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Abstract

A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts
was investigated to show various photocatalytic activities depending on different transition-metal sulfides.
Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS
loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the
activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt.
Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved
photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-
catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-
hydrogen conversion.

Introduction
Since the discovery of photo-induced water splitting on
TiO2 electrodes [1], solar-driven photocatalytic hydro-
gen production from water using a semiconductor cata-
lyst has attracted a tremendous amount of interest [2,3].
To efficiently utilize solar energy, numerous attempts
have been made in recent years to realize different visi-
ble light-active photocatalysts [4-8]. Among them, sul-
fides, especially CdS-based photocatalysts with narrow
band gaps, proved to be good candidates for photocata-
lytic hydrogen evolution from water under visible light
irradiation [9-12]. However, CdS itself is not stable for
water splitting, and Cd2+ is hazardous to environment
and human health. A number of nontoxic multicompo-
nent sulfides without Cd2+ ions have been developed to
show comparable photocatalytic efficiency for hydrogen
evolution [13-17]. In our previous work [18-22], hydro-
thermally synthesized ZnIn2S4 was found to have photo-
catalytic and photoelectrochemical properties that made
it a good candidate for hydrogen production from water
under visible light irradiation. On the other hand, a

solid co-catalyst, typically noble metal (e.g., Pt, Ru, Rh)
[23] or transition-metal oxide (e.g., NiO [24], Rh2-

yCryO3 [25], RuO2 [26], IrO2[27]), loaded on the surface
of the base photocatalyst can be beneficial to photocata-
lytic H2 and/or O2 evolution for water splitting [25].
Nevertheless, there have been only a limited number of
studies in which metal sulfides acted as co-catalysts to
enhance the activity of a semiconducting photocatalyst
[28-30]. For instance, Li and co-workers observed that
dual co-catalysts consisting of noble metals (Pt, Pd) and
noble-metal sulfides (PdS, Ru2S3, Rh2S3) played a crucial
role in achieving very high efficiency for hydrogen evo-
lution over CdS photocatalyst [29,30]. In this study, a
series of transition-metal sulfides (MS: Ag2S, SnS, CoS,
CuS, NiS, and MnS) were deposited on hydrothermally
synthesized ZnIn2S4 by a simple precipitation process.
The photocatalytic activities for hydrogen evolution over
these MS/ZnIn2S4 products were investigated. We
demonstrated that transition-metal sulfides, such as
CuS, combined with Pt could act as dual co-catalysts for
improving photocatalytic activity for hydrogen evolution
from a Na2SO3/Na2S aqueous solution under simulated
sunlight.* Correspondence: ssmao@lbl.gov; lj-guo@mail.xjtu.edu.cn
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Experimental section
All chemicals are of analytical grade and used as
received without further purification. ZnIn2S4 products
were prepared by a cetyltrimethylammoniumbromide
(CTAB)-assisted hydrothermal synthetic method as
described in our previous studies [18,19]. For the synth-
esis of MS/ZnIn2S4 (MS = Ag2S, SnS, CoS, CuS, NiS,
and MnS), 0.1 g of prepared ZnIn2S4 was dispersed in
20 mL of distilled water and ultrasonicated for 20 min.
Under stirring, a desired amount of 0.1 M AgNO3 (J.T.
Baker Chemical Co., Phillipsburg, NJ, USA), SnCl2
(Sigma-Aldrich, Milwaukee, WI, USA), Co(NO3)2
(Aldrich), Cu(NO3)2 (Fluka Chemical Company, Buchs,
Switzerland), Ni(NO3)2 (Fluka), or Mn(CH3COO)2
(Alfa-Aesar, Ward Hill, MA, USA) aqueous solution was
dropped into the above suspension, followed by a drop-
wise addition of 0.1 M Na2S·9H2O (Sigma-Aldrich) aqu-
eous solution, containing double excess of S2- relative to
the amount of metal ions. The resulting suspension was
stirred for another 20 min, then the MS/ZnIn2S4 preci-
pitate was collected by centrifugation and washed with
distilled water for several times, and dried overnight at
65°C. The weight contents of transition-metal sulfides
(MS) in these MS/ZnIn2S4 products were controlled at
0.5% to approximately 2.0%.
X-ray diffraction patterns were obtained from a

PANalytical X’pert diffractometer (PANalytical, Almelo,
The Netherlands) using Ni-filtered Cu Ka irradiation
(wavelength 1.5406 Å). UV-visible absorption spectra
were determined with a Varian Cary 50 UV spectro-
photometer (Varian Inc, Cary, NC, USA) with MgO as
reference. Morphology inspection was performed with a
high-resolution scanning electron microscope (SEM,
Hitachi S-4300, Tokyo, Japan). Transmission electron
microscopy (TEM) study was carried out on a JEOL
JEM 2010 instrument (JEOL Ltd., Tokyo, Japan). The X-
ray photoelectron spectroscopy (XPS) measurements
were conducted on a Kratos spectrometer (AXIS Ultra
DLD, Shimadzu/Kratos Analytical, Hadano, Kanagawa,
Japan) with monochromatic Al Ka radiation (hν =
1,486.69 eV) and with a concentric hemispherical analy-
zer. Elemental Analysis was conducted on the Bruker S4
PIONEER X-ray fluorescence spectrum (XRF, Bruker
AXS GmbH, Karlsruhe, Germany) using Rh target and
4-kW-maximum power.
Photocatalytic hydrogen evolution was performed in a

side-window reaction cell. A 300-W solar simulator
(AM 1.5; Newport Corporation, Irvine, CA, USA) was
used as the light source. The amount of hydrogen
evolved was determined using a gas chromatograph
(CP-4900 Micro-GC, thermal conductivity detector, Ar
carrier; Varian Inc., Palo Alto, CA, USA). In all experi-
ments, 100 mL of deionized water containing 0.05 g of
catalyst and 0.25 M Na2SO3/0.35 M Na2S mixed

sacrificial agent was added into the reaction cell. Here,
sacrificial agent was used to scavenge photo-generated
holes. Argon gas was purged through the reaction cell
for 30 min before reaction to remove air. Pt (1.0 wt.%)
as a co-catalyst for the promotion of hydrogen evolution
was deposited in situ on the photocatalyst from the pre-
cursor of H2PtCl6·xH2O (Aldrich; 99.9%). In all cases,
the reproducibility of the measurements was within ±
10%. Control experiments showed no appreciable H2

evolution without solar light irradiation or photocatalyst.

Results and discussion
The ZnIn2S4 products prepared by the CTAB-assisted
hydrothermal method possessed a hexagonal structure
and morphology of microspheres comprising of numer-
ous petals, and showed an absorption edge at about
510 nm (Additional file 1, Figure S1-3). Compared to pure
ZnIn2S4, the obtained MS/ZnIn2S4 (MS = metal sulfide:
Ag2S, SnS, CoS, CuS, NiS, and MnS) displayed different
absorption profiles (Additional file 1, Figure S4), with
enhanced absorption in the visible light region from 550
to 800 nm. Such additional broad band (l > 550 nm)
can be assigned to the absorption of transition-metal
sulfides.
We investigated the photocatalytic activity for hydro-

gen evolution over MS/ZnIn2S4 (MS = metal sulfide:
Ag2S, SnS, CoS, CuS, NiS, and MnS). Photocatalytic
activities for hydrogen evolution over MS/ZnIn2S4 were
evaluated by loading 1 wt.% Pt as co-catalyst. Figure 1
shows the average rates of H2 evolution over Pt-loaded
MS/ZnIn2S4 photocatalysts under simulated solar irra-
diation in the initial 20-h period. The Pt-ZnIn2S4
showed a photocatalytic activity for H2 production at
the rate of 126.7 μmol·h-1, which is comparable to
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Figure 1 Average rates of H2 evolution. The average rates of H2

evolution over Pt-loaded MS/ZnIn2S4 (MS = metal sulfide: Ag2S, SnS,
CoS, CuS, NiS, and MnS) under solar light irradiation in the initial
20-h period.
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reported values in previous literatures [18-20]. The
hydrogen production rates of Pt-MS/ZnIn2S4 photocata-
lysts varied with different kinds of loaded transition-
metal sulfides. The Pt-MS/ZnIn2S4 (MS = Ag2S, SnS,
and CuS) photocatalysts displayed enhanced activities
for hydrogen evolution under solar irradiation. In parti-
cular, the H2 evolution rate greatly increased to
200 μmol·h-1 after loading 1.0 wt.% of CuS on ZnIn2S4.
In this CuS/ZnIn2S4 sample, the formation of CuS (cop-
per monosulfide) could be evidenced by XPS analysis
results shown in Figure S5 (Additional file 1). The
survey scan spectrum (Figure S5A of Additional file 1)
indicated the presence of Cu, Zn, In, and S in the sam-
ple [21,31]. The binding energies shown in Figure S5E
(Additional file 1) for Cu 2p3/2 and Cu 2p1/2 were 952.5
and 932.5 eV, respectively, which are close to the
reported value of Cu2+[31]. The actual molar ratio of
Cu:Zn:In:S was 0.011:0.2:0.39:1.01 as confirmed by XRF
analysis result, with weight content of CuS calculated to
be 1.15 wt.%, which is quite close to the proposed stoi-
chiometric ratio. The photocatalytic activities for hydro-
gen evolution over Pt-MS/ZnIn2S4 (MS = Ag2S, SnS,
and CuS) in the initial 20-h period were measured to
increase in the order of SnS <Ag2S <CuS. Generally,
these transition-metal sulfides (SnS, Ag2S, and CuS)
alone are not photocatalytically active for H2 evolution,
as no H2 was detected when they were used as the cata-
lysts. Thus, the improvement of photocatalytic perfor-
mances of Pt-MS/ZnIn2S4 (MS = Ag2S, SnS, and CuS)
can be related to the enhanced separation of photo-gen-
erated electrons and holes induced by the hybridization
of MS with ZnIn2S4. In this photocatalysis system, tran-
sition-metal sulfides (MS = Ag2S, SnS, and CuS) com-
bined with noble-metal Pt acted as dual co-catalysts for
photocatalytic hydrogen evolution. However, when tran-
sition-metal sulfides (MS = CoS, NiS, and MnS) were
loaded on ZnIn2S4, the rates of H2 evolution over Pt-
MS/ZnIn2S4 (MS = CoS, NiS, and MnS) were sharply
decreased. Instead of the role as effective co-catalysts,
these transition-metal sulfides (i.e., CoS, NiS, and MnS)
may work as the recombination center of photo-gener-
ated electron-hole pairs, which lowered the photocataly-
tic activity for hydrogen evolution over Pt-MS/ZnIn2S4
(MS = CoS, NiS, and MnS). Further investigation is
needed and also under way to provide enough support-
ing information to evidence the negative effects of CoS,
NiS, and MnS, although main attention has focused on
the more effective co-catalysts such as Ag2S, SnS, and
CuS in the following discussion.
Figure 2 shows the reaction time depended H2 evolu-

tion over Pt-loaded MS/ZnIn2S4 (MS = Ag2S, SnS, and
CuS) under solar irradiation. Pt-SnS/ZnIn2S4 and Pt-
CuS/ZnIn2S4 exhibited stable activity in the period of
34-h experiment. However, the rate of H2 production

over Pt-Ag2S/ZnIn2S4 had a significant drop after irra-
diation for approximately 20 h. This deactivation may
result from gradual reduction of Ag2S particles loaded
on the surface of ZnIn2S4 to metallic Ag by photo-
generated electrons during the reaction. Similar deacti-
vation of photocatalyst was previously observed for CdS
modified with Ag2S [32]. However, this result is quite
different from our previous report on Pt-Ag2S/CdS, in
which the high dispersion of Ag2S in the nanostructure
of CdS contributed to stable photocatalytic activity for
hydrogen evolution [33]. Taking into account the reduc-
tion potential (vs. normal hydrogen electrode (NHE)) of
Ag+/Ag (0.80 V), Cu2+/Cu (0.34 V), and Sn2+/Sn
(-0.14 V), reduction of Ag2S by photo-generated electrons
is easier than photoreduction of CuS and SnS. Therefore,
Pt-MS/ZnIn2S4 (MS = SnS and CuS) turned to be more
stable than Pt-Ag2S/ZnIn2S4 during the photocatalytic
reaction for hydrogen evolution.
Table 1 shows the dependence of photocatalytic

activity for H2 evolution over Pt-loaded MS/ZnIn2S4
(MS = SnS and CuS) on the loading amount of transi-
tion-metal sulfides. With the increase of SnS-loading
from 0 to 2.0 wt.%, the rate of H2 evolution over Pt-
SnS/ZnIn2S4 does not show significant changes. In
contrast, the photocatalytic performance of Pt-CuS/
ZnIn2S4 depends strongly on the amount of CuS-
loading, and the optimum loading amount of CuS is
approximately1.0 wt.%. The progressive regression of
photocatalytic activity observed with the amount of
CuS increasing from 1.0 to 2.0 wt.% may be due to the
fact that excess CuS particles loaded on the surface of
ZnIn2S4 could act as the optical filter or charge recom-
bination center instead of co-catalyst for charge
separation [19,32].
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Figure 2 Time courses of H2 evolution. The time courses of H2

evolution over Pt-loaded MS/ZnIn2S4 (MS = Ag2S, SnS, and CuS)
under solar light irradiation.
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To visualize hybridization of CuS with ZnIn2S4,
ZnIn2S4, and CuS/ZnIn2S4 photocatalysts were investi-
gated by TEM. A representative TEM image of ZnIn2S4
is shown in Figure 3A, which shows the formation of
microspheres, 1-2 μm in diameter and comprised of a
circle of micro-petals. The ED pattern (inset of Figure
3A) substantiates that the ZnIn2S4 microsphere is of a
hexagonal phase. The TEM image in Figure 3B shows
that some nanoparticles are loaded on the surface of
ZnIn2S4 microspheres. Such nanoparticles were con-
firmed by the ED pattern (inset in Figure 3B) to be CuS
with typical orthorhombic structure. Thus, nanosized
CuS particles dispersed on the ZnIn2S4 surface would
act as the charge-transfer co-catalyst, together with
photodeposited Pt particles. The Pt-CuS dual co-
catalysts improved the charge separation and therefore
increased the photocatalytic activity.
Figure 4 illustrates the process of photo-generated charge

transfer for photocatalytic hydrogen evolution over Pt-
CuS/ZnIn2S4 in an aqueous solution containing Na2SO3/
Na2S under simulated sunlight. Band gap excitation pro-
duces electron-hole pairs in ZnIn2S4 particles. The excited
electrons are subsequently channeled to Pt sites, which
reduce protons to generate hydrogen. On the other hand,
the valence band potential of ZnIn2S4, deduced from the
conduction band potential (0.29 V vs. NHE) [22] and the
band gap energy (2.43 eV), is about 2.72 V vs. NHE, which
is more positive than the OH-/O2 redox potential [4]. The
valence band potential of CuS is less positive than the
OH-/O2 redox potential [34]. Such a difference of valence
band potentials makes it possible for the excited holes to
transfer from ZnIn2S4 to CuS to react with Na2S/Na2SO3

electron donor in the solution. Therefore, Pt and CuS are
supposed to act as the reduction and oxidation co-catalyst,
respectively, which leads to more efficient charge separa-
tion, thus improves photocatalytic activity of Pt-CuS/
ZnIn2S4. Similar benefits of dual co-catalysts on photocata-
lytic activity have been observed for CdS loaded with noble
metals as reduction catalysts and noble-metal sulfides as
oxidation catalysts [29,30]. It is noteworthy that replacing

noble-metal sulfides (such as PdS) by transition-metal sul-
fides (such as CuS) as the co-catalysts would help lower
the cost of photocatalysts for solar-hydrogen production.
Moreover, seeking effective co-catalyst candidates could be
expanded to other transition-metal sulfides such as FeS
and SnS2, etc. Detailed research on this subject is still an
ongoing progress in our group.

Conclusions
In summary, a series of Pt-loaded MS/ZnIn2S4 (MS =
transition-metal sulfides: Ag2S, SnS, CoS, CuS, NiS, and
MnS) photocatalysts were developed. It is found that
Ag2S, SnS, and CuS could enhance the photocatalytic
activity of hydrogen evolution over ZnIn2S4 to varying
degrees, while SnS, CoS, and NiS would reduce the

Table 1 Average rates of H2 evolution over Pt-loaded MS/
ZnIn2S4
Photocatalyst
MS/ZnIn2S4

Content of MS Rate of hydrogen evolution
μmol/h

ZnIn2S4 0 126.7

SnS/ZnIn2S4 0.5% 115.4

SnS/ZnIn2S4 1.0% 129.7

SnS/ZnIn2S4 2.0% 127.1

CuS/ZnIn2S4 0.5% 181.4

CuS/ZnIn2S4 1.0% 201.7

CuS/ZnIn2S4 2.0% 139.4

The average rates of H2 evolution over Pt-loaded MS/ZnIn2S4 (MS = metal
sulfide: SnS and CuS) under solar light irradiation in the initial 20-h period.

Figure 3 TEM images (A) ZnIn2S4 and (B) CuS/ZnIn2S4.
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activity. Among them, the Pt-CuS/ZnIn2S4 photocatalyst
exhibited the most efficient and stable activity for
hydrogen evolution. This can be attributed to the fact
that the dual co-catalysts of Pt and CuS entrapped
photo-induced electrons and holes for reduction and
oxidation reaction, respectively, improving charge
separation and hence the photocatalytic activity. Appli-
cation of transition-metal sulfides as co-catalysts opens
up an opportunity toward realizing high-efficiency, low-
cost photocatalysts for solar-hydrogen conversion.

Additional material

Additional file 1: Figures S1, S2, S3, S4 and S5.
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