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Hydrothermal growth of TiO2 nanowire
membranes sensitized with CdS quantum dots
for the enhancement of photocatalytic
performance
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Abstract

In this paper, TiO2 nanowires (NWs) on Ti foils were prepared using a simple hydrothermal approach and annealing
treatment. CdS quantum dots (QDs) were assembled onto the crystallized TiO2 NWs by sequential chemical bath
deposition. Ultraviolet-visible absorption spectra showed that CdS adds bands in the visible to the TiO2 absorption
and exhibited a broad absorption band in the visible region, which extended the scope of absorption spectrum
and helped improve the photocatalytic degradation efficiency. The results of photocatalytic experiment revealed
that CdS-TiO2 NWs possessed higher photocatalytic activities toward methyl orange than pure TiO2 nanowires. The
degradation efficiency of 96.32% after ten cycles indicated that the as-prepared CdS-TiO2 composite exhibited
excellent long-time recyclable ability and can be reused for the degradation of contaminants.
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Background
Titania (titanium dioxide (TiO2)), a semiconductor photo-
catalyst, has attracted tremendous attentions in the past
decades due to its chemical stability, low cost, high reus-
ability, and excellent degradation efficiency of organic
pollutants [1-3]. However, wide bandgap (approximately
3.2 eV) restricts its photocatalytic sensitivity in the UV re-
gion with only about 4% to 5% of solar spectrum falling in
the UV range. So, the effective use of solar energy espe-
cially visible light remains a great challenge in practical
photocatalytic applications [4,5]. Moreover, low electron
transfer rate and high recombination rate of photogener-
ated electrons and hole pairs also limit the enhancement
of the photocatalytic efficiency to some extent, which has
been recognized as a major obstacle to meet the practical
application [6].
Much effort has been made to improve the photocata-

lystic performance of nanosized TiO2, including semi-
conductor coupling, nonmetal and metal doping, and
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surface modification [7-10]. CdS quantum dots (QDs)
with tunable bandgap (3.5 to 2.2 eV) could inject the
photo-induced electrons into the conduction band of wide
bandgap semiconductors, improve the energy conversion
efficiency, and hence give new opportunities to harvest
light in the visible region of solar light [11], which have
been reported for the CdS-sensitized TiO2 nanoparticles,
nanorods, and nanotubes [12-15]. Despite these achieve-
ments, the delivered sensitized TiO2 nanomaterials are
supposed to create secondary pollution. The recyclability
and reuse of the photocatalyst remain a challenge. In this
letter, we directly grew TiO2 nanowire (NW) membranes
on Ti substrates using a simple hydrothermal treatment
method and sensitized TiO2 NWs with CdS QDs via
chemical bath deposition (CBD) [16]. As expected, the as-
prepared CdS-TiO2 composite exhibited high activity and
strong durability for the photodegradation of methyl or-
ange (MO) under simulated solar irradiation.
Methods
Synthesis of CdS-TiO2 NWs photocatalysts
All chemicals are of analytical grade and used as received.
In a typical synthesis, Ti foils are cut into 15 mm× 10-mm
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sizes and ultrasonically cleaned in acetone, alcohol, and
distilled water for 5 min, respectively. After polishing in a
mixed solution of HF, HNO3, and distilled water (the vol-
ume ratio was 1:1:4) for three times, 30 mL of 1 M NaOH
aqueous solution and the polished Ti foils were trans-
ferred into a 50-mL Teflon-lined autoclave, which were
kept at 200°C for 48 h before cooling to room temperature
naturally. The obtained foils containing TiO2 NWs were
rinsed thoroughly with distilled water and then annealed
at 350°C for 3 h in air atmosphere. CdS QDs were fabri-
cated onto the TiO2 NWs by CBD approach. TiO2 NWs
were sequentially immersed in two different beakers for
5 min at every turn. The first one contained 0.1 M Cd
(NO3)2, and the other one contained 0.1 M Na2S in DI
water. Following each immersion, the films were dried at
100°C for 30 min before the next dipping. This was called
one CBD cycle. In order to make sure that the CdS QDs
were uniformly deposited on the TiO2 NWs, the cycles
were repeated two times, four times, and six times. The
samples labeled as CdS(2)-TiO2 NWs, CdS(4)-TiO2 NWs,
CdS(6)-TiO2, and CdS(10)-TiO2 NWs correspond to two,
four, six, and ten CBD cycles.

Characterization
The structures and morphologies of the as-obtained
samples were characterized by X-ray powder diffraction
(XRD; Bruker D8-ADVANCE, Ettlingen, Germany) using
an 18-kW advanced X-ray diffractometer with Cu Kα radi-
ation (λ = 1.54056 Å), scanning electron microscopy
(SEM; S4800, Hitachi, Tokyo, Japan), and high-resolution
transmission electron microscopy (HRTEM; JEOL-2010,
Figure 1 XRD patterns of the as-prepared heteronanostructure of CdS
Tokyo, Japan). The ultraviolet-visible (UV-vis) spectrum
was measured using a U-4100 Hitachi ultraviolet-visible
near-infrared spectrophotometer in the range of 240 to
800 nm.
Photocatalytic experimental details
The photocatalytic degradation experiments for MO were
carried out in a self-prepared open air reactor. During the
degradation procedure, the samples were stirred in a 50-
mL beaker containing 40 mL of MO aqueous solution
(20 mg/L) with no oxygen bubbles. Before irradiation by a
350-W xenon lamp, the adsorption equilibrium of the dye
molecules on the catalyst surface was established by stir-
ring in the dark for 30 min, and the vertical distance be-
tween the solution level and the horizontal plane of the
lamp was fixed at 10 cm. At an interval of 10 min, 3 mL
of solution was taken out from the reactor. The absorbance
of the solution was determined on a UV-vis absorption
photometer (UV-3200S, MAPADA Analytic Apparatus
Ltd. Inc., Shanghai, China) at 465-nm wavelength. The vis-
ible light source was obtained using a 420-nm cutoff filter
in the experiment.
Results and discussion
The XRD patterns of the CdS(4)-TiO2 NWs were ac-
quired as shown in Figure 1. The X-ray diffraction pat-
tern of the CdS QDs on TiO2 NWs proves the existence
of CdS by its three characteristic peaks (2θ = 26.4° (111),
43.9° (220), and 51.9° (311); JCPDS card no.: 65-2887),
and the other diffraction peaks attribute to the anatase
QDs on TiO2 NWs.
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phase TiO2 NWs (JCPDS card no.: 21-1272 ) and Ti foil
substrate (JCPDS card no.: 44-1294).
The SEM images of pure TiO2 NWs and CdS(4,6,10)-

TiO2 NWs and the TEM and HRTEM images of CdS
(4)-TiO2 NWs are presented in Figure 2. The surface of
titanium foil is etched and covered with TiO2 NWs with
diameter of about 15 nm. Moreover, TiO2 nanowires
possess smooth surface (Figure 2a). The SEM image dis-
plays the membrane formed by overlapping and inter-
penetrating of the TiO2 NWs. When the deposition
cycle number is four, the surfaces of the TiO2 NWs be-
come rougher than those of the pure TiO2 NWs, indi-
cating that the diameters of the CdS particles are in the
nanoscale range (Figure 2b). For sample CdS(6)-TiO2

NWs, the surfaces of the TiO2 NWs are thoroughly cov-
ered by particles and rougher than those of the CdS(4)-
TiO2 NWs (Figure 2c). With the increase of deposition
cycle number to ten, the morphologies of the TiO2 NWs
for the CdS(10)-TiO2 NWs are kept almost the same
Figure 2 SEM, TEM, and HRTEM images of the TiO2 NWs and CdS(4,6,
CdS(4)-TiO2 NWs. (c) SEM image of CdS(6)-TiO2 NWs. (d) SEM image of CdS
fringes of CdS(4)-TiO2 NWs.
with those of the CdS(6)-TiO2 NWs, while the diameters
of the TiO2 NWs of CdS(10)-TiO2 seem to be larger
than those of CdS(6)-TiO2, which indicates that more
CdS nanoparticles are deposited on the TiO2 NW sur-
faces (Figure 2d). To further investigate the deposition,
morphology, and size of CdS, the TEM and HRTEM im-
ages of the CdS(4)-TiO2 NWs are shown in Figure 2e,f.
CdS QDs with sizes about 3 to 6 nm are distributed on
TiO2 NW surfaces, making the TiO2 NW surface rough.
This can be further confirmed by the lattice fringes
(Figure 2f ) of the circular area marked in Figure 2e. The
interplanar spacings are 0.35 and 0.34 nm (Figure 2f),
consistent with the (101) plane of anatase TiO2 and (111)
plane of CdS.
In order to study the optical response of the CdS QD-

sensitized TiO2 NW composites, UV-vis absorption spec-
tra for samples of pure TiO2 NWs and CdS(i)-TiO2 NWs
(i = 2,4,6) were shown in Figure 3a. Because pure TiO2

NW absorption is mainly UV, no significant absorbance
10)-TiO2 NWs. (a) SEM image of pure TiO2 NWs. (b) SEM image of
(10)-TiO2 NWs. (e) TEM image of CdS(4)-TiO2 NWs. (f) HRTEM lattice



Figure 3 UV-vis absorption spectra of TiO2 and CdS(2,4,6)-TiO2 NWs and their band gaps. (a) UV-vis absorption spectra of TiO2 NWs and
CdS(2,4,6)-TiO2 NWs. The bandgap of the samples synthesized by different S-CBD cycles: (b) 2 times, (c) 2 times, (d) 4 times, and (e) 6 times.

Li et al. Nanoscale Research Letters 2014, 9:270 Page 4 of 6
http://www.nanoscalereslett.com/content/9/1/270
for visible light could be seen, which is consistent with
its large energy gap. For CdS(i)-TiO2 NWs (i = 2,4), both
TiO2 absorption edge and CdS absorption edge can be de-
tected, as shown in Figure 3c,d, and the corresponding
bandgaps of CdS nanoparticles shift from 2.58 to 2.44 eV,
respectively. While for the CdS(6)-TiO2 NWs, the calcu-
lated bandgap is 2.25 eV, as shown in Figure 3e. The ab-
sorption intensity in the visible light range is vital to the
improvement of the photocatalytic activity of TiO2.
The photocatalytic activities of the as-prepared samples

were evaluated by the degradation of MO aqueous solution
under xenon lamp irradiation. Using the Beer-Lambert
law, the degradation efficiency (D) of the MO aqueous
solution can be calculated by the following expression:

D ¼ A0−At

A0
� 100%;
Figure 4 Photocatalytic degradation efficiencies. (a) Pure TiO2 NWs and
irradiation. (b) Pure TiO2 NWs and CdS(i)-TiO2 NWs (i = 2,4,6) for MO solu
(c) The cycling experiment for the as-prepared photocatalysts for MO u
where A0 and At are the absorbance of the characteristic
absorption peak of MO at 465 nm in aqueous solution
before and after irradiation for a given time. Figure 4
shows the time-dependent photocatalytic degradation ef-
ficiency curve of the pure TiO2 NWs and CdS(i)-TiO2

NWs (i = 2,4,6,10) under simulated solar irradiation and
visible irradiation. The photodegradation efficiencies for
pure TiO2 NWs and CdS(i)-TiO2 NWs (i = 2,4,6) under
simulated solar irradiation are 51.96%, 95.65%, 98.83%,
and 94.08%, respectively, after 120-min irradiation, as shown
in Figure 4a. Clearly, CdS sensitization increases the photo-
catalytic efficiency. However, higher CdS concentration
does not necessarily lead to better photocatalytic activity.
Because higher CdS decoration would cover more surface
area of TiO2 NWs, the photocatalytic activity of TiO2

NWs in the ultraviolet light range is hence reduced.
CdS(i)-TiO2 NWs (i = 2,4,6) for MO solution under simulated solar
tion under visible irradiation obtained using a 420-nm cutoff filter.
sing sample CdS(4)-TiO2 NWs.
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Figure 4b shows the photocatalytic efficiency curves of
the pure TiO2 NWs and CdS(i)-TiO2 NWs (i = 2,4,6,10)
under visible light irradiation obtained with a 420-nm cut-
off filter. In this case, the efficiencies are 2.81%, 35.52%,
38.59%, 42.69%, and 41.23% in 120 min, respectively. The
photocatalytic efficiencies increase slightly with the in-
crease of CdS dosages at first and then become saturated
under visible irradiation; the photocatalytic activity is
greatly reduced, and almost no activity is observed for the
pure TiO2 NWs.
The synergistic effect mechanism is proposed for the

understanding of charge generation and transportation
for CdS(i)-TiO2 NWs (i = 2,4,6,10). The coupling be-
tween a UV-excited semiconductor (TiO2) and a visible
light-excited semiconductor (CdS) can effectively enhance
the solar energy utilization efficiency, especially in visible
light regime. CdS possesses higher conduction band and
valence band than TiO2 [9,14,15]. The band configuration
induces the transfer of photogenerated electrons from
CdS to TiO2 and photogenerated holes from TiO2 to CdS,
which makes charge separation effective. Under simulated
solar irradiation, the CdS particles and TiO2 NWs could
both be excited; photogenerated electrons and holes are
transported to the TiO2 NWs surfaces and CdS particles'
surface, respectively; while under visible light irradi-
ation, only the CdS particles could be excited. Photo-
generated electrons are transported to the inner TiO2

NW surfaces, and holes are kept on the CdS particles'
surface, which reduces the photocatalytic activity when
compared with simulated solar irradiation. At first, with
the increase of deposition cycle number, more CdS parti-
cles are deposited on the TiO2 NW surfaces, more photo-
generated electrons are generated by the visible light
irradiation, and accordingly, the photodegradation ef-
ficiency is increased.
When the deposition cycle numbers are 6 and 10, the

TiO2 NW surfaces are thoroughly covered with CdS nano-
particles. For sample CdS(10)-TiO2 NWs, the inner CdS
nanoparticles on the TiO2 NW surfaces cannot receive vis-
ible light irradiation, whose photocatalytic efficiency has
been saturated and almost the same with that of sample
CdS(6)-TiO2 NWs. Based on the above mechanism, it is
understood that a remarkable absorption enhancement
with the increase of deposition cycle number could not be
translated to major photocatalytic efficiency increase. In
addition, due to its photocorrosion, CdS QDs have been
often exploited to sensitize a certain semiconductor with
regulated band configuration and help separate the photo-
generated electrons and holes [17]. In order to evaluate
the photodegradation of MO by plain CdS QDs, a control
experiment was made. CdS QDs were prepared onto
a clean glass substrate with the same size via the S-CBD
approach. The cycles were repeated six times, and the
photodegradation efficiency is only 11.4% after a 120-min
visible irradiation, which further supports the synergistic
effect mechanism between CdS QDs and TiO2 NWs.
The recyclability and ease of collection for the photo-

catalysts are very important in practical application.
Figure 4c shows the cycling experiment for the as-prepared
photocatalysts for MO using sample CdS(4)-TiO2 NWs.
The degradation efficiency after 120 min reduces from
98.83% to 96.32% after ten cycles. Evidently, the photo-
catalytic activity for MO degradation does not change
much after each cycle, revealing the excellent cycling
stability of the as-prepared CdS(4)-TiO2 NWs. The under-
curve inset in Figure 4c shows the photographs and
photocatalytic degradation efficiency of a typical sample
CdS(4)-TiO2 NWs for recycled MO reduction, which shows
ease of collection for the photocatalysts.

Conclusions
In summary, TiO2 NWs on Ti foils were prepared using
simple hydrothermal treatment followed by annealing.
CdS QDs were decorated on the obtained TiO2 NWs by
simple S-CBD technique. The deposited CdS QDs on
the surface of the TiO2 NWs could efficiently extend the
scope of absorption spectrum from 390 to 600 nm and
greatly enhanced the photocatalytic activity in comparison
with pure TiO2 NWs under simulated solar irradiation
and visible irradiation. In addition, the as-prepared CdS-
TiO2 NW composite photocatalysts also exhibited ex-
cellent long-time recyclable ability for organic pollutant
degradation.
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