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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm ||-||. Let C be a none-
mpty closed convex subset of H and let F: C — C be a nonlinear operator. The varia-
tional inequality problem is such that

VI(F,C): (Fx",v—xx)>0, VYveC. (1.1)

Variational inequalities were introduced and studied by Stampacchia [1] in 1964. It is
now well known that variational inequalities cover as diverse disciplines as partial dif-
ferential equations, optimal control, optimization, mathematical programming,
mechanics and finance, see [1-25].

It is known that if F is a strongly monotone and Lipschitzian mapping on C, then the
VI(F, C) has a unique solution. It is also known that the VI(F, C) is equivalent to the
fixed point equation

x* = P¢ [x* — uF(x*)],

where Pc is the projection of H onto the closed convex set C and x > 0 is an arbitra-
rily fixed constant. So, fixed point methods can be implemented to find a solution of
the VI(F,C) provided F satisfies some conditions and ¢ > 0 is chosen appropriately. A
great deal of effort has gone into finding an approximate solution of the VI(F,C) see
3,5,15-19].
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In 2001, Yamada [2] introduced the following hybrid iterative method for solving the
variational inequality

Xne1 = Txy — uhyF(Txy), n > 0. (1.2)

On the other hand, Yao et al. [6] modified Mann’s iterative scheme by using the so-
called viscosity approximation method which was introduced by Moudafi [7]. More
precisely, Yao et al. [6] introduced and studied the following iterative algorithm:

xo=x€C,
Yn = BnXn + 1(1 — Bu)Txy, (1.3)
Xn+1 = anf(xn) + (1 - an)ann > 0.

where T is a nonexpansive mapping of K into itself and fis a contraction on K. They
obtained a strong convergence theorem under some mild restrictions on the
parameters.

Zhou [8], Qin et al. [9] modified normal Mann’s iterative process (1.3) for non-self-k-
strictly pseudo-contractions to have strong convergence in Hilbert spaces. Qin et al. [9]
introduced the following iterative algorithm scheme:

x1=x€ek,
Yn = Px[Bnxn + (1 — Bn)Txy], (1.4)
Xne1 = Anf (1) + (1 — €pA)yn, n > 1.

where T is non-self-k-strictly pseudo-contraction, f'is a contraction and A is a strong
positive linear bounded operator. They prove, under certain appropriate assumptions
on the sequences {o,,} and {8,}, that {x,} defined by (1.4) converges strongly to a fixed
point of the k-strictly pseudo-contraction, which solves some variational inequality.

The following famous theorem is referred to as the Banach contraction principle.

Theorem 1. (Banach [10]) Let (X, d) be a complete metric space and let f'be a con-
traction on X, i.e., there exists r € (0,1) such that d(fix), fly)) < rd(x, y) for all x, y € X.
Then fhas a unique fixed point.

Theorem 2. (Meir and Keeler [11]) Let (X,d) be a complete metric space and let ¢
be a Meir-Keeler contraction (MKC) on X, i.e., for every ¢ > 0, there exists J > 0 such
that d(x, y) <¢ + 0 implies d(p(x),p(y)) <¢ for all x, y € X. Then ¢ has a unique fixed
point.

Remark 1. Theorem 2 is one of generalizations of Theorem 1, because contractions
are MKCs.

Question 1. Can Theorem 1 of Yao [6], Theorem 3.2 of Zhou [8], Theorem 2.1 of
Qin [9], and so on be extended from one or finite k;-strictly pseudo-contraction to infi-
nite k;-strictly pseudo-contraction?

Question 2. We know that the MKC is more general than the contraction. What
happens if the contraction is replaced by the MKC?

Question 3. We know that the 7-strongly monotone and L-Lipschitzian operator is
more general than the strong positive linear bounded operator. What happens if the
strong positive linear bounded operator is replaced by the n-strongly monotone and
L-Lipschitzian operator?

Question 4. Can the restrictions imposed on the parameters {c,,}, {8,} and {1,} in [9]
be relaxed?
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The purpose of this article is to give the affirmative answers to these questions men-
tioned above. Motivated by the above works, in this article we suggest and analyze a
hybrid iterative algorithm as follows:

x1=x€C,

Yn = PC[ﬁnxn + (1 - ,Bn) Zliol M,(n)Tixn]/ (1.5)
Xne1 = P (xn) + Yudn + ((1 — )l — anFlyn,n > 1.

where T; is a non-self-k;-strictly pseudo-contraction, ¢ is an MKC contraction and F':
C — Cis a L-Lipschitzian and 7n-strongly monotone mapping in Hilbert space. Under
certain appropriate assumptions on the sequences {a,}, {8,}, {7,}, and {]'}, that {x,}
defined by (1.5) converges strongly to a common fixed point of an infinite family of k;-
strictly pseudo-contractions, which solves some variational inequality.

2 Preliminaries

In this section, we first recall some notations. Let C be a nonempty closed convex sub-
set of a real Hilbert space H. Let F: C — C be an operator. F is called L-Lipschitzian
if there exists a positive constant L such that

IFe—Fy| <Ly

’

for all x, y € C, Fis said to be n-strongly monotone if there exists a positive constant
N such that

’

(Fx—Fp,x—y)=n|x—y 2

for all x, y € C. Without loss of generality, we can assume that 7€ (0, 1] and L €
[1, «). Under these conditions, it is well known that the variational inequality problem
VI(F, C) has a unique solution x* € C.

A self-mapping f: C — C is a contraction on C if there exists a constant o € (0,1)
such that ||fix) - (V)| < olx - y|; Vx,y € C. We use [I¢ to denote the collection of all
contractions on C. That is, IIc = {f|[f: C — C a contraction}. We use F(T) to denote
the fixed point set of the mapping 7" and Pc to denote the metric projection of H onto
its closed convex subset C.

A mapping T is said to be non-expansive, if

||Tx— Ty” < ||x—y|| forallx,y € C.

T is said to be a k-strict pseudo-contraction in the terminology of Browder and
Petryshyn [12], if there exists a constant k € [0,1) such that

|Tx = 17||* < |x—y|* + k| (1 = T)x = (1 = T)y||*, %,y € C.

It is clear that it is equivalent to

(Te—Ty,x— ) < |x—y| 1;k||(l—T)x—(I—T)y 2 vyed,
or is equivalent to
(I-T)x—(I-Ty,x—y) = 1;k”(I—T)x—(I—T)y 2 xyeC

Page 3 of 16
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An operator A be a strongly positive bounded linear operator on H, that is, there

exists a constant ¥ > 0 such that
(Ax,x) > ylx|1%, ¥x € H.

Remark 2. From the definition of A, we note that a strongly positive bounded linear
operator A is a ||A|-Lipschitzian and y-strongly monotone operator.

In order to prove our main results, we need the following lemmas.

Lemma 2.1 (Zhou [8]). Let H be a Hilbert space and C be a closed convex subset of
H. If T is a k-strictly pseudo-contractive mapping on C, then the fixed point set F(7) is
closed convex, so that the projection Pry is well defined.

Lemma 2.2 (Zhou [8]). Let H be a Hilbert space and C be a closed convex subset of
H. Let T: C —> H be a k-strictly pseudo-contractive mapping with F(T) # ¢. Then F
(PcT) = K(T).

Lemma 2.3 (Browder and Petryshyn [12]). Let H be a Hilbert space, C be a closed
convex subset of H, and T': C — H be a k-strictly pseudo-contractive mapping. Define
a mapping / : C > H by Jx = ox +(1-0)Tx for all x € C. Then, as ¢ € [k, 1), Jis a
non-expansive mapping such that F(J) = F(T).

Lemma 2.4. (see [13]). Let {x,}, {z,} be bounded sequences in a Banach space E and
{B,} be a sequence in [0,1] which satisfies the following condition: 0 < lim inf,_,.. B, <
lim sup,_,.. B, < 1. Suppose that x,,,, = (1 - B,)x,, + B,z, for all » > 0 and limsup,,_,..
(lzn+1 - Zull - I%ns1 -xall) < 0. then lim ... ||z, - %]l = 0.

Lemma 2.5 (Xu [14]). Assume that {¢,,} is a sequence of non-negative real numbers
such that o, , 1 < (1 - y)o, + J,, where ¥, is a sequence in (0, 1) and J,, is a sequence
in R such that

(i) Zz; Yn = OS,

PN T B
(ii) limsup,,_, o, ' <0 or ) %, |8, < 00

Then lim ,, , ., o, = 0.

Lemma 2.6 ([23] Demiclosedness Principle). Let H be a Hilbert space, K a closed
convex subset of H, and T:K — K a non-expansive mapping with Fix(T) # @. If {x,} is
a sequence in K weakly converging to x and if {( - T)x,} converges strongly to y, then
(I-Dx=y.

Lemma 2.7 Let F be a L-Lipschitzian and 7-strongly monotone operator on a none-
mpty closed convex subset C of a real Hilbert space H with 0 <n < L and 0 <t < 27/

L% Then S = (I - tF): C — C is a contraction with contraction coefficient
L?

5)

Proof. From the definition of 1-strongly monotone and L-Lipschitzian operator, we have

'L'[:l—t(n—

s = Jx—y — e )

< |x—y|? + 2| Fx = Fy||* = 2¢(Fx — Fy,x —y)
lx=y[* + 22 |x = y|* = 20m]x =y
[1—t(2n — )] |x -y

oo ) oo

IA

IA
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for all x, y e C. From 0 <n < L and 0 <t < 21/L?, we have 0 < 1—t(n— tgz) <1

and

[Sx =Syl = zfx—v

’

where 7, = 1 — t(n — ‘L;) € (0,1). Hence, S is a contraction with contraction coeffi-

cient z;.

Lemma 2.8 ([23] Lemma 2.3). Let ¢ be an MKC on a convex subset C of a Banach
space E. Then for each ¢ > 0, there exists r € (0,1) such that ||x - y|| > ¢ implies |[¢x -
ol <r|x-y| forallx, ye C.

Lemma 2.9. Let C be a closed convex subset of a Hilbert space H. Let S : C — C be
a non-expansive mapping and ¢ be an MKC on C. Suppose F: C — C be a 1-strongly
monotone and L-Lipschitzian mapping with coefficient 1 and n >y > 0. Then the

sequence {x,} define by
xe =ty d(xe) + (1 — tF)Sx,
converges strongly as t — 0 to a fixed point X of S which solves the variational
inequality:
(F—y¢)x,x—2) <0, VzeF(S). (2.1)
Proof. The definition of {x;} is well definition. Indeed, From the definition of MKC,

we can see MKC is also a non-expansive mapping. Consider a mapping S, on C
defined by

Six =tyd(x) + (I — tF)Sx, x € C.

It is easy to see that S, is a contraction, when 0 < ¢t < 2('};”) Indeed, by Lemmas 2.7

and 2.8, we have

[Sex — Sy <ty o (x) — d()| + | (I — tF)Sx — (I — tF)Sy||
=ty [o(x) — g + 7 [[Sx— Sy
<ty [x=y[+7]x—v]
<0 x =yl

where 0, = ty + 7, € (0,1). Hence, S, has a unique fixed point, denoted by x,, which
uniquely solves the fixed point equation
Xt = t)/¢(xt) + (I — tF)S.xt
We next show the uniqueness of a solution of the variational inequality (2.1). Sup-
pose both X € F(S) and X € F(S) are solutions to (2.1). Not lost generality, we may
assume there is a positive number ¢ such that ||5c — 5c|| > ¢. Then, by Lemma 2.8, there

is a number r € (0,1) such that H(j)fc — ¢5CH <r ch — 5cH From (2.1), we know
(F-yo)x -4 <o, (2.2)
and

(F—y¢)t,z—x) <o, (2.3)

Page 5 of 16
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Adding up (2.2) and (2.3) gets

(F—y¢)x— (F—yo)%x—X) < 0.
Noticing that

(F—y)i— (F— y$)i & — %) = (Ff — F&, & — %) — y (65 — ¢T3 — %)
* — v ok — g% |4 - %|

= =& —yrfi -3

217“56—56

> (n—yn)|i-x|*
> (n — yr)e?
> 0.

Therefore, % = ¥ and the uniqueness is proved. Below we use x to denote the unique
solution of (2.1).

We observe that {x,} is bounded. Indeed, We may assume 0 <t < ",;V. For Vpe F
(S), fixed &, for each ¢

Case 1. |x; - p|| <e1; In this case, we can see easily that {x,} is bounded.

Case 2. ||x, - p|| = ;. In this case, by Lemma 2.8, there is a number r ; € (0,1) such

that

l¢(x) = ¢ <71 [ —p] -

”xt - P” = ”W‘f’(xt) + (I — tF)Sx, — P”
= ||t()/¢(xt) —Fp) + (I — tF)Sx, — (I - tF)P”
<t|ye@) —Fp| + 7 |x —p|
<t|yo@x:)—yo®)| +t|yop) — Fo| + |x —p]
<ty [x—pl +t[ye(p) — Fpl + 7 [x — p

therefore, ||x, — p|| < 2””:7(2/_Fp I This implies the {x;} is bounded.

Next, we prove that x, — X as t — 0.

Since {x;} is bounded and H is reflexive, there exists a subsequence {x;,} of {x;} such
that x;,, = X% By x, - Sx, = t(yp(x,) - FSx;), we have x, —Sx;,, = 0, as £, > 0. It
follows from Lemma 2.6 that x* € F(S).

We claim

|, — x| = o.

By contradiction, there is a number ¢, and a subsequence {x;,} of {x;,} such that

||xtm —x* || >¢go. From Lemma 2.8, there is a number 7, >0 such that
|p(xi,) = S| < 7oy |2, — 7

x,, — X =tm(yd(xy,) — Fx*) + (I — tnF)Sx,, — (I — tmF)x,

, we write

to derive that

Xy, — x*”2 =ty (yd)(xtm) — Fx*, x,, — x*> + ((I — twF)Sx;, — (I — twF)x*, x;, — x*)
.

(2.4)

< tm (Y9(x,,) — Fx*, x,,, — x*) + 70, ||, — x*]

Page 6 of 16
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It follows that

tmL?

~1
. ) (y(x,) — B, — x°)

Jr == (1

2 -1
= (n - t'"2L ) [[yo(x,) — yo(x*) x, — %)+ (y(x*) — Fx*, x,, — x*)]

tmLz - ® |2 * * *
=|\n- 5 [J/Ts()”xtm—x || +(y¢(x)—Fx,me—x>],

Therefore,

1

[, — x* ||2 < 2 (yo(x*) — Fx*, x,, —x*). (2.5)

n—Yé — 2
By (2.5), we get that x;, — x* It is a contradiction. Hence, we have x;, — x*.
We next prove that x* solves the variational inequality (2.1). Since

Xt = ty¢(xt) + (I — tF)Sx[

we derive that
1
(F = y¢)x = — (I = S)x: — t(Fx; — FSx,)].

Notice

(1= 8)x — (I = S)z,x — 2) > llxe — zl|* — [1Sx; — Szl [lx — 2]
> |lx, — 2l = llx, — zI|?
=0.

It follows that, for Vz € F(S),

(F=y¢)x,x —2) = —1 ((I = 8)x, — t(Fx, — FSx;), %, — 2)

= —1 <(I — S)X[ - (I - S)z,xt — z) + <Fx1 — F(Sxt),xt —Z) (2.6)

< Lllxe — Sxell [lxe — 2]l -
Noticing
Xy — Sx¢ = t[yd(x:) — FSx:].
Hence, we have

X —Sx;, — 0, ast— 0.

Now replacing ¢ in (2.6) with ¢, and letting n — o, noticing
(I=8)x, — (I —S)x* =0 for x* € F(S), we obtain ((F - yp)x*, x* - z) < 0. That is, x* €
F(S) is a solution of (2.1); Hence, x = x* by uniqueness. We have shown that each clus-
ter point of x;, (at ¢ — 0) equals x. Therefore, x, — X as t — 0.

Lemma 2.10. Let H be a Hilbert space and C be a nonempty convex subset of H.
Assume that 7;: C — E is a countable family of k;-strict pseudo-contraction for some
0 < k; < 1 and sup{k; : i € N} < 1 such that (N} F(T;) #4. Assume that {4} is a posi-

o0 [o.¢]
tive sequence such that E _ Bi= 1. Then E - wiT; : C — E is a k-strict pseudo-con-
1= 1=

traction with k = supfk; : i € N} and F(ZOO1 wiT;) = N2 F(Ty).
i=

Page 7 of 16
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Proof. Let
Gux = pu1T1x + uoTox + -+« + upTyx

and Y1, i = 1. Then, G, : C —> E is a k;-strict pseudo-contraction with k = max{k; :

1 < i < n}. Indeed, we can firstly see the case of n = 2.
(I-Gpx—U—-G)yx—y)
=(md=Tox+pus(I=T))x—pur I —=T1)y— 2 I = T2)) y, x —y)
= (I =Tx—A=T)y,x—y)+pm2(I-T)x— I =T y,x—y)

1—k 1—k
=m Hd=Tox—d =Ty + o ) la=Tyx—a—-Tyy|

1-k
= [mla=Tox—a=oy[ s | d - Tox - a- Ty’

—k
ld—Gyx—a—Gyl’,

IV

which shows that G, : C — E is a k-strict pseudo-contraction with k = max{k; : i = 1,2}.
By the same way, our proof method easily carries over to the general finite case.

Next, we prove the infinite case. From the definition of k-strict pseudo-contraction,
we know

(I=T)x—A-Tyyx—y) = 1;kua—mx—(I—Tn>y||2.
Hence, we can get

[d—Tyx—d-Tyy| < - Hx—yH (2.7)
Taking p € F(T,,), from 2.7 we have

2
Id=Toxl = [ =Tyx—d=Topl =~ |x—p[.

. o0 o0 o0
Consequently, for Vx € H, if (., F(T;) #0, u; > 0 and E _ M= 1, then ) ) wiTi
1=

strongly converges.

Let
o0
Tx=ZIJ«iTixr
i=1
we have
o0 n
Tx = ZMiTix = nlggozme_ nlggo Z o ZMsz
i=1 i=1
Hence,
((IfT)xf(IfT)yxf y)
=11m<( Z;L, ,)x < Zﬂl 1))’x— >
n—00 1 1“1 i=1 l 1 i=1
= lim Z”‘l —Tyx—(I=T)y.x—y)
n—oo Zl Iz P}
> lim Z,u, H(I—T)x—(I—T)YH
n—o0 Zl Iz Py
k 2
" lim wiT; wiTi
2 n—ooo ( 11Mz; ) ( 11“‘1121: )

1-k
=, H(IfT)xf(IfT)y”.

Page 8 of 16



Song et al. Fixed Point Theory and Applications 2012, 2012:46
http://www.fixedpointtheoryandapplications.com/content/2012/1/46

So, we get T is k-strict pseudo-contraction.
Finally, we show F (3 uiTi) = () F (Ti). Suppose that x = Y%, w;Tix, it is suffi-
cient to show that x € (N} F (T). Indeed, for p € (N, F (Ti), we have

lx=p|” = (x—p.x—p)
=<ZMiTix—P:x—P>
i=1
=Zﬂi(Tix—P/x—P)
i=1
), 11—k
<lx-pl"- ", ;Mi”x_TixHZI

where k = sup{k; : i € N}. Hence, we get x = Ty, this means that x € (5 F(T).

3 Main results

Lemma 3.1. Let C be a closed convex subset of a real Hilbert space E such that C + C
c C. Let ¢ be a MKC on C. Suppose F: C — C be a n-strongly monotone and
L-Lipschitzian operator and 0 <y <n and T; : C — E be k;-strictly pseudo-contractive
non-self-mapping such that (5} F(T;) #0. Assume k = sup {k; : i € N} < 1. Let {x,} be
a sequence of C generated by (1.5) with the sequences {e,}, {8,} and {y,} in [0,1],

assume for each n, {uf")} is a infinity sequence of positive number such that

e (n) _
i =L

The following control conditions are satisfied

o0
@)Y ap=00, lima,=0
i=1 n— 00
@iy k<B,<1,
| ) ()
. . n+l1 n
(iii) ,}ggo (Bns1 — Bn) =0, nlggOZl: (M,- —H;i | =0
1=

(iv) 0 < liminfy, <limsupy, < 1.
n—oo n—00
Then lim,, _, .. ||x, + 1 - x| = 0.
Proof. Write, for each n 2 0, B, = Zf:l Mg”)Ti. By Lemma 2.10, each B, is a k-strict
pseudo-contraction on C and F (B,) = (X, F(T:) for all # and the algorithm (1.5) can

be rewritten as

x1=x€C,
Yn = Pc [BnXn + (1 — Bn) Bnxn] , (3.1)
Xne1 = Y @ (Xn) + Vadn + (1 — y) [ —anF) yp,n > 1.

The rest of the proof will now be split into two parts.
Step 1. First, we show that sequences {x,} and {y,} are bounded. Define a mapping

Lpx : Pc[Bnx + (1 — By) Bux] .

Page 9 of 16
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Then from the control condition (ii), Lemma 2.3, we obtain L, : C — C is non-
expansive. Taking a point p € [, F (T}), by Lemma 2.2, we can get L,p = p. Hence,

we have
lyn = ol = [Laxn =] < lxa —p] -

(n-y)1=b) o
12

definition of MKC and Lemma 2.8, for any ¢ > O there is a number r, € (0, 1), if [lx, -

Pl <e then [lo(x) - @(p)ll <& If |lx, -pll = & then [lp(x) - @(p)|| < 7. ||x; -pl. It follows 3.1

and Lemma 2.7 that

Not lose generality, we can assume 7, < b < 1, and 0 < ¢, <

||xn+1 - ﬂ” = H%V(P(xn) + Yuxn + (1 = yn) [ —anF) yn — p”
= [lata (Y p(xa) = Fp) + yu(dtn — ) + [(1 = ) T — nFlyn — [(1 — yu) I — anF1p|

a,L?
<[r=m=an (0= )]l pl b=l <o byt - ol

: 200
<[1-an (=, 5 )] ool vy maxr s, = ol e} v lyoto) - ol

20—
~max{[1 T o) Il ol v o)
_max{[ _a"(”_z(lfyn) ] I =Pl fn =l e ly9(0) — Bl
'1 a,L? T F
1= (=, 5 ) [l oll v Lvoto) - ol
—maxH:lfot ( — onl? - r):| “x - ”*O‘ H #(p) — F
= n |7 201 = ) VYTe n—p n || Y PP Pl

a,L? T
1= (0=, 0 )|l pl e s lvote) - ol .

By induction, we have

”xrnl_p‘l
aan aan H V¢(p) - Fp"
Em“[[l o (”_ 201- ) _V“)} s =l + ("‘ 20— _”5> e
n— —YTe
2(1—=yn)
P R | IR [ el
"2 -y ) "M 2a -y anl?
T 2(1—yn)
anl? anl? 2| ye(p) - Fo|
Sma"[[l_““("_z(l—yﬂ)_V“)M"”_p”+°‘"["_2<1—yn>_””] -y
2 2 —_
[1—0:"(71— ol )]”xn—PHwn[n— onl }2(]/“””@ Fp”).
2(1—yw) 2(1—=yw) n—y
Hence, we have
2(ye+ — F
||xn—pusmax{||xo—p, e+ lre0) ””)}, n=0

n+yre

which gives that the sequence {x,} is bounded, so are {y,} and {L, x,}.
Step 2. In this part, we shall claim that |x,, , ; - x,] = 0, as # —> . From(3.1), we

get
X1 = An Y P(xn) + Vuxn + (1 — ) I — 0y F) Lyxy. (3.2)
Define

X1 = (L= Yu) ln + yudn, ¥n >0, (3.3)
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where

Xn+l — YnXn
I, = .
1- Vn

It follows that

ln+1 - ln
_ Oln+ly¢(xn+1) + Yne1Xne1 + [(1 = Yna1) I — 0p1 Fl1 Lus1Xne1 — Vie1Xne1
1- Yn+l
_ Yy P (%) + YnXn + [(1 — yu) I — anF]LpXy — ynXn
1- Vn
o X —FLy1x o Xn) — FLyx
_ n+1 [V¢( n+1) n+1 n+1] _On [V¢( n) n n] Lyt — Ly
1— v 1—wn
which yields that
llnsr — Lull
i1 |y @ (Xpa1) — FLpaiXpaall - o ||J/¢(xn) — FLyxn ”
= + + | Lps1Xne1 — Lpxn|l
1—yua 1—¥n
o X —FLy1x o Xn) — FLyx
< n+1 ”V‘p( n+1) n+1%n+1 ” L %n ”V¢( n) n n” L1t — Ly
1-— Vn+l 1-— }/n (34')

+ | Lns1%n — Lo |

anit |[¥d(%ne1) — FLui1Xnen | Lo Iy (xn) — FLuxa |
1= yun 1—¥n

+ [[Lps1Xn — Lnxnll .

+ [|%ne1 — Xnll

Next, we estimate ||L, , 1 %, - L, x,||. Notice that
ILns1xn — LnXull = 1Pc [Bus1%n + (1 — Bus1) Bus1Xn] — Pc [Bnxn + (1 — Bn) Buxalll

”[ﬁm—lxn + (1 - ,Bn+1) Bn+1xn] - [ﬂnxn + (1 - ,Bn) ann]”
< lxn — Brs1iXnll 1Bus1 — Bul + (1 = By) 1Brsixn — Buxyll (35)

IA

s I Tl -

—u{

oo
< 10 = BuaaXall [Buer — Bal + (1 = Bu) Y
i=1

Substituting (3.5) into (3.4), we have

Uil ”V‘P(xm-l) — FLy1X041 ” + oy ”V(b(xn) — FLyxy H

s = Inll < + [[Xne1 — Xn

1 =¥ 1—vn
o0
1
#1 — Bustall 1Brer = Bl + (1= ) D ™D = | Tl
i=1
Hence, we have
o1 = Lnll = %1 — %l
% Xnt1) — FLys1x, % X,) — FLyx,
< o lyoGn) = Flisoarll enlydtod =Flws| |\ g g
1 — Vi1 1—=¥n

I Tixnl -

o0
+(1=B) Z 'ﬂgml) _ Ml(n)
i=1

Observing conditions (i), (iii), (iv), and the boundedness of {x,} it follows that

lim sup {”ln+1 - ln” - ||xn+1 - xn”} = 0.
n— 00

Page 11 of 16
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Thus by Lemma 2.4, we have lim,, _, .. ||, - x,| = 0.
From (3.3), we have

Xne1 — Xn = (1 = yu) Ly — x4)
Therefore,

lim [|x,,1 — x4 = 0. (3.6)
n—oo

Theorem 3.2.. Let H be a real Hilbert space and C is a closed convex subset of H
such that C + C < C. Let ¢ be an MKC on C. Suppose F: C — C is n-strongly mono-
tone and L-Lipschitzian operator and 17 >y > 0. Let 7, : C — E be k;-strictly pseudo-
contractive non-self-mapping such that (5, F(T;) #0. Assume k = sup{k; : i € N} < 1.
Let {x,} be a sequence of C generated by (1.5) with the sequences {e,,}, {8,} and {y,} in

oo (n) _ (n) :
[0,1]. Assume for each #, ZH u;’ =1for all n and >0 for all i € N. They

1
satisfy the conditions (i), (ii), (iii), (iv) of Lemma 3.1 and (v) lim, , . B, = o,
limy oo Y iy |uf — u,—| =0and Y 0 i =1(u; > 0). Then {x,} converges strongly to

X € F, which also solves the following variational inequality

(v¢(x) —Fxp—%) <0, Vpe[ |F(T).

i=1

Proof. From (3.1), we obtain

A

Iy — Xnar Il + l%ne1 — Lunll
Iy — Xnaa | + “‘xn)"p(xn) + ¥n (Xn — LuXn) — anFLpXy “

lxn — Xne1ll + ot (ly @ )1l + IFLpxp 1) + v 1% — Lyl

ILyxn — x|

IA

So ILnxn =2l < 1, (1% — Xnsr Il + & ([ () | + IFLuxull), which together with

the condition (i), (iv) and Lemma 3.1 implies
lim |ILnxn — xnll = 0. (3.7)
n—oo
Define B =) °, uiT;, then B : C — E is a k-strict pseudo-contraction such that

F (B) =, F(T:) by Lemma 2.10, furthermore B,, x — Bx as n —  for all x € C by
(v). Defines T: C — E by

Tx = ax+ (1 — o)Bx.
Then, T is non-expansive with F(T) = F(B) by Lemma 2.3. It follows from Lemma 2.2
that F(P-T) = F(T). Notice that
IPcTxny — xull < 1% — LpXp|l + |ILyxy — PcTxy|
< llxn — Luxall + ngnxn + (1 = Bn)Bnxn — [len +(1 - Ot)an] ”
< %0 — Luxnll + ” (Bn — @) (Xn — Bpxn) + (1 — ) (Byxy — Bxy) H
< llxp — Lpxnll + (Bn — a) llxn — Buxyll + (1 - 05) [1Buxy — Byl
which combines with (3.7) yielding that
lim ||PcTx, — x4 = 0. (3.8)
n—-oo
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Next, we show that

limsup (y¢(X) — FX, x, — %) < 0, (3.9)

n—oo
where X = lim,_, gx; with x, being the fixed point of the contraction

x> typ(x) + (1 — tF)PcTx.
To see this, we take a subsequence {xnk} of {x,} such that

lim sup (y ¢ (X) — FX, x, — &) = klim (yo(%) — FX, xn, — %).

n—oo

We may also assume that X, — ¢. Note that g € F(T) in virtue of Lemmas 2.6, 2.2,
and (3.8). It follows from Lemma 2.9, we can get that

lim sup (y (%) — FX, x, — &) = klirn (yo(x) — Fx, xy, — %) = (y(X) — FX,q —X) < 0.

Finally, we show ||x, — X|| — 0. By contradiction, there is a number &, such that

limsup ||x, — %|| > eo.
n—oo

Case 1. Fixed ¢; (g1 <&), if for some n > N € N such that ||xn - 5'c|| > gy — €1, and for
the other # > N e N such that ||x,, - 56” < & — €1
Let

2 <y¢(5€) — FX, xp1 — 5C>

M. =
" (80 — £1)?

From 3.9, we know lim sup, _, .. M,, < 0. Hence, there are two numbers / and N,

when # >N we have M,, < h, where h = min {r/ - z(oif; )~ y}. From the above intro-

duction, we can extract a number ny >N satisfying Hxn0 — 5c|| < g9 — €1, then we esti-

mate ||xn0+1 - 5c|| From Lemma 2.7 and (3.1), we have

g — %[

= [letmy ¥ () + Vigng + [(1 = V) I = g F ym, — &
” [(1 - y"o)l On, ]yﬂo - [(1 - y"O) I— a"oF] X+ ny [}/¢ (x"n) - F&] + Vng (x"o - 55) ”2
= ([(1 = vo) T = etnoF] vy = [(1 = o) I = g F] X + oty [ (%) — FX] + ¥y (Xny — %), Xnpu1 — )
= ([(1 = vuo) I = aneFlyny = [(1 = vu) I = otng F] % g — %) + {otng [¥ @ (ny) — FE], g1 — )

+ (Vg (X — E) s Xnpe1 — X)

= ([0 = vao) T = g FL vy = [(1 = ¥io) T = €y F] % g1 = )+ €ty (v (%) = ¥ () Xgs1 — )
+ oty (YB(X) — FX, Xng1r — &) + Yy (¥ny — X, Xnyu1 — &)

= ”[(1 - V"O)I_ ny ]yno [(1 - VWO) a,,OF].?NC” ”x"0+1 _i” +n Y ”x"o - J~CH ”x"o+1 - %”
oty (1 () = 5, g =) 1 [, — 5] [0 — 5]

3
e L ey | S [ PR TR
2 (1 - Vﬂo)
+ Uy, <V¢(’~C) — FX, Xpy41 — 55) + Vno ”xno - 55” Hxﬂg+l - 5(7”

L? ~ ~ ~ " -
- [1 — ay, (,, - (‘;"i ) y)] %0, — || |%nos1 — %[ + et (¥ D(X) — FX, xXppe1 — %)

M (1= Y] e 1 e = 17+ e (6 — F s — )
2 2(1 =) 2

IA

IA

M (= 2 ) o — 007+ e — 17 + ety [y () — FE, 5ot — 2
2 no 2(1 _yn) Y 0 2 no+1 no \V 1 Xng+1
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which implies that
Jnger = 3]

1- (— anl® 242 %) — FR, Xpg01 —
<[ @\ 50 L) V)](SO €)% + 20, (Y (%) — FX, Xpps1 — X)

= [1 — an (n - 2(TniL;no) -y- Mnu)] (g0 — 1)
< (0 —#1)°
Hence, we have
||x,,0+1 — 5c|| < &y —€1.
In the same way, we can get
[0 —X| <e0—e1, ¥n=mno.
It contradict the limsup,,_, ., ||x, — X| > &o.

Case 2. Fixed ¢; (g; <gp), if ||x,, — 5c|| >gog—e¢pforall w > Ne N. In this case from

Lemma 2.8, there is a number r € (0,1), such that

|¢ () — ¢@)| =<1 [xn — %

, n=>N.

It follow 3.1 that

[ — 2
= ([ =y T = @nFlyn — (1 = y) T = @uF1 & st — B) + @ [y () — y$(E), X1 — )
+an (Y P(%) — FX, Xpa1 — X) + Vo (0 — %, X1 — X)
1?2 - - - -
<[1-mman (v, )] =5 b =5l s 5] s =5
+ (B — F, a1 — F) 4y [0 — 7] 101 — ]

< Muman(n= 2 ) o= 87 + L et =5+ s = 27+ n 8@ = Fi s — 9
=5 201 =) 2 2

which implies that

Jnn — %]
2 2 2(y$(E) — Foxun —3) (3.
<[ (o™ )b e [r ] OO e =R (310
201y 21— ) =ity — T

Apply Lemma 2.5 to (3.10) to conclude x, — X as n — oo. It contradict the
||x,, - 5c|| > g9 — £1. This completes the proof.

Remark 3. We conclude the article with the following observations.

(i) Theorem 3.2 improve and extend Theorem 3.4 of Marino and Xu [24], Theorem
3.2 of Zhou [8], Theorem 2.1 of Qin [9] and includes those results as special cases.
Especially, our results extends above results form contractions to more general
MKC. Our iterative scheme studied in this article can be viewed as a refinement
and modification of the iterative methods in [8,9,24]. On the other hand, our itera-
tive schemes concern an infinite countable family of k;-strict pseudo-contractions
mappings, in this respect, they can be viewed as an another improvement.

(ii) Our results extend above results form strong positive linear bounded operator

to n-strongly monotone and L-Lipschitzian operator.
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(iii) The advantage of the results in this article is that less restrictions on the para-
meters {o,,}, {B,}, {y,} and {771"} are imposed. Our results unify many recent results
including the results in [8,9,24].

(iv) It is worth noting that we obtained two strong convergence results concerning
an infinite countable family of A-strict pseudo-contractions mappings. Our result is
new and the proofs are simple and different from those in [6,8,9,24,25].
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