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Lattice Boltzmann simulation of alumina-water
nanofluid in a square cavity
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Abstract

A lattice Boltzmann model is developed by coupling the density (D2Q9) and the temperature distribution functions
with 9-speed to simulate the convection heat transfer utilizing Al2O3-water nanofluids in a square cavity. This
model is validated by comparing numerical simulation and experimental results over a wide range of Rayleigh
numbers. Numerical results show a satisfactory agreement between them. The effects of Rayleigh number and
nanoparticle volume fraction on natural convection heat transfer of nanofluid are investigated in this study.
Numerical results indicate that the flow and heat transfer characteristics of Al2O3-water nanofluid in the square
cavity are more sensitive to viscosity than to thermal conductivity.

List of symbols
c Reference lattice velocity
cs Lattice sound velocity
cp Specific heat capacity (J/kg K)
ea Lattice velocity vector
fa Density distribution function

f
eq Local equilibrium density distribution function

Fa External force in direction of lattice velocity
g Gravitational acceleration (m/s2)
G Effective external force
k Thermal conductivity coefficient (Wm/K)
L Dimensionless characteristic length of the square

cavity
Ma Mach number
Pr Prandtl number
r Position vector
Ra Rayleigh number
t Time (s)
Ta Temperature distribution function

Ta
eq Local equilibrium temperature distribution

function
T Dimensionless temperature
T0 Dimensionless average temperature (T0 = (TH + TC)/2)
TH Dimensionless hot temperature
TC Dimensionless cold temperature

u Dimensionless macrovelocity
uc Dimensionless characteristic velocity of natural

convection
wa Weight coefficient
x, y Dimensionless coordinates

Greek symbols
b Thermal expansion coefficient (K-1)
r Density (kg/m3)
ν Kinematic viscosity coefficient (m2/s)
c Thermal diffusion coefficient (m2/s)
μ Kinematic viscosity (Ns/m2)
� Nanoparticle volume fraction
δx Lattice step
δt Time step t
τf Dimensionless collision-relaxation time for the flow

field
τT Dimensionless collision-relaxation time for the tem-

perature field
ΔT Dimensionless temperature difference (ΔT = TH -

TC)
Error1 Maximal relative error of velocities between

two adjacent time layers
Error2 Maximal relative error of temperatures between

two adjacent time layers

Subscripts
a Lattice velocity direction
avg Average
C Cold
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f Fluid
H Hot
nf Nanofluid
p Particle

Introduction
The most common fluids such as water, oil, and ethylene-
glycol mixture have a primary limitation in enhancing the
performance of conventional heat transfer due to low ther-
mal conductivities. Nanofluids, using nanoscale particles
dispersed in a base fluid, are proposed to overcome this
drawback. Nanotechnology has been widely studied in
recent years. Wang and Fan [1] reviewed the nanofluid
research in the last 10 years. Choi and Eastman [2] are the
first author to have proposed the term nanofluids to refer
to the fluids with suspended nanoparticles. Yang and Liu
[3] prepared a kind of functionalized nanofluid with a
method of surface functionalization of silica nanoparticles,
and this nanofluid with functionalized nanoparticles have
merits including long-term stability and good dispersing.
Pinilla et al. [4] used a plasma-gas-condensation-type clus-
ter deposition apparatus to produce nanometer size-
selected Cu clusters in a size range of 1-5 nm. With this
method, it is possible to produce nanoparticles with a
strict control on size by controlling the experimental con-
ditions. Using the covalent interaction between the fatty
acid-binding domains of BSA molecule with stearic acid-
capped nanoparticles, Bora and Deb [5] proposed a novel
bioconjugate of stearic acid-capped maghemite nanoparti-
cle with BSA molecule, which will give a huge boost to the
development of non-toxic iron oxide nanoparticles using
BSA as a biocompatible passivating agent. Wang et al. [6]
showed the method of synthesizing stimuli-responsive
magnetic nanoparticles and analyzed the influence of glu-
tathione concentration on its cleavage efficiency. Huang
and Wang [7] produced ε-Fe3N-magnetic fluid by chemi-
cal reaction of iron carbonyl and ammonia gas. Guo et al.
[8] investigated the thermal transport properties of the
homogeneous and stable magnetic nanofluids containing
g-Fe2O3 nanoparticles.
Many experiments and common numerical simulation

methods have been carried out to investigate the nano-
fluids. Teng et al. [9] examined the influence of weight
fraction, temperature, and particle size on the thermal
conductivity ratio of alumina-water nanofluids. Nada et al.
[10] investigated the heat transfer enhancement in a hori-
zontal annuli of nanofluid containing various volume frac-
tions of Cu, Ag, Al2O3, and TiO2 nanoparticles. Jou and
Tzeng [11] studied the natural convection heat transfer
enhancements of nanofluid containing various volume
fractions, Grashof numbers, and aspect ratios in a two-
dimensional enclosure. Heris et al. [12] investigated
experimentally the laminar flow-forced convection heat
transfer of Al2O3-water nanofluid inside a circular tube

with a constant wall temperature. Ghasemi and Aminossa-
dati [13] showed the numerical study on natural convec-
tion heat transfer of CuO-water nanofluid in an inclined
enclosure. Hwang et al. [14] theoretically investigated the
natural convection thermal characteristics of Al2O3-water
nanofluid in a rectangular cavity heated from below.
Tiwari and Das [15] numerically investigated the behavior
of Cu-water nanofluids inside a two-sided lid-driven differ-
entially heated square cavity and analyzed the convective
recirculation and flow processes induced by the nanofluid.
Putra et al. [16] investigated the natural convection heat
transfer characteristics of CuO-water nanofluids inside a
horizontal cylinder heated and cooled from both of ends,
respectively. Bianco et al. [17] showed the developing lami-
nar forced convection flow of a water-Al2O3 nanofluid in a
circular tube with a constant and uniform heat flux at the
wall. Polidori et al. [18] investigated the flow and heat
transfer of Al2O3-water nanofluids under a laminar-free
convection condition. It has been found that two factors,
thermal conductivity and viscosity, play a key role on the
heat transfer behavior. Oztop and Nada [19] investigated
the heat transfer and fluid flow characteristic of different
types of nanoparticles in a partially heated enclosure. Ho
et al. [20] carried out an experimental study to show the
natural convection heat transfer of Al2O3-water nanofluids
in square enclosures of different sizes.
The lattice Boltzmann method applied to investigate the

nanofluid flow and heat transfer characteristic has been
studied in recent years. Hao and Cheng [21] simulated
water invasion in an initially gas-filled gas diffusion layer
using lattice Boltzmann method to investigate the effect of
wettability on water transport dynamics in gas diffusion
layer. Xuan and Yao [22] developed a lattice Boltzmann
model to simulate flow and energy transport processes
inside the nanofluids. Xuan et al. [23] also proposed
another lattice Boltzmann model by considering the exter-
nal and internal forces acting on the suspended nanoparti-
cles as well as mechanical and thermal interactions among
the nanoparticles and fluid particles. Arcidiacono and
Mantzaras [24] developed a lattice Boltzmann model for
simulating finite-rate catalytic surface chemistry. Barrios
et al. [25] analyzed natural convective flows in two dimen-
sions using the lattice Boltzmann equation method. Peng
et al. [26] proposed a simplified thermal energy distribu-
tion model whose numerical results have a good agree-
ment with the original thermal energy distribution model.
He et al. [27] proposed a novel lattice Boltzmann thermal
model to study thermo-hydrodynamics in incompressible
limit by introducing an internal energy density distribution
function to simulate the temperature field.
In this study, a lattice Boltzmann model is developed by

coupling the density (D2Q9) and the temperature distribu-
tion functions with 9-speed to simulate the convection
heat transfer utilizing nanofluids in a square cavity.
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Lattice Boltzmann method
In this study, the Al2O3-water nanofluid of single phase
is considered. The macroscopic density and velocity
fields are still simulated using the density distribution
function.
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where τf is the dimensionless collision-relaxation time
for the flow field; ea is the lattice velocity vector; the
subscript a represents the lattice velocity direction; fa(r,
t) is the population of the nanofluid with velocity ea

(along the direction a) at lattice r and time t; f t
eq r ,( )

is the local equilibrium distribution function; δt is the
time step t; Fa is the external force term in the direction
of lattice velocity; G = -b(Tnf-T0)g is the effective exter-
nal force, where g is the gravity acceleration; b is the
thermal expansion coefficient; T is the temperature of
nanofluid; and T0 is the mean value of the high and low
temperatures of the walls.
For the two-dimensional 9-velocity LB model (D2Q9)

considered herein, the discrete velocity set for each
component a is
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where c = δx / δt is the reference lattice velocity, δx is
the lattice step, and the order numbers a = 1, ..., 4 and
a = 5, ..., 8, respectively, represent the rectangular direc-
tions and the diagonal directions of a lattice.
The density equilibrium distribution function is cho-

sen as follows:
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where c c
s
2 2

3
= is the lattice sound velocity, and wal-

pha is the weight coefficient.
The macroscopic temperature field is simulated using

the temperature distribution function:
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where τT is the dimensionless collision-relaxation time
for the temperature field.
The temperature equilibrium distribution function is

chosen as follows:
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The macroscopic temperature, density, and velocity
are, respectively, calculated as follows:
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The corresponding kinematic viscosity and thermal
diffusion coefficients are, respectively, defined as follows:
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For natural convection, the important dimensionless
parameters are Prandtl number Pr and Rayleigh number
Ra defined by

Pr = 


(13)

Ra
g TL Pr= 


Δ 3

2
(14)

where ΔT is the temperature difference between the
high temperature wall and the low temperature wall,
and L is the characteristic length of the square cavity.
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Another dimensionless parameter Mach number Ma
is defined by

Ma
u

c
= c

s
(15)

where u g TLc = Δ is the characteristic velocity of

natural convection. For natural convection, the Boussi-
nesq approximation is applied; to ensure that the code
works in near incompressible regime, the characteristic
velocity must be small compared with the fluid speed of
sound. In this study, the characteristic velocity is
selected as 0.1 times of speed of the sound.
The dimensionless collision-relaxation times τf and τT

are, respectively, given as follows:
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Lattice Boltzmann model for nanofluid
The fluid in the enclosure is Al2O3-water nanofluid.
Thermo-physical properties of water and Al2O3 are given in
Table 1. The nanofluid is assumed incompressible and no
slip occurs between the two media, and it is idealized that
the Al2O3-water nanofluid is a single phase fluid. Hence, the
equations of physical parameters of nanofluid are as follows:
Density equation:

   nf f p= − +( )1 (18)

where rnf is the density of nanofluid, � is the volume
fraction of Al2O3 nanoparticles, rbf is the density of
water, and rp is the density of Al2O3 nanoparticles.
Heat capacity equation:

c c cpnf pf pp= − +( )1   (19)

where Cpnf is the heat capacity of nanofluid, Cpf is the
heat capacity of water, and Cpp is the heat capacity of
Al2O3 nanoparticles.
Dynamic viscosity equation [28]:
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where μnf is the viscosity of nanofluid, and μf is the
viscosity of water.
Thermal conductivity equation [28]:
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where knf is the thermal conductivity of nanofluid, and
kf is the thermal conductivity of water.
The Nusselt number can be expressed as

Nu
nf

= hH

k
(22)

The heat transfer coefficient is computed from

h
q
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The thermal conductivity of the nanofluid is defined
by
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Substituting Equations (23) and (24) into Equation
(22), the local Nusselt number along the left wall can be
written as
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The average Nusselt number is determined from
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0

1

(26)

Results and discussion
The square cavity used in the simulation is shown in
Figure 1. In the simulation, all the units are all lattice
units. The height and the width of the enclosure are
all given by L. The left wall is heated and maintained
at a constant temperature (TH) higher than the tem-
perature (TC) of the right cold wall. The boundary
conditions of the top and bottom walls are all adia-
batic. The initialization conditions of the four walls are
given as follows:

x T x T
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In the simulation, a non-equilibrium extrapolation
scheme is adopted to deal with the boundary, and the

Table 1 Thermo-physical properties of water and Al2O3 [29]

Physical properties Fluid phase (water) Nanoparticles (Al2O3)

r (kg/m3) 997.1 3970

cp (J/kg K) 4179 765

μ (m2/s) 0.001004 /

k (Wm/K) 0.613 25
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standards of the program convergence for flow field and
temperature field are respectively given as follows:
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where ε is a small number, for example, for Ra = 8 ×
104, ε1 = 10-7, and ε2 = 10-7; for Ra = 8 × 105, ε1 = 10-8,
and ε2 = 10-8.
In the lattice Boltzmann method, the time step t = 1.0,

the lattice step δ = 1.0, the total computational time of
the numerical simulation is 100 s, and the data of equili-
brium state is chosen in the simulation.
As shown in Table 2, the grid independence test is

performed using successively sized grids, 192 × 192, 256
× 256, and 300 × 300 at Ra = 8 × 105, j = 0.00 (water).
From Table 2, it can be seen that the numerical results
with grids 256 × 256 and 300 × 300 are more close to
those in the literature [20] than with grid 192 × 192,
and there is little change in the result as the grid
changes from 256 × 256 to 300 × 300. In order to

accelerate the numerical simulation, a grid size of 256 ×
256 is chosen as the suitable one which can guarantee a
grid-independent solution.
To estimate the validity of above proposed lattice

Boltzmann model for incompressible fluid, the model
is also applied to a nanofluid with nanoparticle volume
fraction j = 0.00 in a square cavity, and the research
object and conditions of numerical simulation are set
the same as those proposed in the literature [20]. Fig-
ure 2 compares the numerical results with the experi-
mental ones, and a satisfactory agreement is obtained,
which indicates that it is feasible to apply the model to
incompressible liquids with good accuracy. In Figure 2,
there are a few differences because the nanofluid in
the simulation is supposed as a single phase, while the
real nanofluid is a two-phase fluid. Therefore, the
small differences are accepted in the simulation, and
the model is appropriate for the simulation of
nanofluid.
Figure 3 illustrates the velocity vectors and isotherms

of the Al2O3-water nanofluid at different Rayleigh num-
bers with a certain volume fraction of Al2O3 nanoparti-
cles (j = 0.00). It is observed that there are two big
vortices in the square cavity at Ra = 8 × 105; as the Ray-
leigh number increases, they are less likely to be
observed compared with the condition at smaller Ray-
leigh numbers. This may be because of the gradually
increasing Rayleigh number (corresponding to the
increase of the velocity), which causes the nanofluid to
rotate mainly around the inside wall of the square cav-
ity. In addition, it can be seen that the temperature iso-
therms become more and more crooked as Ra increases,
which illustrates that the heat transfer characteristics
transform from conduction to convection.
Figures 4 and 5 present the velocity vectors and iso-

therms at Ra = 8 × 104 and Ra = 8 × 105 for various
volume fractions of Al2O3 nanoparticles, respectively.

Figure 1 Schematic of the square cavity.

Table 2 Comparison of the mean Nusselt number with
different grids

Physical
properties

192 × 192 256 × 256 300 × 300 Literature
[20]

Nuavg 8.367 8.048 7.915 7.704
Figure 2 Comparison of the mean Nusselt number at different
Rayleigh numbers.
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Figure 3 Velocity vectors (on the left, ®0.002) and isotherms (on the right) for Al2O3-water nanofluid at different Rayleigh numbers.
� = 0.01 (a) Ra = 8 × 105, (b) Ra = 1.4 × 106, (c) Ra = 1.9 × 106, (d) Ra = 2.6 × 106, (e) Ra = 3.3 × 106.

Figure 4 Velocity vectors (on the left, ®0.002) and isotherms (on the right) for Al2O3-water nanofluid at Ra = 8 × 104 with different
volume fractions. (a) � = 0.00, (b) � = 0.01, (c) � = 0.03, (d) � = 0.05.
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There are no obvious differences for velocity vectors and
isotherms with different volume fractions of nanoparti-
cles, which is because the volume fractions are so small,
it is not significant in this case on comparing with Ray-
leigh number, and the effect of those volume fractions is
negligible. However, it can be seen that there is a little
difference on local part of the isotherms, for example, as
the volume fraction of Al2O3 nanoparticles increases,
the lowest isotherm in Figure 4 and the second lowest
isotherm in Figure 5 become less and less crooked,
which indicates that high values of � cause the fluid to
become more viscous which causes the velocity to
decrease accordingly resulting in a reduced convection.
It is more sensitive to the viscosity than to the thermal
conductivity for nanofluids heat transfer in a square cav-
ity. This phenomenon can also be observed in Figure 6.
Figure 6 illustrates the relation between the average

Nusselt number and the volume fraction of nanoparticles
at two different Rayleigh numbers. It is observed that the
average Nusselt number decreases with the increase of
the volume fraction of nanoparticles for Ra = 8 × 104 and
Ra = 8 × 105. In addition, it can be seen that the average
Nusselt number decreases less at a low Rayleigh number.
For the case of Ra = 8 × 104 and Ra = 8 × 105, it is indi-
cated that the high values of � cause the fluid to become
more viscous which causes reduced convection effect
accordingly resulting in a decreasing average Nusselt
number, and the flow and heat transfer characteristics of
nanofluids are more sensitive to the viscosity than to the
thermal conductivity at a high Ra.

Conclusion
A lattice Boltzmann model for single phase fluids is
developed by coupling the density and temperature dis-
tribution functions. A satisfactory agreement between
the numerical results and experimental results is
observed.
In addition, the heat transfer and flow characteristics

of Al2O3-water nanofluid in a square cavity are investi-
gated using the lattice Boltzmann model. It is found
that the heat transfer characteristics transform from
conduction to convection as the Rayleigh number
increases, the average Nusselt number is reduced with
increasing volume fraction of nanoparticles, especially at

Figure 5 Velocity vectors (on the left, ®0.002) and isotherms (on the right) for Al2O3-water nanofluid at Ra = 8 × 105 with different
volume fractions. (a) � = 0.00, (b) � = 0.01, (c) � = 0.03, (d) � = 0.05.

Figure 6 Average Nusselt numbers at different Rayleigh
numbers.
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a high Rayleigh number. The flow and heat transfer
characteristics of Al2O3-water nanofluid in a square cav-
ity are demonstrated to be more sensitive to viscosity
than to thermal conductivity.
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