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Abstract

Surface properties are often hypothesized to be important factors in the development of safer forms of
nanomaterials (NMs). However, the results obtained from studying the cellular responses to NMs are often
contradictory. Hence, the aim of this study was to investigate the relationship between the surface properties of
silica nanoparticles and their cytotoxicity against a murine macrophage cell line (RAW264.7). The surface of the
silica nanoparticles was either unmodified (nSP70) or modified with amine (nSP70-N) or carboxyl groups (nSP70-C).
First, the properties of the silica nanoparticles were characterized. RAW264.7 cells were then exposed to nSP70,
nSP70-N, or nSP70-C, and any cytotoxic effects were monitored by analyzing DNA synthesis. The results of this
study show that nSP70-N and nSP70-C have a smaller effect on DNA synthesis activity by comparison to
unmodified nSP70. Analysis of the intracellular localization of the silica nanoparticles revealed that nSP70 had
penetrated into the nucleus, whereas nSP70-N and nSP70-C showed no nuclear localization. These results suggest
that intracellular localization is a critical factor underlying the cytotoxicity of these silica nanoparticles. Thus, the
surface properties of silica nanoparticles play an important role in determining their safety. Our results suggest that
optimization of the surface characteristics of silica nanoparticles will contribute to the development of safer forms
of NMs.

Introduction
Recently, a range of nanomaterials (NMs) have been
designed and used in a number of different industrial
applications, such as medicine, cosmetics, and foods.
The application of NMs is driven by the belief that they
will offer improved performance and deliver new func-
tionalities, including improved thermal and electrical
conductivity, harder and stronger materials, improved
catalytic activity, and advanced optical properties. For
example, current estimates indicate that the global mar-
ket for cosmetics using NMs will grow by 16.6% per
year, reaching US$ 155.8 million in 2012 [1]. Hence,
human exposure to NMs is already occurring and will
inevitably increase in the future.

A NM is defined as a substance that has at least one
dimension of <100 nm in size. NMs can assume many
different forms, such as tubes, rods, wires, spheres, or
particles. However, their small size can also be proble-
matic in terms of eliciting a toxicological effect. For
example, exposure of cells or animals to carbon nano-
tubes, titanium dioxide particles, or silver nanoparticles
can induce cytotoxicity and inflammation [2-14]. We
have previously shown that silica nanoparticles display a
different intracellular localization compared with submi-
cron- and micro-sized silica particles, and induce a
greater cytotoxic response [15]. However, analyses of
the toxicological responses to NMs are often inconsis-
tent. Given the uncertainty concerning the safety of
NMs, it is critically important to analyze their potential
toxicological hazards and devise means of minimizing
the impact of exposure to such substances. These stu-
dies will assist in driving forward the nanotechnology
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industry in the longer term by helping the researchers to
protect both individuals and the environment from
potentially damaging materials.
Some recent articles have focused on the possible

influence of surface charge in terms of the cellular
uptake and/or cytotoxicity of nanoparticles [16-19].
Mayer et al. [19] reported the activation of the comple-
ment system and increased hemolysis in blood samples
after exposure to positively charged polystyrene nano-
particles. Some recent studies suggest that cationic
nanoparticles elicit a greater cytotoxicity compared with
anionic nanoparticles [20-22]. Taken together, these stu-
dies indicate that the surface property of nanoparticles
is an important factor when developing safer forms of
NMs. However, studies of cellular responses to NMs
often give conflicting results. The aim of this study was
to investigate the cytotoxicity caused by exposure of a
murine macrophage cell line (RAW264.7) to silica nano-
particles whose surface was either unmodified (nSP70)
or modified with amine (nSP70-N) or carboxyl groups
(nSP70-C). The intracellular localization of the different
nanoparticles was also examined.

Experimental procedures
Silica particles
Fluorescent (red-F or green-F)-labeled silica particles
with surfaces that were either unmodified or modified
with amine or carboxyl groups (Micromod Partikeltech-
nologie GmbH, Rostock, Germany; designated nSP70,
nSP70-N, and nSP70-C, respectively) were used in this
study. The silica particles, which had a diameter of 70
nm, were prepared as a suspension (25 mg/ml) and
sonicated for 5 min and then vortexed for 1 min imme-
diately prior to conducting each experiment.

Physicochemical examination of the nanosilica
preparations
Nanosilicas were diluted to 0.25 mg/ml with water, and
the average particle size and zeta potential were mea-
sured using a Zetasizer Nano-ZS (Malvern Instruments
Ltd., Malvern, UK). The mean size and the size distribu-
tion of silica particles were measured by dynamic light
scattering. The zeta potential was measured by laser
Doppler electrophoresis.

Cell culture
The mouse macrophage cell line, RAW 264.7, was
obtained from the American Type Culture Collection.
RAW 264.7 cells were cultured in Dulbecco’s Modified
Eagle Medium supplemented with 10% heat-inactivated
FCS, 1% Antibiotic-Antimycotic Mix stock solution
(GIBCO, CA, USA). All cultures were incubated at 37°C
in a humidified atmosphere with 5% CO2.

3H-Thymidine incorporation assay
The proliferation of nanosilica-treated RAW 264.7 cells
and untreated cells was measured using a 3H-thymidine
incorporation assay. 104 cells were cultured with varying
concentrations of nanosilica diluted with medium for
18 h at 37°C, and 3H-thymidine (1 μCi/well) was then
added into each well. After a further 6 h, cells were har-
vested and lysed on glass fiber filter plates using a Cell
harvester (Perkin-Elmer, Wellesley, MA, USA). The fil-
ter plates were then dried and counted by standard
liquid scintillation counting techniques in a TopCounter
(Perkin-Elmer).

Confocal scanning laser microscopy analysis of the
macrophage cell line
RAW 264.7 cells were cultured with nSP70, nSP70-N,
and nSP70-C (100 μg/ml) for 3 h on chamber slides,
then fixed at room temperature in 4% paraformaldehyde
and washed three times in 0.1 M phosphate buffer
(pH 7.4). Cells were then filled with mounting medium
containing 4’,6-diamino-2-phenylindole (DAPI) (Vector
Laboratories, Burlingame, CA, USA). A glass cover slip
was then placed on the slide and fixed with glue. The
mounted slides were examined under a confocal scan-
ning laser microscope (Leica Microsystems, Mannheim,
Germany).

Results and discussion
First, the authors assessed the mean particle size and
surface charge of 70 nm silica particles in water whose
surface was unmodified (nSP70) or chemically modified
with amine (nSP70-N) or carboxyl groups (nSP70-C).
The results are summarized in Table 1. Mean particle
sizes of nSP70, nSP70-N, and nSP70-C as measured by
dynamic light scattering method were 64.2 ± 0.6, 72.7 ±
1.3, and 76.2 ± 1.6 nm, respectively. These experimen-
tally determined particle sizes were almost equal to the
primary diameter sizes (70 nm). Surface charges (zeta
potential) of nSP70-N and nSP70-C were, respectively,
higher and lower compared to those of nSP70.
Cytotoxicity of the three nanosilicas was tested by

monitoring the incorporation of 3H-thymidine into
RAW 264.7 cells. nSP70 showed the highest cytotoxicity
(EC50 value = 121.5 μg/ml), while nSP70-N and nSP70-

Table 1 Average particle size and zeta potential of
unmodified and modified nanosilica

nSP70 nSP70-N nSP70-C

Modification substance - NH2 COOH

Mean particle size in water (nm) 64.2 ± 0.6 72.7 ± 1.3 76.2 ± 1.6

Mean zeta potential (mV) -42.1 ± 0.6 -29.8 ± 0.5 -72.0 ± 1.9

Each value represents the mean ± SD.
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C failed to display any detectable cytotoxicity up to con-
centrations of 1000 μg/ml (Figure 1). These results
demonstrate that the cytotoxic effect of nSP70 is
reduced by surface modification. Some reports indicated
that the exposure of cells to silica nanoparticles leads to
membrane damage, caspase activation, and cell death
via apoptosis. The precise trigger for these silica nano-
particle-induced cellular effects is uncertain. One study
concluded that lysosomal destabilization was the initia-
tion factor [23], whereas other investigations suggest
that mitochondrial membrane damage is the critical
event [24,25]. However, it is possible that multiple fac-
tors (i.e., membrane damage, caspase activation, lysoso-
mal destabilization, and mitochondrial membrane
damage) are involved in nSP70-mediated cytotoxicity.
Unfortunately, it is difficult to establish a comprehensive
mechanism of nSP70 cytotoxicity based on previous
observations, which have been rather inconsistent.
Some reports indicate that the cellular uptake and

trafficking of nanoparticles is involved in cellular signal-
ing, which then leads to cytotoxicity. However, the rela-
tionship between the surface properties of nanoparticles
and cellular uptake/trafficking is poorly understood.

To establish why a different biological effect was
induced by surface modification, the intracellular locali-
zation of fluorescent-labeled nanosilicas was investi-
gated. RAW 264.7 cells treated with 100 μg/ml of
nSP70, nSP70-N, and nSP70-C were observed by confo-
cal laser scanning microscopy. After 3-h incubation, all
nanosilicas were found to be localized in the cytoplasm
as punctate fluorescent dots regardless of surface modi-
fication (Figure 2). Interestingly, distinctive distributions
were observed in individual cases. For the nSP70-treated
cells, punctate fluorescence was observed in both the
cytoplasm and nucleus. However, nSP70-N appeared to
adsorb to the plasma membrane because bright fluores-
cence was observed along the outline of the cell. In the
nSP70-C-treated group, only intracellular punctate
fluorescence was observed, suggesting that these parti-
cles were efficiently incorporated into the cells. Unfortu-
nately, detailed intracellular localization of the silica
nanoparticles was not apparent from these images.
Nonetheless, differences of intracellular localization of
nanosilica might have an effect on cytotoxicity. It is
reported that the entry of nanosilica into the nucleus
induces dysfunction of the nucleus and genotoxicity via

Figure 1 Effect of unmodified and modified nanosilica on cell proliferation. The proliferation of RAW 264.7 cells after incubation with
nSP70 (circle), nSP70-N (square), or nSP70-C (triangle) for 24 h was evaluated using the 3H-thymidine incorporation assay. The percentage
increase in cell proliferation was calculated relative to the negative control. Data are presented as means ± SD.
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aggregation of intranuclear protein or inhibition of RNA
transcription [26]. The said report [26] together with
the results of this study suggests that silica nanoparticles
enter the nucleus and induce inhibition of cell prolifera-
tion. Hence, the nSP70-mediated cytotoxic effect may be
related to nuclear localization.
Investigating the cellular uptake/trafficking of indivi-

dual nanosilicas is important for the development of
safer forms of NMs. It is known that surface chemistry
of nanoparticles, such as charge and the kind of modifi-
cation group, affects their interaction with biological
molecules [27]. For example, nanoparticles can induce
different cellular responses by binding to proteins in the
blood [28,29]. Bound proteins determine particle uptake
by various cells and influence how nanoparticles interact
with other blood components [30-32]. These findings
suggest that surface modification alters the interaction

between nanosilica and surrounding molecules, such as
serum proteins, thereby altering the route of uptake into
the cells. Mammalian cells ingest particulate matter by
several routes, such as phagocytosis, macropinocytosis,
clathrin-mediated, caveolin-mediated, and clathrin/
caveolin independent endocytosis [33-35]. Each route
involves a unique set of receptors and acts on particular
types of particles. The authors anticipate that surface
modification of silica nanoparticles will influence their
interaction with bloodborne macromolecules. Thus,
nanoparticles decorated with different macromolecules
will have different intracellular distributions. The
authors are currently investigating the effects of nSP70,
nSP70-C, and nSP70-N on cytotoxicity, protein adsorp-
tion, cellular uptake, ROS generation, lysosomal stability,
mitochondrial activity, activation of caspase 3 and 7, and
mode of cell death (apoptosis versus necrosis).

Figure 2 Localization of unmodified and modified nanosilica in RAW 264.7 cells. RAW 264.7 cells were treated for 3 h with 100 μg/ml of
fluorescent (green-F)-labeled nSP70 (a, b), nSP70-N (c), and nSP70-C (d) (green). The nucleus was counterstained using DAPI (blue). The original
magnification of these photographs was × 63 (a) and × 100 (c, d). (b) is a magnified image of a portion of photograph (a).
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In this study, the authors demonstrate that surface
modification of nSP70 with amine or carboxyl groups
alters the intracellular distribution of the nanoparticles
and has an effect on cell proliferation. The authors
believe that the identification of individual uptake
machinery will shed light on the safety of nanosilicas,
which are already commercially available in the form of
medicines, cosmetics, and foods. Furthermore, it is
hoped that analysis of the relationship between surface
physicochemical properties and cellular response/distri-
bution will help researchers in the development of safer
forms of NMs. A safety-prediction as well as safety-eva-
luation approach of NMs is an essential prerequisite for
maintaining the well-being of the general public.
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