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Abstract

In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to
axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are
described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two
shells coupled through the van der Waals force. The effects of axial pressure, wave numbers and nanotube
diameter on the RBM frequency are investigated in detail. The validity of these theoretical results is confirmed
through the comparison of the experiment, calculation and simulation. Our results show that the RBM frequency is
linearly dependent on the axial pressure and is affected by the wave numbers. We concluded that RBM frequency
can be used to characterize the axial pressure acting on both ends of a CNT.

1. Introduction
Radial breathing mode (RBM) of carbon nanotubes
(CNTs) is a low frequency mode, but accounts for the
strongest feature observed in the CNT Raman spectrum.
For the RBM, all of the carbon atoms in a CNT move in
the radial direction synchronously, which generates an
effect similar to “breathing” [1,2]. This mode is unique to
CNTs, and is not observed in other carbon systems [3].
Resonant Raman measurement of the RBM in CNTs is a
standard, straightforward method for precisely determin-
ing the diameter of a CNT, distinguishing the CNT chiral-
index assignments, or characterizing CNT conglomerates
[4-7]. For CNTs, pressure studies are motivated by the
need to investigate mechanical stability, pressure-induced
phase transitions (such as vibrational characteristics), and
the effects of intertube interactions. In this letter, the RBM
frequency of CNTs subjected to axial pressure is studied
using an elastic continuum mechanics model. Single-
walled carbon nanotubes (SWCNTs) are described as an
individual elastic shell and double-walled carbon nano-
tubes (DWCNTs) are considered as two shells coupled
through the van der Waals (vdW) force interaction
between them. The interaction of the vdW force between
the inner and outer tubes and the effect of axial pressure

are incorporated into the formulation. We consider the
effects of the influences of the axial half-wave number m,
circumference wave number n, nanotube diameter, and
the aspect ratio L/D of the nanotubes on the RBM fre-
quency for SWCNTs and DWCNTs exposed to varying
axial pressures. Through comparison with previous results
obtained from experiments and simulations, it can be seen
that the continuum shell model can be used to predict the
RBM frequency of CNTs exposed to various axial
pressures.

2. Theoretical approach
2.1 Governing equations of SWCNTs under axial pressure
A continuum elastic shell model (Figure 1) is used to
analyze the characteristics of the RBM frequency of
CNTs subjected to varying axial pressures. The cylindri-
cal shell is used to designate a coordinate system (x, θ, z).
The coordinates x, θ, and z refer to the axial, circumfer-
ential and radial directions, respectively. The displace-
ments for the CNTs are u, v and w corresponding to the
x, θ, and z directions, respectively. The dimensions of
the nanotubes are defined as the thickness h, radius R,
length L, Poisson’s ratio v and density r.
Based on our previous work [8] and Love’s first

approximation shell theory [9], the equation of motion
for simple supported CNTs is given by:
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where F = (1-v2)/Eh and b = h2/12R2; px is the axial
pressure acting on the both ends of the CNT; and p is
the vdW interaction pressure between inner tube and
outer tube in a DWCNT, which is shown schematically
in Figure 2.

2.2 van der Waals interaction forces
To study the vibrational behavior of DWCNTs, a dou-
ble-elastic shell model was developed that assumes each
of the nested tubes in a CNT is an individual elastic
shell, and the adjacent tubes are coupled to each other
by normal vdW interactions. The pressures exerted on
the inner and outer nanotubes through the vdW inter-
action forces (Figure 2) are given as

p1 = c12 (w2 − w1) (4)

p2 = c21 (w1 − w2) (5)

wk (k = 1, 2) are the radial displacements of the inner
and outer nanotubes, and cij (i,j = 1, 2) is the vdW
interaction coefficient between nanotubes, which can be
estimated using the Lennard-Jones potential [10]:
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where a is the carbon-carbon bond length (0.142 nm);
Ri and Rj are the inner and outer radii of the DWCNTs;
and s and ε are the vdW radius and the well depth of
the Lennard-Jones potential, respectively. The vdW
parameters of the DWCNTs in the Lennard-Jones
potential are ε = 2.967 meV and s = 0.34 nm (from
Saito et al. [11]).

2.3 RBM frequency of DWCNTs
To model the vdW force, we substitute Eqs. (4) and (5)
into Eqs. (1)-(3). The governing equations for the RBM
frequency of inner and outer tubes of DWCNTs sub-
jected to an axial pressure can be expressed as:
For inner tube
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For outer tube
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Figure 1 Schematic showing the cylindrical coordinates of the
CNT model used for analysis.

Figure 2 Schematic of the DWCNT model subjected to axial
pressure for analysis. The left image displays the latitudinal cross-
section, which shows the vdW force between the inner and outer
tubes. The right image displays the longitudinal cross-section, which
shows the axial pressure acting on both ends of the DWCNT.
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where r and R are the radius of inner tube and outer
tube of the DWCNT, respectively. To simplify the calcu-
lation, Eqs. (9)-(14) can be rewritten as
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where Lij are the differential operators given as:
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The general solution for the displacements uk, vk and
wk in the inner and outer tubes of a DWCNT can be
given by

uk = Ak sin (nθ) cos
mπx
L

eiωt (17)

vk = Bk cos (nθ) sin
mπx
L

eiωt (18)

wk = Ck sin (nθ) sin
mπx
L

eiωt (k = 1, 2) (19)

where Ak, Bk and Ck are the longitudinal, circumferen-
tial and radial amplitudes of the displacements in the
inner (k = 1) and outer tubes (k = 2), respectively. L is
the length of CNT which is shown in Figure 1. The
wave numbers m and n are the axial half-wave and cir-
cumferential numbers, respectively.
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3. Numerical results and discussion
For the present analysis, an individual SWCNT was
assumed to be a graphene sheet rolled into a cylinder
and the DWCNT is considered to be two layered nano-
tube shells coupled by vdW interactions. The value of the
thickness of sheet is 0.34 nm; the elastic modulus is 1.0
TPa; the Poisson’s ratio is 0.27; the mass density of the
CNTs is 2.3 g/cm3; and the inner and outer diameters of
the DWCNTs are 2.2 nm and 3.0 nm, respectively [12].
Based on our proposed theoretical approach, we first

calculate the RBM frequency of an isolated SWCNT sub-
jected to zero pressure varying with radius. Note that the
commonly used unit for the frequency of the RBM f is in
cm-1 for Raman spectroscopy experiments. However, the
unit Hertz (Hz) for ω has been adopted for convenience
in this study. Our results show that when the diameter is
increased from 1.43 to 1.59 nm, the RBM frequency of a
SWCNT monotonically decreases from 33.03 to 26.76
THz. To extract the correct parameters for the elastic
continuum model, we compared the present work with
other approaches. According to Raman scattering techni-
que by Jorio et al. [13], the frequency of a RBM ranges
from 33.18 to 28.46 THz for SWCNTs with diameters of
1.43 to 1.65 nm when structural factors are considered.
Furthermore, Peica et al. [6] used tip-enhanced Raman
spectroscopy (TERS) to show that with a change in dia-
meter from 1.35 to 1.63 nm, the RBM frequency changes
from 33.44 to 28.29 THz for SWCNTs. Kurti et al. [14]
used first-principles calculations to show that the fre-
quency of the RBMs were between 32.72 and 28.14 THz
for SWCNTs with diameters ranging from 1.35 to
1.56 nm. Batra et al. [3] also investigated the RBM fre-
quency of CNTs using the molecular dynamics (MD)
method and finite element method (FEM). They found
that the RBM frequency ranged from 31.55 (31.22 for
FEM) to 27.40 (27.26) THz for SWCNTs with diameters
between 1.35 to 1.56 nm. Our calculated frequencies of
the RBM of SWCNTs with varying diameters not
exposed to axial pressure agree closely with these pre-
viously reported values. This verifies that the continuum
elastic shell model can accurately describe the RBM fre-
quency of CNTs.
The RBM frequency ratios of SWCNTs with different

axial half-wave numbers subjected to axial pressure in
shown in Figure 3. The frequency ratio h is defined as:

η =
fp − fo
fo

(20)

where fp is the frequency of the RBM with exposed to
axial pressure, and f0 is the frequency of RBM not
exposed to axial pressure. Note that the RBM frequency
ratio h is sublinear with respect to increasing axial

pressure. We also found that the axial half-wave number
m plays a critical role in this increasing frequency ratio.
When the axial half-wave number increases, the incre-
ment of change in the speed of the frequency ratio
becomes much smaller. The results from nonlinear
stick-spiral model, presented by Chang et al. [15], are
also shown for comparison. The models show good
agreement when the axial half-wave number m is 1.
These results confirm that the largest contribution to
the RBM for a SWCNT comes when m = 1. By contrast,
m ≥ 2 wave numbers are in the minority.
Figure 4 shows the RBM frequencies of SWCNTs as a

function of the aspect ratio L/D (D is the diameter of
the SWCNT). The frequencies of the SWCNTs grow
sublinear logarithmically with an increasing aspect ratio.
When the circumferential wave n is 1, the frequency of
the RBM decreases dramatically with increasing aspect
ratio. This is especially true for larger aspect ratios, and
the variational trend of the RBM frequency is quite dif-
ferent for n = 2, 3, 4 or higher. This is caused by the
misalignment of the tubes for the circumferential wave
n = 1, which makes the entire SWCNTs unstable. The
unstable SWCNTs with n = 1 can be affected by exter-
nal factors more easily than those with other circumfer-
ential waves numbers. This phenomena is unique to
SWCNTs with n = 1, and cannot be observed with
other circumferential waves numbers. However, the
RBM frequency is largely unaffected by the aspect ratio
of the tube when n ≥ 2.

Figure 3 RBM frequency ratios for SWCNTs with axial half-
wave numbers (m) varying from 1 to 4. The results from the
nonlinear stick-spiral model by Chang et al. [15] are also presented
for comparison.
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In the following, an analysis of the RBM frequency of
inner and outer tubes in DWCNTs subject to axial pres-
sure is carried out. Figure 5 shows the RBM frequencies
of DWCNTs with different axial half-wave numbers of
m = 1-4 as a function of increasing axial pressure for
inner and outer tubes. The wave number in the axial
direction plays an important role in determining the
RBM frequency of DWCNTs. Thus, the larger mode
numbers result in higher RBM frequencies with increas-
ing axial pressure. The RBM frequencies of both inner
and outer tubes have positive linear relationships with
pressure acting on both ends of DWCNTs. Compared

with RBM frequencies of inner tubes, the frequencies of
outer tubes are more sensitive to the varying wave num-
bers and axial pressure shown in Figure 5. The frequen-
cies of inner and outer tubes vary over different ranges
when the DWCNTs are subjected to the same axial pres-
sures. For a given interval of axial pressure, the RBM fre-
quency of outer tubes is a little higher than that of inner
tubes. The reason is that the RBM frequency with smaller
radius CNT is much less than that of longer radius CNT,
which has been mentioned in the beginning.

4. Conclusions
Based on elastic continuum mechanics, we studied the
RBM frequency of simply-supported CNTs exposed to
axial pressure. The SWCNTs were modeled as indivi-
dual elastic shells, and the DWCNTs were considered to
be two layered nanotube shells coupled by vdW interac-
tions. The effects of the wave numbers, aspect ratio and
axial pressure are discussed in detail. It can be seen
through comparison with previous experimental and
simulation investigations on the RBM frequency of iso-
lated SWCNTs with increasing radius and the RBM fre-
quency ratio with increasing pressure, the continuum
shell model can be used to predict the RBM frequency
of CNTs subject to an axial pressure. The results of the
CNTs exposed to an axial pressure show that the RBM
vibration frequency is sensitive to both the vibrational
mode and axial pressure, while the frequency of the
RBM is hardly affected by the aspect ratio. We are now
processing the theoretical analysis on vibrational proper-
ties of SWCNTs and DWCNTs subjected to axial pres-
sure in order to provide further quantitative and
qualitative experiments and simulations on RBM of
CNTs.
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