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A new hydrodynamic mechanism is proposed for the ion beam-induced surface patterning on solid surfaces. Unlike
the standard mechanisms based on the ion beam impact-generated erosion and mass redistribution at the free
surface (proposed by Bradley-Harper and its extended theories), the new mechanism proposes that the
incompressible solid flow in amorphous layer leads to the formation of ripple patterns at the amorphous-crystalline
(a/c) interface and hence at the free surface. lon beam-stimulated solid flow inside the amorphous layer probably
controls the wavelength, whereas the amount of material transported and re-deposited at a/c interface control the

Background

Fabrication of self-organized nano-structures over solid
surfaces using energetic ion beam irradiation has received
a remarkable attention in the last couple of decades. It
is an elegant and cost-effective single-step approach over
lithographic methods for device fabrication. In general, a
uniform ion irradiation of solid surfaces for intermediate
energies (10> to 10* €V) causes a self-organized topographic
pattern of ripples, holes, or dots [1-4]. On the other hand,
irradiation with higher energies (10° to 10%V) causes the
phase transformations [5]. In 1988, the first analytical ap-
proach to study the surface patterning was given by Bradley
and Harper (BH) [6] on the basis of two competing pro-
cesses: the destabilizing effect of curvature dependent
roughening and the stabilizing effect of surface diffusion.
Further theoretical refinements of BH's model have been
proposed to underline the secondary effect of local curvature-
dependent sputtering, ion beam-induced smoothing, and
hydro-dynamical contribution [7,8]. BH's linear and its
extended models explain many experimental observa-
tions but suffered many limitations also [9-11]. Investi-
gations by Madi et al. [11] and Norris et al. [12] showed
that the ion impact-induced mass redistribution is the
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prominent cause of surface patterning and smoothening
for high and low angles, respectively. Castro et al. [13,14]
proposed the generalized framework of hydrodynamic
approach, which considers ion impact-induced stress
causing a solid flow inside the amorphous layer. They
pointed out that the surface evolution with ion beam is
an intrinsic property of the dynamics of the amorphous
surface layer [15]. All above experimental findings and
their theoretical justification raise questions on lack of a
single physical mechanism on the origin and evolution
of ripples on solid surface.

In this work, we propose a new approach for explaining
all ambiguity related to the origin of ripple formation. We
argue that amorphous-crystalline interface (a/c) plays a
crucial role in the evolution of ripples. We have shown
that the ion beam-induced incompressible solid flow in
amorphous layer starts the mass rearrangement at a/c
interface which is responsible for ripple formation on
the free surface rather than earlier mentioned models of
curvature-dependent erosion and mass redistribution at
free surface.

Presentation of the hypothesis

In order to study the role of a/c interface in surface pattern-
ing of Si (100) surface during irradiation, we performed a
series of experiments by preparing two sets of samples with
different depth locations of a/c interface. The variation in
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Figure 1 Schematic view of 50 keV Ar* ion beam irradiation.
For first stage (to prepare two deferent depth locations of a/c
interface) at an angle of (a) 60° and (b) 0°, with respect to surface
normal; second stage irradiation (for fabrication of ripples) at an
angle of 60° named as (c) set A and (d) set B.
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Subsequent

depth location of a/c interface is achieved by irradiat-
ing the Si surface using 50 keV Ar" ion at a fluence of
5 x 10" ions per square centimeter (for full amorphization)
at different angles of incidence, viz, 60° (sample set A) and
0° (sample set B) with respect to surface normal. The depth
location of a/c interface would be higher in set B samples
as compared to set A samples due to higher projected ion
range for 0° as compared to 60° ion beam irradiation.
Figure la,b shows the schematic view for ion beam-
stimulated damage range for off-normal incidence of
ion beam at 60° (named as set A) and normal incidence
(named as set B), respectively. Subsequently, to grow
ripples in the second stage of irradiation, both sets of
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samples were irradiated at an angle of 60° wrt surface nor-
mal using 50 keV Ar" ion beam, as shown in Figure 1c,d.
For the set A samples, ion beam-stimulated damage effect
will reach at a/c interface in the second stage irradiation
while it remains inside the amorphous layer for set B
samples due to deeper depth location of a/c interface.
To have detailed experimental data, a number of samples
were prepared by varying fluence from 3 x 107 to
9 x 10" ions per square centimeter for each set. Dur-
ing the irradiation, the base pressure of chamber was
maintained at approximately 10”7 mbar. The ion beam
current density was kept constant at 15 pA/cm? The
beam was scanned uniformly over an area of 10 mm x
10 mm by electromagnetic beam scanner. After irradiation,
the samples were analyzed by Nano Scope Illa atomic force
microscope (AFM; Bruker AXS Inc, Madison, WI, USA)
under ambient conditions in tapping mode. Cross-sectional
transmission electron microscopy (XTEM) was carried
using a Tecnai-G2-20 TEM (FEI, Hillsboro, OR, USA)
facility operating at 200 kV. The cross-sectional speci-
mens for TEM study were prepared by Ar ion beam
milling at 4 kV/20 pA and at an angle of 4° with respect
to the sample surface.

Testing the hypothesis

AFM characterization was carried out on all samples after
each irradiation step. After first irradiation, the average
RMS roughness for both sets of the samples was nearly
similar (0.5 + 0.1 and 0.6 + 0.1 nm). In the second stage,
all samples were irradiated by a stable 50 keV Ar" at same
angle of incidence (60°) for all fluences. Figure 2a,b,c,d,
and ef,gh shows the AFM images for set A and set B
samples after the second stage irradiation at the fluences
of 3 x 10%, 5 x 10", 7 x 10", and 9 x 10 ions per
square centimeter, respectively. It was found that for set
A, the wavelength and amplitude were increasing with
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Figure 2 AFM images for the 50 keV Ar*-irradiated set A and set B samples at an angle of 60°. At the fluences of 3 x 10"/ (a,e), 5 x 10"/
(b,f), 7 x 10" (c,g), and 9 x 10'7 ions per square centimeter (d,h), respectively. The arrows in the figures indicate the projection of ion beam
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Figure 3 Variation of wavelength and amplitude of ripples for
set A and set B samples with ion beam fluence.

increase in irradiation fluence (as shown in Figure 3).
For set B samples, the average wavelengths of ripples were
nearly same as that of set A samples at corresponding
fluences. However, the observed average amplitudes of
ripples are about one order less in magnitude for set B as
compared to those for set A since the only difference
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between two sets of samples was the depth location of
a/c interfaces. If the evolution ripples were based on
curvature-dependent sputtering and surface diffusion,
we should have got ripples of identical dimensions for
corresponding equal fluence in both sets of samples.
Despite similar initial surface morphology of both sets
of samples after first stage of irradiation, the observation
of similar wavelength and lower amplitude of ripples in
set B samples as compared to set A samples casts doubt
on the validity of Bradley-Harper and its extended theor-
ies. It can be emphasized here that we repeated complete
set of experiment with two different ion beams and at dif-
ferent energies (Ar at 50 keV and Kr at 60 keV). And in all
cases, the observed trend was similar. To the best of the
authors' knowledge, there is no existing model which
could physically explain this anomaly. The prominent role
of the a/c interface in formation of ripples is established in
this work.

Figure 4a,b,c shows XTEM images for set A samples
corresponding to irradiation fluences of 5 x 10'® (after
first irradiation), 7 x 10'7, and 9 x 10" ions per square
centimeter, respectively. Similarly, Figure 4d,e images
are for set B samples irradiated at fluences of 5 x 10'°
(after first irradiation) and 7 x 10" ions per square centi-
meter, respectively. For the set A samples (Figure 4a), it
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Figure 4 X-TEM images of 50 keV Ar*-irradiated set A samples. At the fluences of (@) 5 x 10'%, (b) 7 x 10", (c) 9 x 10" ions per square
centimeter, and set B samples (d) 5 x 10'° (for normal incidence) and (e) 7 x 10" ions per square centimeter. SAED pattern for the amorphized
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was observed that top amorphous layer has a uniform
thickness of about 74 nm which after irradiation at 7 x
10" ions per square centimeter, results in ripple forma-
tion. From the XTEM images and using grid line method
[16], it was found that during the rippling processes, the
overall cross-sectional area of amorphous layer remains
constant which validates the condition of incompressible
solid mass flow inside the a-Si layer [13,14]. For the set B
samples, the initial a-Si layer thickness was found to be
170 nm, as shown in Figure 4d. Interestingly, the thickness
of a-Si was found to be decreased to 77 nm for the subse-
quent irradiated sample for the fluence of 7 x 107 ions
per square centimeter, (Figure 4e). Observed ripple di-
mensions for all samples measured from XTEM were
consistent with AFM data. Selected area diffraction (SAED)
pattern taken on both sides of a/cinterface confirmed
the amorphized and bulk crystalline regions, as shown
in Figure 4f.

Implication of the hypothesis

To physically understand the underlying mechanism, we
considered a radical assumption that the formation of
ripples is initiated at a/c interface due to the erosion and
re-deposition of Si atoms under the effect of solid flow.
Due to incompressible nature of this solid mass flow
inside amorphous layer, structures formed at the a/c
interface reciprocate at the top surface. Similar process
of ripple formation on sand (ripples caused by air flow
on sand dunes, etc.) has been well observed and studied
[17,18]. Here, we assume that the rearrangement of Si
atoms is taking place at the a/c interface due to solid flow
inside damaged layer, which controls the process of ripple
formation. In the case of set A samples, the rearrangement
of Si atoms at the a/c interface starts instantaneously with
second stage irradiation as the ion range is equal to depth
of a/c interface. However, for set B samples, second stage
irradiation results in surface erosion before the ion beam
effect reach at a/c interface. Thus, the process of mass re-
arrangement at a/c interface lags behind in set B samples
as compared to set A samples. This fact was confirmed by
the formation of ripples with appreciable average ampli-
tude (23 nm) and wavelength (780 nm) observed at still
higher fluence of 1.5 x 10'® ions per square centimeter.
Therefore, amplitude is less in magnitude in set B samples
as compared to set A samples at corresponding fluences.
Since the ion beam parameters are identical in the second
stage of irradiation, so the solid flow would be identi-
cal in both set of samples. This solid flow is probably
responsible for the similar wavelength of ripples for
both set of samples. Castro et al. [13,14] and Kumar et al.
[16] have also discussed role of solid flow for surface
rippling. As already discussed, our AFM and XTEM
results could not be explained by existing models of
BH and its extended theories, where they consider it
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only surface effect. The role of a/c interface has not
been considered in the formation of ripples on solid
surfaces by earlier groups [6,12,13]. By considering rip-
ple formation as an a/c interface-dependent process, all
phenomena like ripple coarsening, propagation, etc., can
be correlated.

Conclusions

In conclusion, by designed experiments and theoretical
modeling, a new approach for explaining the origin of
ripple formation on solid surface has been proposed.
Formation of ripples at top surface is a consequence of
mass rearrangement at the a/c interface induced by in-
compressible solid flow inside the amorphous layer. The
control parameter for ripple wavelength is solid flow
velocity, while that for the amplitude is amount of sili-
con to be transported at the interface.
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