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Abstract

Carbon nanowalls (CNWs), two-dimensional “graphitic” platelets that are typically oriented vertically on a substrate,
can exhibit similar properties as graphene. Growth of CNWs reported to date was exclusively carried out at a low
pressure. Here, we report on the synthesis of CNWs at atmosphere pressure using “direct current plasma-enhanced
chemical vapor deposition” by taking advantage of the high electric field generated in a pin-plate dc glow
discharge. CNWs were grown on silicon, stainless steel, and copper substrates without deliberate introduction of
catalysts. The as-grown CNW material was mainly mono- and few-layer graphene having patches of O-containing
functional groups. However, Raman and X-ray photoelectron spectroscopies confirmed that most of the oxygen
groups could be removed by thermal annealing. A gas-sensing device based on such CNWs was fabricated on
metal electrodes through direct growth. The sensor responded to relatively low concentrations of NO2 (g) and NH3

(g), thus suggesting high-quality CNWs that are useful for room temperature gas sensors.
PACS: Graphene (81.05.ue), Chemical vapor deposition (81.15.Gh), Gas sensors (07.07.Df), Atmospheric pressure
(92.60.hv)

Introduction
Graphene possesses many extraordinary properties and
has been the subject of intense scientific interest [1-12].
Exceptional values have been reported of: ballistic elec-
tron mobility (>200,000 cm2/V-s for particular samples)
[13,14], high thermal conductivity (5,000 W/m-K) [15],
Young’s modulus (approximately 1,100 GPa), fracture
strength (125 GPa) [16], and a high specific surface area
(approximately 2,600 m2/g) relevant to electrical energy
storage [5].
“Carbon nanowalls” (CNWs), also referred to as “car-

bon nanoflakes”, are two-dimensional “graphitic” plate-
lets that are typically oriented vertically on a substrate.
An individual CNW has been reported to have a few
stacked layers ("graphitic”) with typical lateral dimen-
sions of several micrometers [17]. CNWs might exhibit
similar properties as graphene. The sharp edges and ver-
tical orientation make CNWs a potential field emission
material [18-20]. The high surface area of CNWs could
be ideal for catalyst support. Recently, CNWs have been

tested for use in Li-ion batteries [21] and electrochemi-
cal capacitors [22]. CNWs can also be used as a tem-
plate for loading other nanomaterials; and the resulting
hybrid nanostructures are potentially useful for various
applications [23-25].
CNWs were discovered by Wu et al. [26] and since then

they have been grown using various low-pressure pro-
cesses. Initially, substrates were sputter-coated with transi-
tion metals as catalysts and the growth of CNWs was
typically carried out in a microwave plasma-enhanced che-
mical vapor deposition (MPECVD) system [23]. Only a
few studies of CNW growth using low-pressure, low-vol-
tage, high-current dc PECVD have been conducted [27].
The growth parameters were very similar to those used for
PECVD growth of carbon nanotubes (CNTs), but the
pressure used in the reactor chamber was much lower (≤1
Torr) [17,26-31]. There have been a number of studies
focused on understanding the CNW growth mechanism
and thus targeting control of the growth process
[22,26,32,33]. Nevertheless, to our knowledge, no CNW
growth has been reported at atmospheric pressure.
Here, we report on the synthesis of CNWs using dc

PECVD at atmospheric pressure by taking advantage of
the high electric field generated in a pin-plate dc glow

* Correspondence: jhchen@uwm.edu
1Department of Mechanical Engineering, University of Wisconsin-Milwaukee,
Milwaukee, WI 53211, USA.
Full list of author information is available at the end of the article

Yu et al. Nanoscale Research Letters 2011, 6:202
http://www.nanoscalereslett.com/content/6/1/202

© 2011 Yu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:jhchen@uwm.edu
http://creativecommons.org/licenses/by/2.0


discharge. In general, PECVD processes for the material
growth can occur at a relatively lower temperature due
to the significant contribution from energetic electrons
to cracking down precursor species. Prior studies using
low-pressure PECVD systems to grow CNWs mainly
rely on the increased mean free path (mfp) of electrons
in vacuum to obtain energetic electrons needed for the
decomposition of carbon precursors. The electric field
generated in the low-pressure PECVD system is gener-
ally low. By using a pair of asymmetric discharge elec-
trodes, i.e., a sharpened tungsten tip as cathode and a
planar substrate as anode, a highly enhanced electric
field about two to three orders of magnitude higher
than that in the previous MPECVD system is generated
near the tungsten tip so that the mfp of electrons can
be lowered or the system pressure can be elevated (e.g.,
to atmospheric pressure) to generate similar energetic
electrons.
Our method does not require a sealed reactor, which

presents a path for continuous line production of CNWs.
An atmospheric-pressure process to replace the vacuum
process should also reduce the product cost. A recent
study on the high cost of modern vacuum deposition
methods highlighted the need for atmospheric synthesis
[34]. The as-grown CNWs were decorated with oxygen-
containing functional groups. By thermal annealing in H2,
most oxygen functional groups can be effectively elimi-
nated. In addition, most of the product CNWs are non-
aggregated with large surface area, which makes the
product readily useful for various applications such as sen-
sing and catalysis. This is in contrast to stacked CNWs
that require additional dispersion, such as through ultraso-
nication, to obtain individual CNWs. To illustrate the
advantage of our growth method, CNWs deliberately
grown between metal electrodes were used for detection of
low-concentration gases including NO2 and NH3, thereby
demonstrating a one-step gas sensor fabrication process.

Experimental details
The plasma reactor consists of a quartz tube that houses
a tungsten needle cathode, a grounded graphite rod
anode, and a dc high negative voltage supply (EMCO
4100N; up to -10 kV) to drive the dc glow discharge.
Argon was used as the plasma gas. A tube furnace
(TF55035 A-1, Lindberg/BLUE M, Asheville, USA) was
used to heat the reactor. Silicon wafers, stainless steel
plates, and Cu plates were used as substrates. The sub-
strates were mounted on the top of the graphite rod; no
metals were added as potential catalysts.
Prior to the growth, the substrate was brought to 700°C

and held at that temperature for 10 min in an Ar/H2 flow
(1% H2 by volume) of 500 standard cubic centimeters per
minute (sccm). The two discharge electrodes were sepa-
rated by a distance of 1.0 cm. Then the Ar/H2 flow was

switched to an Ar/ethanol flow (1,000 sccm) through an
ethanol bubbler. The dc glow discharge was ignited at a
dc voltage of 3.3 kV. Once the dc plasma was formed, the
voltage between the electrodes immediately dropped to
2.2 kV, and the current was about 1.3 mA, yielding a
total plasma power of 2.9 W.
The plasma was typically left on for 15 min. Then, the

plasma was turned off and the system was cooled down to
room temperature with a flow of Ar/H2 only. Throughout
the process, the reactor pressure was maintained at one
atmosphere. The reactor temperature was measured as
close to 700°C (the preset furnace temperature) using a
thermocouple. This suggests that the energy dissipated in
the dc glow discharge was non-thermal (electrons were
preferentially heated by the plasma) and heavy species
(e.g., gas molecules, atoms, radicals, and ions) were not
substantially heated by the plasma. After the plasma was
turned off, a layer of black, powder-like material could be
seen on the substrate. In order to reduce oxygen func-
tional groups decorated on the as-grown CNWs, the
CNWs were thermally annealed at 900°C in H2 flow
(1,000 sccm) for 2 h at atmospheric pressure.
Scanning electron microscopy (SEM) analysis of the as-

grown samples was performed with a Hitachi S-4800 SEM
having a stated resolution of 1.4 nm at 1 kV acceleration
voltage. Transmission electron microscopy (TEM) was
performed with a Hitachi H 9000 NAR TEM, which has a
stated point resolution of 0.18 nm at 300 kV in the phase
contrast, high-resolution TEM (HRTEM) imaging mode.
In order to perform TEM characterizations, the as-grown
CNWs were wetted with ethanol and contact-transferred
to lacey carbon-coated TEM grids or bare Cu grids. A
confocal Raman system, which is composed of a TRIAX
320 spectrograph, liquid nitrogen-cooled CCD (CCD
3000), and “spectrum one” CCD controller (all manufac-
tured by HORIBA Jobin Yvon), was used to record the
Raman spectra of the samples with an excitation wave-
length of 532 nm. X-ray photoelectron spectroscopy (XPS,
Omicron NanoESCA probe, Omicron NanoTechnology
GmbH, Taunusstein, Germany) was used to analyze the
chemical composition as well as the nature of the chemical
bonds in the as-grown CNWs.
Gold-interdigitated electrodes with both finger width

and inter-finger spacing of about 1 μm and thickness of
50 nm were fabricated using an e-beam lithography pro-
cess (Raith 150 lithography tool, 30 kV) on an Si wafer
with a top layer of thermally-formed SiO2 (thickness of
200 nm). Sensor current was measured using a Keithley
2602 source meter.

Results and discussion
Figure 1 shows a schematic of the atmospheric dc
PECVD system for the CNW synthesis without any cat-
alysts. The morphology of the as-grown CNWs is
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displayed in the SEM images shown in Figure 2. The
CNWs were uniformly distributed on the Si substrate
(Figure 2a,2b). The total area on the substrate that was
covered with CNWs depended on the discharge power
and the distance between the electrodes. In our experi-
ments, the area covered with CNWs could be up to
approximately 1 cm2. The dimensions of individual
CNWs ranged from about 200 × 200 nm2 (Figure 2e) to
1 × 1 μm2 (Figure 2c), which can be controlled by the
growth time. The thickness of the CNWs was typically
below 10 nm, (top-view of CNWs, Figure 2c,2e; side-
view of CNWs, Figure 2d). Small pinholes were
observed in the CNWs (Figure 2e). Wu et al. used a dc
bias of -185 V to promote growth and vertical alignment
[26]. Hiramatsu et al. stated that the reactant type influ-
ences the CNW morphology [30], in the case of C2F6/
H2, they synthesized vertically aligned CNWs using a
radio-frequency plasma. In our experiments, most of the
CNWs were randomly oriented but pointing away from
the substrate surface, although a dc bias of 2.2 kV was
applied between the electrodes throughout the growth
process. In some areas, CNW clusters were found
(Figure 2f) sparsely distributed on the substrate. Each
CNW cluster had a “flower-like” shape with CNWs pro-
jecting in all directions, which is similar to the observa-
tions made by Chuang et al [35]. Similar structures were
also found for CNWs grown on a Cu substrate (see Fig-
ure S-1 in Additional file 1).
Raman spectra showed D and G bands located at

1,347 and 1,584 cm-1, respectively (Figure 3a). The bulk
graphite has a G peak at approximately 1,580 cm-1 [36],
whereas a D peak at approximately 1,350 cm-1 is seen
for defective graphite [37]. The position and shape of
the G peak suggest that graphitized carbon was synthe-
sized. The 2 D band (2,682 cm-1) suggests the presence
of “graphene-like” materials. A very small 2D’ band
(approximately 3,233 cm-1) indicates the existence of the
D’ band that is however probably convoluted with the G
band. The G peak for graphene sheets [38,39] occurs at
approximately 1,580 cm-1, and this peak broadens and

significantly shifts to 1,594 cm-1 for graphite oxide
sheets [40,41]. The upshift of what we attribute as the G
peak (to 1,584 cm-1) suggests a possibility of a high frac-
tion of oxygen contained in the as-grown CNWs. In the
growth of CNTs, it was stated that oxygen etches the
carbon on the catalyst particle surface and thus pro-
motes CNT growth [42]. We found that oxygen-con-
taining radicals also appear to be essential for the
growth of CNWs in our growth attempts. Hung et al.
attributed the formation of nucleation sites for the
growth of CNWs to the etching by oxygen-containing
species [22]. In addition to using ethanol, we tried to
synthesize CNWs with pure CH4 or with n-hexane
vapor with Ar as the carrier gas, but no CNWs were
observed. However, CNWs could be readily synthesized
with CH4 and water vapor (again with Ar as the carrier
gas), where the presence of C-OH groups was confirmed
with optical emission spectroscopy (see Figure S-2 and
S-3 in Additional file 1). The 1:2 O/C ratio in the etha-
nol precursor is perhaps too high to produce high-purity
“graphene-like” material with the approach we have
used, but we note the recent report of very carbon-pure
graphene made from ethanol using a microwave plasma
operated at low pressure [43]. It is likely that the oxygen
radicals etch away carbon as it is deposited during the
growth, which may explain broken edges and pinholes
on the resulting CNW sheets.
The 2 D peak is a signature of graphitic carbon in the

graphene-like materials [11]. The Raman spectrum
obtained from the as-grown CNWs exhibits a peak cen-
tered at 2,682 cm-1 (Figure 3a, pink curve), indicating
that the analyzed region consists of considerable amount
of graphene or oxygenated graphene. After thermal
annealing, the 2 D peak shifted to 2,675 cm-1 (Figure 3a,
olive curve). This trend is in agreement with literature.
The 2 D peaks were reported at 2,861 cm-1 for mono-
layer graphene oxide [44], and 2,700 cm-1 for monolayer
graphene [45]. For monolayer reduced graphene oxide,
the 2 D peak was found around 2,700 cm-1 or below
2,700 cm-1 [44,46,47]. The 2 D band is very sensitive to

Figure 1 Experimental setup for atmospheric pressure dc PECVD growth of CNWs.
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the number of layers in the sample. Figure 3a shows sin-
gle Lorentzian profiles of the few-layered graphene
sheets, which are different from the case of few-layered
graphene sheets generated by micromechanical cleavage
of graphite [11]. The reason is that an ordered stacking

(i.e., ABAB stacking) and therefore an electronic cou-
pling do not occur in all region of a CNW sheet [48].
The D peak and 2D’ peak are attributed to the struc-

tural disorder in the CNW sheets [38]. The intensity of
the D band is at least partly a consequence of the high

Figure 2 Morphology of the as-grown CNWs displayed in the SEM images. (a) An SEM image of CNWs on a silicon substrate; primary
beam incident kinetic energy was 30 keV. (b) CNWs uniformly distributed on the substrate over approximately 1 cm2. (c-e) The CNWs were
quasi-transparent to the SEM electron beam. (f) The cluster of CNWs is “flower-like”.
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fraction of open edges and pinholes within the CNWs
(Figure 2a) [49]. The disorder-induced combination
mode (D + G) at about 2,920 cm-1 was also observed.
For comparison of the relative intensity of each peak,
the Raman spectra were normalized. Both of the G
peaks intensities before and after reduction were fixed
at 1 (Figure 3a). The band area ratios I(2D)/I(G)
increased from 0.79 to 0.81 after thermal reduction.
This change indicates a slight increase of sp2 carbon
domain. The band area ratios I(D)/I(G) decreased from
1.73 to 1.63 after thermal reduction. The reducing I(D)/
I(G) indicates a decreasing degree of disordered carbon.
The ratio of the intensity of the G band to that of the D
band I(G)/I(D) is directly related to the in-plane crystal-
lite size La (nanometers) = 19.2 (I(G)/I(D)), and an
increase of La from 11.1 to 11.8 nm was obtained [50].

XPS studies reveal the nature of the carbon and oxy-
gen bonds present in the samples (Figure 3b,3c). The
XPS peaks were decomposed with a Gaussian fit. Analy-
sis of the CNWs shows a significant reduction of oxygen
functional groups after thermal annealing in H2 for 2 h
at 900°C. Briefly, the as-grown CNWs contained non-
oxygenated ring C (71.1%), sp3 C hybridized to C (C-C,
18.5%), C in C-OH bonds (9.1%), the carboxylate carbon
(O = C-OH, 1.1%), and carbonyl carbon (<0.2%). After
thermal annealing, only a small fraction of C in C-OH
(1.7%) remained in the CNWs. C in C = C and C-C
bonds increased to 72.8% and 25.5%, respectively. The
O1 s spectra showed similar reduction of O - the peak
weakened after reduction in H2 (Figure 3c). However,
the accurate determination of every O-containing group
after the thermal reduction is quite challenging due to
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the insufficient signal-to-noise ratio. Positions of carbon-
related and oxygen-related peaks in the XPS spectra are
consistent with those of oxidized graphene reported
recently [51]. The reduction of oxygen functional groups
suggested by the XPS spectra is consistent with the
Raman data.
TEM images of the product CNWs were shown in

Figure 4. Two low-magnification TEM images are
shown as Figure 4a and 4b. The inset in Figure 4a is a
SAD pattern of the CNW sample, which displays a

hexagonal pattern confirming the threefold symmetry of
the arrangement of carbon atoms. Well-defined diffrac-
tion spots (instead of ring patterns) were observed for
most CNWs, while ring patterns were observed sel-
domly, indicating the mostly few-layer structure and a
high degree of crystallinity of the resulting CNWs.
HRTEM examination of the samples confirms that the
CNW sheets consist of only a few graphene layers (typi-
cally one to five layers, Figure 4c,4d). The edges of
the suspended CNWs often fold back, allowing for a

Figure 4 TEM characterization of CNWs. (a) A CNW sheet supported on a Cu grid. Electron diffraction from the CNW is shown as an inset. (b)
The areas of a CNW with different thicknesses and wrinkles. (c) and (d) HRTEM images showing the edges of CNW film consisting of one, and
five graphene layers, respectively. (d corresponds to the area defined by the white box in b). (e) HRTEM iamge of a CNW sheet with two well-
crytallined regions (arrowed). The diffractogram (the inset) is from the red-squared region in (e). (f) A filtered image of the squared region in (e).
(g) The intensity profile along the red dashed line in (f).
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cross-sectional view of the graphene [48,52]. By obser-
ving these edges through HRTEM images, the number
of layers at multiple locations on the graphene can be
measured (Figure 4c,4d). The estimated interlayer spa-
cing is about 3.50 Å, which is a little larger than the d-
spacing of graphite (3.36 Å). The small amount of oxy-
gen-containing functional groups might be the main
reason for this difference [44].
Although a fraction of surface area of the CNW may be

covered with oxygen groups, there are well-crystallined
graphitic regions (sp2 carbon) in the CNW. Figure 4e is
an HRTEM image from another CNW sample and shows
two regions (arrowed) with well-defined fringes implying
the good crystallinity of the CNW. The diffractogram
(the inset in Figure 4e) of the red-squared region in
Figure 4e gives a set of hexagonal spots, suggesting the
possible monolayer nature of the region. We further
inspected the squared area in Figure 4e by performing
Fourier filtering. A filtered image with atomic resolution
is shown in Figure 4f. The “honeycomb-like” carbon
rings in Figure 4f clearly illustrate that the CNW consists
of monolayer graphene. The length of the C-C bond in
graphene is 0.142 nm [53], resulting in a hexagon with a
width of 0.25 nm. We analyzed the intensity profile
(Figure 4g) along the red dashed line in Figure 4e. The
hexagon width measured from the intensity outline in
Figure 4g is about 0.246 nm, which is in good agreement
with the expected value of 0.25 nm. Our HRTEM analysis
indicates the existence of monolayer graphene in the pro-
duct CNWs.
To demonstrate the gas sensing performance of the

as-grown CNWs, CNWs were grown on interdigitated
Au electrodes. The interdigitated electrodes with finger
width and inter-finger spacing both of 1 μm were fabri-
cated by an e-beam lithography process and used as the
sensor substrates [54]. The growth duration was 5 min
as it was found that this exposure would yield a CNW
film with CNWs connecting with the two neighbouring
electrodes (Figure 5a). The sensor operated at room
temperature and was periodically exposed to clean dry
air flow of 2 lpm for 10 min to record a base value of
the sensor conductance, NO2 (100 ppm) or NH3 (1%)
diluted in air of 2 lpm for 15 min to register a sensing
signal, and then a lab air flow of 2 lpm again for 25 min
to recover the device. A constant dc bias (= 0.1 V) was
applied across the two gold terminals.
Upon the introduction of NO2, the sensor current

went up, i.e., the conductance of the sensor increased
(Figure 5b, red curve). Upon exposure to NH3, the sen-
sor current went down, i.e., the conductance of the sen-
sor decreased (Figure 5b, blue curve). Thus, the CNW
film behaves like a p-type semiconductor, similar to gra-
phene exposed to air. NO2 is a strong oxidizer with
electron-withdrawing power [55]; therefore, electron

transfer from the CNWs to adsorbed NO2 leads to
increased hole concentration and enhanced electrical
conduction in the CNW network. Likewise, the
absorbed NH3 molecules donate electrons to CNW and
neutralize holes partially in the CNW, which results in a
lower sensor current in the device. The sensing behavior
of the as-grown CNW is consistent with a typical gra-
phene or reduced graphene oxide gas sensor [54].

Conclusions
In summary, we have demonstrated a new path to low-
cost production of CNWs on Si, stainless steel, and Cu
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substrates with a dc PECVD system operated at atmo-
spheric pressure. SEM, HRTEM, Raman spectroscopy,
and XPS reveal that the as-grown CNW material has a
significant fraction of chemically functionalized mono-
and few-layer graphene, with patches of O-containing
functional groups; however, most of the O-containing
functional groups can be removed by thermal annealing.
Our atmospheric pressure process can be readily scaled
up for large area growth through the use of an array of
tungsten needle cathodes. A gas sensing device based on
as-produced CNW film responds to low-concentration
NO2 or NH3 in a similar fashion as sensing devices
based on graphene or reduced graphene oxide. There-
fore, a simple one-step gas sensor fabrication process
has been demonstrated.

Additional material

Additional file 1: CNWs grown on a Cu plate and stainless steel
plates; emission spectrum of dc glow discharge. Figure S-1 SEM
images of CNWs grown on a Cu plate with different surface density.
Figure S-2 (a) SEM image showing no presence of CNWs on a stainless
steel plate when CH4 alone is used as the precursor gas. (b) CNWs
grown using CH4 and H2O. The growth time for both cases is 5 min.
Figure S-3 Emission spectrum of glow discharge obtained by subtracting
the background signal (without discharge) from the total spectrum (with
discharge). Emission lines of OH are remarkable in the spectrum of a
CNW sample.
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