bounded sets into

bounded sets, and ω{T(S)} < ω{S} for all bounded sets S in D(T) with ω{S} > .

Remark . Obviously, every ω-α-contraction with  ≤ α <  is ω-condensing.

Let T be an operator from D(T) ⊂ X into X. Latrach et al. [] introduce the following
conditions:

(A) If (xn)n∈N is a weakly convergent sequence inD(T), then (Txn)n∈N has a strongly con-
vergent subsequence in X .

(A) If (xn)n∈N is a weakly convergent sequence in D(T), then (Txn)n∈N has a weakly con-
vergent subsequence in X .

The conditions (A) and (A) were already considered in [, , –].

Remark .
(a) Operators satisfying either (A) or (A) are not necessarily weakly continuous.
(b) An operator satisfies (A) if and only if it maps relatively weakly compact sets into

relatively strongly compact ones.
(c) An operator satisfies (A) if and only if it maps relatively weakly compact sets into

relatively weakly compact ones (Eberlein-Šmulian theorem, see, e.g.,
[, pp.-]).

(d) Every ω-contractive operator satisfies (A).
(e) The condition (A) holds true for every bounded linear operator.

Lemma . Let operator T : D(T) ⊂ X → X satisfy (A), and let operator Q : R(T) ⊂
X → X be continuous. Then the compound operator Q ◦ T :D(T) ⊂ X → X satisfies (A).

Proof Let (xn)n∈N be a weakly convergent sequence inD(T). By the hypothesis of T satis-
fying (A), (Txn)n∈N has a strongly convergent subsequence, say (Txnk )k∈N. The continuity
ofQ implies that (QTxnk )k∈N is also strongly convergent, and thereforeQ◦T satisfies (A).

�

Definition . An operator T :D(T) ⊂ X → X is said to be ϕ-nonlinear contractive (or
an ϕ-nonlinear contraction), if there exists a continuous and nondecreasing function ϕ :
R

+ → R
+ such that

‖Tx – Ty‖ ≤ ϕ
(‖x – y‖) for all x, y ∈D(T),

where ϕ(r) < r for r > .

Remark . Obviously, all strictly contractions are ϕ-nonlinear contractions.

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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Lemma . (see [, Lemma .]) Let operator T : D(T) ⊂ X → X be ϕ-nonlinear con-
tractive on a Banach space X and satisfy (A). Then for each bounded subset M of X one
has ω{T(M)} ≤ ϕ(ω{M}).

Lemma . If an operator T : X → X is ϕ-nonlinear contractive, then F := I –T is a home-
omorphism of X onto X.

Proof For any y ∈ X, we define the operator τy from X to X, by τyx = Tx + y. Since T is
ϕ-nonlinear contractive, it is easy to see that τy is also ϕ-nonlinear contractive. According
to Theorem  in [], τy has a unique fixed point x such that x = Tx + y, i.e. y = (I – T)x,
and then F := I – T is surjective on X.
If x, y ∈ X and x 	= y, then

‖Fx – Fy‖ = ∥∥(x – Tx) – (y – Ty)
∥∥ ≥ ‖x – y‖ – ‖Tx – Ty‖ ≥ ‖x – y‖ – ϕ

(‖x – y‖) > ,

which implies that F is injective and F– exists on X.
For proving the continuity of F–, suppose that there exists a point x and a sequence

(xn)n∈N in X such that Fxn → Fx, and limn→∞ supk≥n ‖xk – x‖ = a. Consequently, from the
inequality

‖Fxn – Fx‖ ≥ ‖xn – x‖ – ϕ
(‖xn – x‖),

we obtain that  ≥ a – ϕ(a), which implies that a =  and, therefore, F– is continuous.
�

3 Fixed-point theorems for the sum of two operators
The following theoremwas proved by Ben Amar and Garcia-Falset [], and its more gen-
eral form was presented by Agarwal et al. [] is a variant of the Sadovskii fixed-point
theorem for the classes of operators which satisfy (A).

Theorem . (see [, Theorem .] or [, Theorem . and Corollary .]) Let M be a
nonempty, bounded, closed and convex subset of a Banach space X. Assume that T :M →
M is continuous and satisfies (A). If T is ω-condensing, then it has a fixed point in M.

Our purpose here is to establish a fixed-point theorem for the sum of a ω-contractive
operator and an ϕ-nonlinear contractive operator.

Theorem . Let M be a nonempty, bounded, closed and convex subset of a Banach
space X. Suppose that A :M → X and B : X → X are two operators such that

(i) A is a continuous ω-α-contraction with α ∈ [, ), and A satisfies (A),
(ii) B is an ϕ-nonlinear contraction with ϕ(r) < ( – α)r for r > , and B satisfies (A),
(iii) (x = Bx +Ay, y ∈ M) ⇒ x ∈ M.

Then there is a point x ∈M such that Ax + Bx = x.

Proof By Lemma ., I –B has a continuous inverse defined on X, and then J := (I –B)–A
is well defined onM. Once we prove that J has a fixed point inM, the proof is achieved.

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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For any y ∈ M, according to Lemma . there exists a unique x ∈ X such thatAy = x–Bx.
The hypothesis (iii) shows that x ∈M, which implies thatA(M) ⊂ (I–B)(M) and, therefore,
J(M) ⊂ M.
Obviously, the compound operator J is continuous since A and (I – B)– is continuous

and by Lemma ., J satisfies (A). Now by referring to the formula

(I – B)–A = A + B(I – B)–A (i.e., J = A + BJ),

for every subset S ofM with ω{S} > , we have

J(S)⊂ A(S) + BJ(S).

Since A is ω-α-contractive and B satisfies ω{BJ(S)} ≤ ϕ(ω{J(S)}) by Lemma ., we have

ω
{
J(S)

} ≤ ω
{
A(S)

}
+ω

{
BJ(S)

} ≤ αω{S} + ϕ
(
ω

{
J(S)

})
. (.)

Now, if α = , inequality (.) becomes ω{J(S)} ≤ ϕ(ω{J(S)}), which implies that
ω{J(S)} = . Otherwise, by recalling the assumption that ϕ(r) < (–α)r for r > , inequality
(.) becomes

ω
{
J(S)

}
< αω{S} + ( – α)ω

{
J(S)

}
, i.e.,ω

{
J(S)

}
< ω{S}.

In both cases, J is shown to be ω-condensing. Now the use of Theorem . achieves the
proof. �

Remark . It should be noticed to the following particular cases:
() If we take B = , then we return the above theorem back to [, Theorem .], which

is an extension of the Darbo fixed-point theorem for ω-contractive operators.
() If we take α =  and the function ϕ(r) = βr (≤ β < ) in the above theorem, we

obtain a result which was [, Theorem .].
() If we only take the function ϕ(r) = βr (≤ β <  – α) in the above theorem, we

obtain the following Corollary ., which is a new fixed-point theorem for the sum
of two operators.

() If we only take α =  in the above theorem, we obtain the following Corollary .,
which is the new version of Krasnosel’skii-type fixed-point theorems.

Corollary . Let M be a nonempty, bounded, closed and convex subset of a Banach
space X. Suppose that A :M → X and B : X → X are two operators such that

(i) A is a continuous ω-α-contraction with α ∈ [, ), and A satisfies (A),
(ii) B is a strict contraction with β ∈ [,  – α), and B satisfies (A),
(iii) (x = Bx +Ay, y ∈ M) ⇒ x ∈ M.

Then there is a point x ∈M such that Ax + Bx = x.

Remark. The above corollary is a variant and supplement of [, Theorem.], inwhich
the authors demand that the operators A and B are weakly sequentially continuous.

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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Corollary . Let M be a nonempty, bounded, closed and convex subset of a Banach
space X. Suppose that A :M → X and B : X → X are two operators such that

(i) A is a continuous, A(M) is relatively weakly compact and A satisfies (A),
(ii) B is an ϕ-nonlinear contraction, and B satisfies (A),
(iii) (x = Bx +Ay, y ∈ M) ⇒ x ∈ M.

Then there is a point x ∈M such that Ax + Bx = x.

Remark . The above corollary is a variant and supplement of [, Theorem .], in
which the author demands that the operators A and B are weakly sequentially continuous,
and B is strictly contractive.

Now, on the basis of Corollary ., we prove the following fixed-point theorem for the
sum of a weakly-strongly continuous operator and a nonexpansive operator.

Theorem . Let M be a nonempty, bounded, closed and convex subset of a Banach
space X. Suppose that A :M → X and B : X → X are two operators such that

(i) A is weakly-strongly continuous, and A(M) is relatively weakly compact,
(ii) B is nonexpansive and ω-condensing,
(iii) I – B is demiclosed,
(iv) if λ ∈ (, ) and x = λBx +Ay for some y ∈M, then x ∈M.

Then there is a point x ∈M such that Ax + Bx = x.

Remark .
() Recall that an operator T :D(T)⊂ X → X is said to be demiclosed if for any

sequence (xn)n∈N in D(T) that xn ⇀ x and Txn → y, then x ∈D(T) and Tx = y.
() The assumption (iv) in the above theorem was first introduced in [], it is slight

different with [, Corollary .] and [, Theorem .].
() In [, Theorem .] and [, Theorem .], the following condition is required: if

(xn)n∈N is a sequence ofM such that (xn – Txn)n∈N is weakly convergent, then
(xn)n∈N has a weakly convergent subsequence. In the above theorem, we replaced it
with the ω-condensing of B.

Proof of Theorem . For each λ ∈ (, ), the operators A and λB fulfill the conditions
of Corollary . and, therefore, there is a point xλ ∈ M such that xλ = λBxλ + Axλ. Now
choose a sequence (λn)n∈N ⊂ (, ) such that λn → . Consequently, there exists a sequence
(xn)n∈N ⊂M such that

xn = λnBxn +Axn.

Let S = {xn : n ∈ N}. We claim that S is relatively weakly compact. Suppose that it is not
the case, by assumption (i) and (ii), we have

ω{S} = ω{xn : n ∈N} = ω{λnBxn +Axn : n ∈N}
≤ λnω

{
B(S)

}
+ω

{
A(S)

}
= λnω

{
B(S)

}
< ω{S}.

This contradiction tells us that the sequence (xn)n∈N has aweakly convergent subsequence,
i.e., there exists (xnk )k∈N such that xnk ⇀ x ∈ M. By assumption (i), we have Axnk → Ax,

http://www.fixedpointtheoryandapplications.com/content/2013/1/102


Wang Fixed Point Theory and Applications 2013, 2013:102 Page 7 of 13
http://www.fixedpointtheoryandapplications.com/content/2013/1/102

and then (I – λnkB)xnk → Ax. Since (xnk )k∈N is contained in bounded set M, and B maps
M into a bounded set (B is nonexpansive), then ‖Bxnk‖ is norm bounded. Thus, we have
( – λnk )‖Bxnk‖ → . Moreover, we have

∥∥(I – B)xnk –Ax
∥∥ ≤ ∥∥(I – B)xnk – (I – λnkB)xnk

∥∥ +
∥∥(I – λnkB)xnk –Ax

∥∥
= ( – λnk )‖Bxnk‖ +

∥∥(I – λnkB)xnk –Ax
∥∥ → ,

that is, (I – B)xnk → Ax. By assumption (iii), we have (I – B)x = Ax, and then the proof is
achieved. �

If the Banach space X is reflexive, then B is always ω-condensing on M (see, e.g.,
[, p.]). Moreover, if we supposed that X is uniformly convex Banach space, then
I – B : M → X is demiclosed (see, e.g., [, pp.-]). Thus, we obtain the following
consequence.

Corollary . Let M be a nonempty, bounded, closed and convex subset of a uniformly
convex Banach space X. Suppose that A :M → X and B : X → X are two operators such
that

(i) A is weakly-strongly continuous,
(ii) B is nonexpansive,
(iii) if λ ∈ (, ) and x = λBx +Ay for some y ∈M, then x ∈M.

Then there is a point x ∈M such that Ax + Bx = x.

In order to use the above results on the whole space, we first prove the following result.

Theorem . Let X be a Banach space X. Assume that the operator T : X → X be con-
tinuous ω-condensing and satisfies (A). Then either
(a) equation x = Tx has a solution, or
(b) the set {x ∈ X : x = λT(x)} is unbounded for some λ ∈ (, ).

Proof Choose an arbitrary R > . Define for each x ∈ X

ρ(x) =

⎧⎨
⎩
x, ‖x‖ ≤ R,
R

‖x‖x, ‖x‖ > R.

Clearly, ρ is a continuous retraction of X on BR. Thus, we can define the mapping Tρ :
BR → BR by Tρx = ρ(Tx).
Since T and ρ are continuous, obviously Tρ is also continuous. Furthermore, since

T satisfies (A) and ρ is continuous, hence Tρ also satisfies (A). We next claim that
ω{Tρ(S)} < ω{S} for any S ⊂ Br with ω{S} > .
Indeed, Tρ(Br) = ρ(T(Br)). For any x ∈ Br , there are two possibilities:
() ‖Tx‖ ≤ R; in this case, ρ(Tx) = Tx ∈ T(S)⊂ co(T(S)∪ {}).
() ‖Tx‖ > R; in this case, ρ(Tx) = R

‖Tx‖Tx =
R

‖Tx‖Tx + ( – R
‖Tx‖ ) ·  ∈ co(T(S)∪ {}).

The above argument yields Tρ(S)⊂ co(T(S)∪ {}).

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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Now, by using the properties of the measure of weak noncompactness and properties of
T , we have that

ω
{
Tρ(S)

} ≤ ω
{
T(S)

}
< ω{S},

as claimed, that is, Tρ is a ω-condensing.
The above argument shows thatTρ : Br → Br is under the conditions of Theorem. and

thus we have that there exists x ∈ Br such that x = Tρx. Indeed, we obtain the following
results:
(a) if Tx ∈ BR, then x = Tρx = ρ(Tx) = Tx, that is, T has a fixed point; otherwise,
(b) if Tx /∈ BR, then x = Tρx = ρ(Tx) = R

‖Tx‖Tx, that is, x is a solution of the
equation x = λTx for λ = R

‖Tx‖ ∈ (, ) and ‖x‖ = R.
Consequently, if there is no x ∈ BR such that x = Tx for any R > , then the above ar-

guments show that the set of solutions of equation x = λT(x) is unbounded for some
λ ∈ (, ). �

We are now in a position to prove the main result on the whole space.

Theorem. Let X be a Banach space. Suppose that A,B : X → X are two operators such
that

(i) A is a continuous ω-α-contraction with α ∈ [, ), and A satisfies (A),
(ii) B is an ϕ-nonlinear contraction with ϕ(r) < ( – α)r for r > , and B satisfies (A),
(iii) function ϕ satisfies limr→+∞[r – ϕ(r)] = +∞.

Then, either
(a) the equation x = Ax + Bx has a solution, or
(b) the set {x ∈ X : x = λB(x/λ) + λA(x)} is unbounded for some λ ∈ (, ).

Remark . Obviously, assumption (iii) in the above theorem is unnecessary whenever
α 	= .

Proof of Theorem . As in the proof of Theorem ., it can be seen that the compound
operator J := (I–B)–A is well defined fromX intoX. Clearly, J is continuous and J satisfies
(A) by Lemma ..
Let us prove that J maps bounded set into a bounded set. For any bounded set S such

that u, v ∈ (I – B)–A(S), there exist x, y ∈ S such that u = (I – B)–Ax and v = (I – B)–Ay,
that is, u – Bu = Ax and v – Bv = Ay. Thus, by assumption (ii) and the boundness of A(S),
we have

‖u – v‖ – ϕ
(‖u – v‖) ≤ ‖Ax –Ay‖ ≤ diam

(
A(S)

)
< +∞. (.)

Suppose that J(S) = (I – B)–A(S) is unbounded, i.e., there exist sequences (un)n∈N and
(vn)n∈N such that ‖un – vn‖ → +∞, and then ‖un – vn‖ – ϕ(‖un – vn‖) → +∞ by as-
sumption (iii). This is a contradiction with diam(A(S)) < +∞ in (.) and, therefore, J(S) is
bounded.
It is similar to that of Theorem . to prove that ω{J(S)} < ω{S} for every bounded set S

in D(T) with ω{S} > . Now, by using Theorem . for operator J , we obtain that either

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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(a) the equation x = Ax + Bx has a solution which is the solution of equation x = Jx, or
(b) the set {x ∈ X : x = λB(x/λ) + λA(x)} = {x ∈ X : x = λ(I – B)–Ax} is unbounded for

some λ ∈ (, ). �

Corollary . Let X be a Banach space. Suppose that A,B : X → X are two operators
such that

(i) A is a continuous ω-α-contraction with α ∈ [, ), and A satisfies (A),
(ii) B is a strict contraction with β ∈ [,  – α), and B satisfies (A).

Then, either
(a) the equation x = Ax + Bx has a solution, or
(b) the set {x ∈ X : x = λB(x/λ) + λA(x)} is unbounded for some λ ∈ (, ).

Corollary . Let X be a Banach space. Suppose that A,B : X → X are two operators
such that

(i) A is a continuous, A(M) is relatively weakly compact, and A satisfies (A),
(ii) B is an ϕ-nonlinear contraction, and B satisfies (A),
(iii) function ϕ satisfies limr→+∞[r – ϕ(r)] = +∞.

Then, either
(a) the equation x = Ax + Bx has a solution, or
(b) the set {x ∈ X : x = λB(x/λ) + λA(x)} is unbounded for some λ ∈ (, ).

4 Application to Hammerstein integral equations in L1 space
Let � be a domain of Rn. A function f :� ×X → Y is said to be a Carathéodory function
if

(i) for any fixed x ∈ X , the function t → f (t,x) is measurable from � to Y ;
(ii) for almost any t ∈ �, the function f (t, ·) : X → Y is continuous.
Letm(�) be the set of all measurable functions ψ :� → X. If f is a Carathéodory func-

tion, then f defines an operatorNf :m(�) →m(�) byNf (ψ)(t)→ f (t,ψ(t)). This operator
is called theNemytskii operator associated to f (or the superposition operator). Regarding
its continuity and weak compactness, we have the following lemma.

Lemma . Let X, Y be two finite dimensional Banach spaces. If f : � × X → Y is a
Carathéodory function, then the Nemytskii operatorNf maps L(�;X) into L(�;Y ) if and
only if there exist a constant b ≥  and a function a ∈ L+(�) such that

∥∥f (t,x)∥∥Y ≤ a(t) + b‖x‖X ,

where L+(�) denotes the positive cone of the space L(�) (see [] or []).

With the conditions of Lemma ., the operator Nf is obviously continuous and maps
bounded sets of L(�;X) into bounded sets of L(�;Y ).

Lemma . (see [, Lemma .]) Let � be a bounded domain in Rn. If f :� ×X → Y is a
Carathéodory function and Nf maps L(�;X) into L(�;Y ), then Nf satisfies (A).

Remark . Although Nemytskii operator Nf satisfies (A), generally it is not weakly
continuous. In fact, only linear functions generate weakly continuousNemytskii operators

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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in L spaces (see, for instance, [, Theorem .]). The question of considering the weak
sequential continuity of theNemytskii operator acting from space Lp to space Lq (≤ p,q <
∞) is discussed in [] and the answer is shown to be negative at least for p = .

Next, we give an example of application for Theorem . in the Banach space of inte-
grable function L(�;X).

Example . We will study now the existence of solutions for the following variant of
Hammerstein’s integral equation

ψ(t) = g
(
t,ψ(s)

)
+μ

∫
�

k(t, s)f
(
s,ψ(s)

)
ds, (.)

in L(�;X), the space of Lebesgue integrable functions on a measurable subset � of Rn

with values in a finite dimensional Banach space X. Here, f is a nonlinear function and k is
measurable, while g is a function satisfying ϕ-nonlinear contractive condition in L(�;X).

First, observe that the above problem may be written in the form

ψ = Aψ + Bψ ,

where B is the Nemytskii operator associated to the function g (i.e., B =Ng ) from L(�;X)
into L(�;X) by

Bψ(t) = g
(
t,ψ(t)

)
,

and A = μLNf is the product of the Nemytskii operator associated to f and the linear
integral operator μL where μ ∈C and L is defined from L(�;Y ) into L(�;X) by

(Lψ)(t) =
∫

�

k(t, s)ψ(s)ds. (.)

Let us now introduce the following assumptions.

Assumptions .
(a) f is a Carathéodory function and Nf acts from L(�;X) into L(�;Y );
(b) b|μ|‖L‖ <  (the constant b was introduced in Lemma .);
(c) g :� ×X → X is a measurable function with g(·, ) ∈ L(�;X), and there exists a

continuous and nondecreasing function ϕ :R+ → R
+ such that

∫
�

∥∥g(t,x) – g(t, y)
∥∥
X dt ≤ ϕ

(‖x – y‖L(�;X)
)

for all x, y ∈ X,

where ϕ(r) < ( – b|μ|‖L‖)r for r >  and limr→+∞[r – ϕ(r)] = +∞;
(d) the function k : � × � → L(Y ,X) is strongly measurable and the linear operator L

defined by (.) maps L(�;Y ) into L(�;X);
(e) the functions ρ(t) :� → L(Y ,X), s→ ρ(t)(s) := k(t, s) belong to L∞(�;L(Y ,X));

http://www.fixedpointtheoryandapplications.com/content/2013/1/102
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(f ) the solution of the integral equation

ψ(t) = λg
(
t,

λ

ψ(t)
)
+ λμ

∫
�

k(t, s)f
(
s,ψ(s)

)
ds

is bounded for λ ∈ (, ).

Remark . () Clearly, the condition that limr→+∞[r – ϕ(r)] = +∞ in assumption (c) is
unnecessary whenever b|μ|‖L‖ 	= ;
() It should be noted that assumptions (d) and (e) lead to the estimate

∥∥∥∥
∫

�

k(t, s)x(s)ds
∥∥∥∥ ≤ ‖ρ‖L∞(�;L(Y ,X))‖x‖L(�;Y ),

and so

‖Lψ‖ =
∫

�

∥∥∥∥
∫

�

k(t, s)ψ(s)ds
∥∥∥∥
X
dt ≤ ‖ρ‖L(�;L∞)‖ψ‖L(�;Y ).

This shows that the linear operator L is continuous, hence weakly continuous from
L(�;Y ) into L(�;X) and that ‖L‖ ≤ ‖ρ‖L(�;L∞).
() By assumption (c), we get

∫
�

∥∥g(t,u)∥∥X dt ≤
∫

�

∥∥g(t, )∥∥X dt + ϕ
(‖u‖X

)
<

∫
�

∥∥g(t, )∥∥X dt +
(
 – b|λ|‖L‖)‖u‖X ,

for every u ∈ X. This shows that the Nemytskii operator Ng is continuous and maps
bounded sets of L(�;X) into bounded sets of L(�;X). According to Lemma ., the op-
erator B satisfies (A).

Now we are in a position to state our main result.

Theorem . Let X and Y be two finite dimensional Banach spaces and � be a bounded
domain of Rn. Assume that the conditions (a)-(f) are satisfied, then the problem (.) has
at least one solution in L(�;X).

Proof Let us first observe that Lemma . implies that there are a ∈ L+(�) and b >  such
that

∥∥f (t,x)∥∥Y ≤ a(t) + b‖x‖X .

So, for any bounded subset S of L(�;X), we have

∫
S

∥∥Nf ψ(t)
∥∥
Y dt ≤

∫
S
a(t)dt + b

∫
S

∥∥ψ(t)
∥∥
X dt.

According to (.), this leads ω{Nf (S)} ≤ bω{S}. Thus, we have

ω
{
A(S)

}
= ω

(
μLNf (S)

) ≤ b|μ|‖L‖ω(S),

which implies that A is a ω-b|μ|‖L‖-contractive.
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On the other hand, clearly A is continuous (see Lemma . and Remark .()). Now we
check that A satisfies the condition (A). For this end, let (xn)n∈N be a weakly convergent
sequence of L(�;X). Using the fact thatNf satisfies (A), and then (Nf xn)n∈N has a weakly
convergent subsequence, say (Nf xnk )k∈N. Moreover, the continuity of the linear operator
L implies its weak continuity on L(�;Y ). Thus, the sequence (LNf xnk )k∈N, i.e. (Axnk )k∈N
converges pointwisely for a.e. t ∈ �. Using Vitali’s convergence theorem, we conclude that
(Axnk )k∈N converges strongly in L(�;X). Therefore, A satisfies (A).
Let x(t), y(t) ∈ L(�;X). It follows from assumption (c) that

‖Bx – By‖L(�;X) =
∫

�

∥∥g(t,x(t)) – g
(
t, y(t)

)∥∥
X dt ≤ ϕ

(∥∥x(t) – y(t)
∥∥
L(�;X)

)
.

So, B is ϕ-nonlinear contractive on L(�;X) and from Remark .(), B satisfies (A).
The above arguments show that A and B satisfy the conditions of Theorem ., and

assumption (f ) allows us to affirm that equation (.) has a solution. �

Remark . Equation (.) was respectively considered in [] and [] under different
assumptions. However, our results relax some assumptions of [, Theorem .] and [,
Theorem .].
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