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Abstract

Zirconium (Zr) is an important alloying element to Mg-Zn-based alloy system. In this paper, we report the
formation of the β-type precipitates on the nanoscale Zr-rich particles in a Mg-6Zn-0.5Cu-0.6Zr alloy during ageing
at 180°C. Scanning transmission electron microscopy examinations revealed that the nanoscale Zr-rich [0001]α rods/
laths are dominant in the Zr-rich core regions of the as-quenched sample after a solution treatment at 430°C. More
significantly, these Zr-rich particles served as favourable sites for heterogeneous nucleation of the Zn-rich β-type
phase during subsequent isothermal ageing at 180°C. This research provides a potential route to engineer
precipitate microstructure for better strengthening effect in the Zr-containing Mg alloys.
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Background
Mg-Zn-based alloys have attracted considerable atten-
tion due to their pronounced age-hardening effect [1-5].
The key strengthening precipitates in this alloy system
have been considered as two types of Zn-rich precipi-
tates, the rod-like β1′ precipitates perpendicular to the
(0001)α plane and the plate-like β2′ precipitates parallel
to the (0001)α plane [1-5]. Hardening by precipitation of
β-type precipitates is believed to be the main strengthen-
ing mechanism of Mg-Zn-based alloys [1].
Recently, a peak-aged Mg-6Zn-0.5Cu-0.6Zr cast alloy

has been reported to possess excellent mechanical proper-
ties with an ultimate tensile strength of 266.3 MPa, a 0.2%
proof yield strength of 185.6 MPa and an elongation of
16.7% [5]. Both the strength and ductility of the newly
designed Mg-6Zn-0.5Cu-0.6Zr alloy are superior to those
of the traditional Mg-6Zn-xCu-0.5Mn alloys [5,6]. Since
Zr-rich particles may form after a solution treatment in
Zr-containing Mg alloys [2,7,8], the present research aims
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to unveil the effect of these pre-existing nanoscale Zr-rich
particles on the formation of the subsequent β-type preci-
pitates of the Mg-6Zn-0.5Cu-0.6Zr alloy during age
hardening.
Methods
The alloy with a nominal composition of Mg-6Zn-0.5Cu-
0.6Zr (wt.%) for this study was prepared by melting
high-purity Mg and Zn with Mg-28.78 wt.% Cu and
Mg-31.63 wt.% master alloys, in a steel crucible and
by casting into a permanent mould under an Ar
atmosphere. Samples sectioned from the ingot were
solution-treated for 24 h at 430°C. To investigate the
microstructural evolution of the Zr-rich and Zn-rich pre-
cipitates, the water-quenched samples were subsequently
aged in an oil bath for 20 and 120 h at 180°C. Thin foil
specimens for scanning transmission electron micros-
copy (STEM) and transmission electron microscopy
(TEM) were prepared by a twin-jet electropolisher
using a solution of 10.6 g LiCl, 22.32 gMg(ClO4)2,
200 ml 2-butoxi-ethanol and 1,000 ml methanol at
about −45°C and 70 V. The STEM study was con-
ducted using a JEOL 2200FS microscope (JEOL Ltd.,
Tokyo, Japan) equipped with a high-angle annular
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X-ray spectrometer (EDXS) detector (Bruker AXS,
Karlsruhe, Germany). The conventional TEM analysis
was carried out using a JEOL 3000F microscope
equipped with an Oxford EDXS detector (Oxford
Instruments, Oxfordshire, UK).

Results and discussion
Figure 1 shows the 1�210½ �α HAADF image and the cor-
responding EDXS map of the as-quenched sample after
a solution treatment at 430°C for 24 h. Most particles in
the Mg matrix are predominantly rods/laths elongated
along the [0001]α direction, with a length of 50 to ap-
proximately 200 nm, although a few particles are elon-
gated along other directions. The rod/lath morphology
of these particles was confirmed by further large-angle
tilting experiments. The Zr map, Zn map and a com-
bined Zr and Zn map, as shown in Figure 1b,c and d, re-
veal that all rod-like particles in bright contrast in
Figure 1a are enriched with Zn and Zr. This is in good
agreement with the previous reports showing that Zr-
rich phases exist in various Zr-containing Mg-Zn-based
alloys after a solution treatment [2,7,8]. EDXS analysis
detected no enrichment of Cu in the Zr-rich particles.
In order to investigate the effect of these pre-existing Zr-

rich particles on the formation of Zn-rich strengthening
Figure 1 Alloy quenched after a solution treatment at 430°C for 24 h
(b) Zr EDXS map, (c) Zn EDXS map and (d) a combined EDXS map of Zr a
precipitates during subsequent isothermal ageing, HAADF
imaging and EDXS mapping were conducted on samples
aged at 180°C for different time. The 1�210½ �α HAADF
image of the 20-h-aged sample, as shown in Figure 2a,
reveals that a dispersion of particles was mostly elongated
along the [0001]α direction, with only one marked β2′ per-
pendicular to the [0001]α direction. After tilting a large
angle of approximately 51° to the 0�111½ �α zone axis
(Figure 2e), all particles observed in Figure 2a were found
to be separate without overlapping with each other. The
β2′ precipitate, marked in Figure 2a, is a plate containing a
brighter core, which corresponds to an enrichment of Zr
(Figure 2b). The Zr map, Zn map and a combined Zr and
Zn map, as shown in Figure 2b,c, and d, demonstrate that
most of the elongated particles were composites containing
a Zn-rich part and a Zr-rich segment. Careful examinations
of the EDXS maps and the HAADF image confirmed that
each Zr-rich segment was located either at the end or in
the middle of an individual elongated precipitate. There-
fore, we conclude that those Zr-rich segments of the preci-
pitates are, in fact, the remains of the Zr-rich particles
initially present in the as-quenched condition. We further
deduce that these Zr-rich particles served as a precursor
phase for the heterogeneous nucleation of Zn-rich β1′ pre-
cipitates ([0001]α rods) and β2′ precipitates ((0001)α plates)
. The incident electron beam was parallel to 1�210½ �α . (a) HAADF image,
nd Zn.



Figure 2 Alloy aged at 180°C for 20 h. The incident electron beam was parallel to 1�210½ �α in (a-d) and 0�111½ �α in (e), respectively. (a) 1�210½ �α
HAADF image, (b) Zr EDXS map, (c) Zn EDXS map, (d) a combined EDXS map of Zr and Zn and (e) 0�111½ �α HAADF image.
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in the Zr-rich core regions of the Mg alloy during subse-
quent ageing.
Figure 3 shows the HAADF image and the corre-

sponding EDXS mapping result of the 120-h-aged sam-
ple. Both the length of [0001]α β1′ rods and the
thickness of (0001)α β2′ plates grew significantly with
the ageing time. The Zr map, Zn map and a combined
Zr and Zn map, as shown in Figure 3b,c and d, indicate
that many β1′ rods and the β2′ plate contain a Zr-rich
segment. The sizes of Zr-rich segments observed in the
120-h-aged sample are smaller than those observed in
the 20-h-aged sample. It appears that the size of the Zn-
rich segments gradually increased at the expense of the
Zr-rich segments during the isothermal ageing. After tilt-
ing approximately 36° from the 1�210½ �α beam direction, a
1�543½ �α HAADF image (Figure 3e) further confirms the
existence of the Zr-rich segments in the Zn-rich precipi-
tates. All experimental evidences above indicate that
the heterogeneous nucleation on the pre-existing Zr-
rich particles is significantly important for the forma-
tion of Zn-rich precipitates (β1′ and β2′) in the Zr-
rich core regions of the Mg alloy during ageing at
180°C.
To explore the crystallographic characteristics of these

Zr-rich [0001]α rods, we examined the as-quenched micro-
structure using TEM with the beam parallel to the [0001]α
direction, as shown in Figure 4. Most of the Zr-rich parti-
cles (>80%) of the as-quenched sample in Figure 4a have a
low aspect ratio in the range of 1:1 to approximately 1:3
and a thickness in the range of 6 to approximately 12 nm
with their long side, which is less than 25 nm, parallel
to the < 11�20>α directions. They are Zr-rich [0001]α rod/
lath particles observed previously by STEM examinations
(Figure 1a). The rest of the Zr-rich particles (<20%),
marked with black arrows in Figure 4a, are thin rods with
aspect ratios of 1:3 to approximately 1:20 and a thickness
of 2 to approximately 5 nm, with their long axis approxi-
mately 23° away from the < 11�20>α directions. They are
similar to the type C Zr-rich rods reported by Gao et al [8].
In contrast, the size and aspect ratio of the dominant Zr-
rich [0001]α rods/laths in the end-on view are significantly
different from the Zr-rich < 11�20>α rods reported by Gao



Figure 3 Alloy aged at 180°C for 120 h. The incident electron beam was parallel to 1�210½ �α in (a-d) and 1�543½ �α in (e), respectively. (a) 1�210½ �α
HAADF image, (b) Zr EDXS map, (c) Zn EDXS map, (d) a combined EDXS map of Zr and Zn and (e) 1�543½ �α HAADF image.
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et al [8]. This difference is possibly due to the different
alloy systems and the heat treatment techniques.
Chemical microanalysis of these [0001]α rods using

EDXS indicated that the atomic ratio of Mg:Zn:Zr was
Figure 4 The nanoscale Zr-rich [0001]α rod-like precipitates in the sol
spectrum (inset), and (b) micro-beam electron diffraction pattern.
about 51:19:30 (inset, Figure 4a), suggesting that these
[0001]α rods were Zr-rich precipitates with a Zn:Zr ratio
close to 2:3. The corresponding micro-beam diffraction
patterns (Figure 4b) confirm that these Zr-rich [0001]α
ution-treated alloy. (a) [0001]α TEM micrograph and the EDXS



Table 1 Calculated misfit values between β1′-MgZn2/β1′-Mg4Zn7 and δ-Zn2Zr3 phases
Matching direction/plans Spacing or length (nm) Misfit (%)

1�10½ �δ�Zn2Zr3== 11�20½ �β1 ′�MgZn2
L 1�10½ �δ�Zn2Zr3

¼ 1:0791; L 11�20½ �β1 ′�MgZn2
¼ 0:5223 3.2

001ð Þδ�Zn2Zr3
== 0001ð Þβ1 ′�MgZn2 (end plane) d 001ð Þδ�Zn2Zr3

¼ 0:6965; d 0001ð Þβ1 ′ �MgZn2

¼ 0:8568 2.5

100ð Þδ�Zn2Zr3
== �1100ð Þβ1 ′�MgZn2 (side plane) d 110ð Þδ�Zn2Zr3

¼ 0:5397; d �1100ð Þβ1 ′�MgZn2
¼ 0:4523 16.2

1�10½ �δ�Zn2Zr3== 001½ �β1 ′�Mg4Zn7
L 1�10½ �δ�Zn2Zr3

¼ 1:0791; L 001½ �β1 ′�Mg4Zn7
¼ 0:2746 1.8

001ð Þδ�Zn2Zr3
== �1270ð Þβ1 ′�Mg4Zn7 (end plane) d 001ð Þδ�Zn2Zr3

¼ 0:6965; d �1270ð Þβ1 ′ �Mg4Zn7

¼ 0:0549 5.4

110ð Þδ�Zn2Zr3
== 630ð Þβ1 ′ �Mg4Zn7

(side plane) d 110ð Þδ�Zn2Zr3
¼ 0:5397; d 630ð Þβ1 ′�Mg4Zn7

¼ 0:2835 5.1

d, spacing; L, length.
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rods have a tetragonal structure similar to that of Zn2Zr3
δ phase (a = b = 7.633 Å, c = 6.965 Å, α= β= γ= 90 [8,9]).
The orientation relationship (OR) implied by the superim-
posed precipitate and matrix patterns was such that
1�10½ �δ== 0001½ �α , 110ð Þδ== 1�100ð Þα and 001ð Þδ== �1�120ð Þα .
By combing the commonly reported OR between β1′-
MgZn2 [3,10] /β1′-Mg4Zn7[11,12] and α-Mg matrix with
the OR of the δ-Zn2Zr3 phase determined in this work,
the possible ORs and the crystallographic disregistries be-
tween δ phase and β1′ phase were determined and listed
in Table 1. The inter-planar misfits between the matching
planes 001ð Þδ�Zn2Zr3== 0001ð Þβ1′�MgZn2 , 001ð Þδ�Zn2Zr3==

�1270ð Þβ1′�Mg4Zn7 , 110ð Þδ�Zn2Zr3== 630ð Þβ1′�Mg4Zn7
and

the directional misfits along the matching direc-
tions 1�10½ �δ�Zn2Zr3== 11�20½ �β1′�MgZn2 , 1�10½ �δ�Zn2Zr3==

001½ �β1′�Mg4Zn7 were calculated as 2.5%, 5.4%, 5.1%

and 3.2%, 1.8%, which are less than the critical values of
6% and 10% given in the edge-to-edge matching model
[13]. The low lattice mismatch between these two phases
explains why β1′ rods form directly on the end plane
(001)δ of the Zr-rich rods, as shown in Figures 2 and 3.
The presence of the initial Zr-rich phases can provide
much lower activation energy barrier and a favourable
crystallographic correlation for the nucleation of the sub-
sequent Zn-rich precipitates according to the classical nu-
cleation theory [14].
It is a significant finding that the Zr-rich phases can

act as the precursor phase for the heterogeneous nucle-
ation of Zn-rich β-type strengthening phases in the Mg
alloy, given that the Zr-rich core region is a major
microstructural feature of Zr-containing Mg alloys [7,8].
By effectively engineering Zr-rich [0001]α rods in the Zr-
rich cores of Mg alloys using a solution treatment, the
formation of [0001]α β1′ rods could be promoted
according to the heterogeneous nucleation mechanism
revealed by this research.

Conclusions
In summary, we have demonstrated that the nanoscale Zr-
rich [0001]α rods/laths were predominant in Zr-rich core
regions of the Mg-6Zn-0.5Cu-0.6Zr (wt.%) alloy after a so-
lution treatment at 430°C. The nanoscale Zr-rich particles
served as a precursor phase for the heterogeneous nucle-
ation of the Zn-rich β-type strengthening precipitates dur-
ing subsequent isothermal ageing at 180°C. These results
are important for controlling Zr-rich particles in the Zr-
rich core regions for enhancing the overall strength of the
Mg alloy.
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