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Abstract

Background: Recently, large data sets of protein-protein interactions (PPI) which can be modeled as PPI networks
are generated through high-throughput methods. And locally dense regions in PPI networks are very likely to be
protein complexes. Since protein complexes play a key role in many biological processes, detecting protein
complexes in PPI networks is one of important tasks in post-genomic era. However, PPI networks are often
incomplete and noisy, which builds barriers to mining protein complexes.

Results: We propose a new and effective algorithm based on robustness to detect overlapping clusters as protein
complexes in PPI networks. And in order to improve the accuracy of resulting clusters, our algorithm tries to
reduce bad effects brought by noise in PPI networks. And in our algorithm, each new cluster begins from a seed
and is expanded through adding qualified nodes from the cluster’s neighbourhood nodes. Besides, in our
algorithm, a new distance measurement method between a cluster K and a node in the neighbours of K is
proposed as well. The performance of our algorithm is evaluated by applying it on two PPI networks which are
Gavin network and Database of Interacting Proteins (DIP). The results show that our algorithm is better than
Markov clustering algorithm (MCL), Clique Percolation method (CPM) and core-attachment based method (CoAch)
in terms of F-measure, co-localization and Gene Ontology (GO) semantic similarity.

Conclusions: Our algorithm detects locally dense regions or clusters as protein complexes. The results show that
protein complexes generated by our algorithm have better quality than those generated by some previous classic
methods. Therefore, our algorithm is effective and useful.

Background
Nowadays, with the rapid development of advanced pro-
teomics technologies such as mass spectrometry [1],
microarrays [2] and phage display [3], large data sets of
PPIs are generated. And a common way to analyze
these data sets is to portray them as PPI networks. In
the post-genomic era, understanding PPI networks is an
important task. It is suggested that locally dense regions
in PPI networks are likely to be protein complexes. Pro-
tein complexes involve genes or proteins which partici-
pate in common fundamental biological processes [4].

Since protein complexes play a vital role in the cellular
organization and function, detecting protein complexes
in PPI networks becomes a burning issue which attracts
many researchers.
In order to solve the problem of detecting protein

complexes in PPI networks, many researchers have pro-
posed a lot of computational approaches. The method
proposed by Spirin and Mirny [5] in 2003 tried to find
all fully connected subgraphs (cliques) as protein com-
plexes by complete enumeration. However, identifying
all cliques in PPI networks is an NP-complete problem
and clique is a very restrictive condition which leaves
out many potential protein complexes. In order to
improve this method, CPM [6] mined k-clique percola-
tion clusters as protein complexes. Although CPM can
detect more protein complexes than [5], it still omits a
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lot of protein complexes because many protein com-
plexes are not k-clique percolation clusters. And Mole-
cular Complex Detection (MCODE) [7] proposed by
Bader and Hogue was a kind of density-based methods.
Based on node weight, MCODE detects locally dense
regions as protein complexes. In MCODE algorithm,
node weight is assigned to each node in the network
according to its local neighbourhood density. In general,
MCODE is an effective approach, but it detects only a
few protein complexes in PPI networks. Besides, Highly
Connected Subgraph method (HCS) [8], one of graph
partition-based methods, used minimum cuts to sepa-
rate a PPI network into several subgraphs. The resulting
subgraphs are regarded as protein complexes as long as
they satisfy a specified density threshold. And MCL [9],
another kind of graph partition-based methods, pro-
duced highly connected subnetworks as protein com-
plexes through random walks. Though HCS and MCL
are fast, they do not support mining overlapping protein
complexes. However, in reality, many protein complexes
do share proteins. In addition, Restricted Neighborhood
Search Clustering Algorithm (RNSC) [10] which was a
cost-based local search algorithm partitioned PPI net-
works through minimizing a cost function. Since RNSC
is a randomized algorithm, the same input data will
make RNSC produce different results. And in order to
improve the accuracy of clustering results, RNSC uses a
filtering step. This step needs information of functional
homogeneity, which is a shortcoming of RNSC. And
recently, CoAch [11] has been proposed according to
the idea in [12] that a protein complex generally
includes a core and several attachments. It first detects
cores from each nodes’ neighbourhood graph and then
expands each core by adding nodes which connect more
than half of nodes in the core.
Kelly et al. [13] found that many alternative paths

often exist between functionally associated proteins
since they contribute a lot to the robustness of biologi-
cal signals’ transmission. Therefore, protein complexes
should have the characteristic of robustness. As an
expansion upon the proceedings version [14], we pro-
pose a novel algorithm to mine overlapping protein
complexes on the basis of robustness. In our algorithm,
a seed is firstly selected as a new cluster and expands
the cluster by adding qualified nodes from the cluster’s
neighbourhood nodes. Since many existing PPI networks
are incomplete and noisy, each edge’s weight in result-
ing clusters should satisfy a specified threshold. The
weight of an edge in PPI network is assigned on the
basis of the similarity of nodes at the end of the edge.
Besides, resulting clusters should have relatively high
robustness for trying to find out reliable protein
complexes. Moreover, we present a new distance

measurement method between a cluster K and a node
in the neighbours of K as well. In order to estimate the
performance, our algorithm is compared with MCL,
CPM and CoAch. The results show our algorithm has
an improvement in terms of F-measure, co-localization
and GO semantic similarity.

Methods
Terminology
A PPI network can be modeled as an undirected simple
graph G=(V, E), in which V represents the set of nodes
(proteins) and E represents the set of edges (protein
interactions) in the network. Here, self-interactions
(loops) and multiple edges between the same pair of
nodes are not considered. Before detail description of
our algorithm, some terminologies used in the following
algorithm section are presented as follows.
Definition 1
In our algorithm, the weight wuv of edge (u, v) Î E is
defined as the similarity between u and v. It is obvious
that two nodes with an edge between them belong to the
same cluster if they have high similarity. The similarity
between u and v is measured by Jaccard’s coefficient [2].
Jaccard’s coefficient adopts the proportion of common
neighbours of two nodes in all distinct neighbours of
these nodes to measure node similarity in complex net-
works. Obviously, the more common neighbours two
nodes share, the higher similarity these nodes have.
Therefore, the edge weight wuv is represented by Equa-
tion (1).

wuv =
�(u) ∩ �(v)
�(u) ∪ �(v)

(1)

where, Γ(u) and Γ(v) are neighbours of u and v
respectively. Γ(u) ∩ Γ(v) represents all common neigh-
bours of u and v, and Γ(u) ∪ Γ(v) represents all distinct
neighbours of u and v. In our algorithm, edge weight is
used to guarantee that in the same cluster every pair of
nodes with an edge between them should have relatively
high similarity.

Definition 2
The neighbourhood graph [11] of v ∈ V consists of v, all
its neighbours and the edges among them. It is defined
as Gv = (V ′,E′), in which V ′ = {v} ∪ {u|u ∈ V, (u, v) ∈ E },
and E′ = {(ui, uj)|(ui, uj) ∈ E, ui, uj ∈ V ′}.
Definition 3
In Gv, there are some nodes with degree 1 that only
have connections with v and the connections among
these nodes are often false positive according to topolo-
gical reliability measures described in [15-17]. So all
nodes with degree 1 and corresponding edges are
removed from Gv . The remaining subgraph of Gv is
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marked as Gv
′. In our algorithm, the node weight wv of

node v ∈ V in PPI networks is the average degree of all
nodes in Gv

′. It is represented by Equation (2).

wv =

∑

u∈V ′′
deg(u)

|V ′′|
(2)

where, V” is the set of nodes inGv
′ .|V ′′| is the number of

nodes in Gv
′. And deg(u) is the degree of a node u Î V” in

Gv
′. In our algorithm, the weight wv of a node v Î V is

used in the step of seed chosen. If wv is big enough, v has
many neighbours in Gv

′ and Gv
′ is a densely connected

region.
Definition 4
Nk of a cluster K = (VK, EK) is a set of all nodes which
do not belong to K but have edges connected to nodes
in K. Czekanovski-Dice distance [18] has been used
to measure the functional distance of two nodes in
complex networks. In this paper, we modify the
Czekanovski-Dice distance for measuring the functional
distance d(v, K) between a cluster K ( K= (Vk, Ek)) and a
node v (v Î Nk).

d(v,K) =
|K| − m

|K| +
OUT(K) +OUT(v)

deg(K) + deg(v) − 2m + |K| (3)

where, | K | is the number of nodes in K . m is the
number of all edges between v and any node in K . deg
(K) is the total external degree of K . OUT(K) is the
number of edges connecting any node in K with nodes
outside K which do not include v and common neigh-
bours of K and v . And OUT(v) is the number of all
edges connecting v with nodes which do not include all
nodes in K and common neighbours of K and v . Equa-
tion (3) defines the function distance of K and v accord-
ing to both direct connections and common neighbours

of K and v .
|K| − m

|K| considers the influence of direct

connections between K and v on the function distance.
OUT(K) +OUT(v)

deg(K) + deg(v) − 2m + |K| considers the influence of

common neighbours of K and v on the function dis-
tance. And | K | is an adjustment factor.
Definition 5
Given a cluster K = (VK, EK), we remove the node with
the highest degree and relative edges in K. Then, in the
remaining graph of K, we continue to remove the node
with the highest degree and relative edges. The above
step is iterated until the remaining graph of K is not
connected or contains no nodes. Obviously, the number
of nodes removed can show the robustness degree of K.
Therefore, the robustness degree of K can be defined in
Equation (4).

RK =
n

|K| (4)

Where, n is the number of nodes removed until the
remaining graph of K is not connected or contains no
nodes. And |K| is the number of all nodes in K before
removing operation begins.
Definition 6
The neighbour affinity NA(A, B) [18] of two clusters i.e.
A = (VA, EA) and B = (VB, EB) is defined in Equation (5),
for measuring their overlapping degree.

NA(A,B) =
|VA ∩ VB|2
|VA| × |VB|

(5)

Algorithm
In this section, main steps of our algorithm are dis-
cussed in turns. To explain it in more detail, Figure 1
shows the flowchart.
Our algorithm includes five main steps which are

Input & initialization, Termination, Seed chosen, Cluster
formation and Post processing. Each step will be dis-
cussed below.
Input & initialization
The input to our algorithm includes an undirected sim-
ple PPI network and two parameters which are the
value θ of minimum robustness degree allowed for gen-
erated clusters, and the value g of minimum edge weight
allowed in clusters.
In the step of initialization, all edges in G whose edge

weights are 0 are deleted since they often have low relia-
bility. In addition, set Visitedv = false for every node in
the PPI network. The Visitedv attribute of a node v
records whether v has been assigned to any generated
cluster or not.
Termination
Our algorithm is terminated when following circum-
stances appear: (1) all nodes in the network are assigned
to generated clusters, and (2) the highest node weight in
all node weights of nodes which are not assigned to any
cluster is 0, which means all nodes which do not belong
to any cluster are isolated. Then, generated clusters
which have no less than 3 nodes are printed out.
Seed chosen
Each cluster starts at a node which is called seed. In the
area of detecting protein complexes in PPI networks,
seed should have following characteristics. Direct neigh-
bours of seed should be as many as possible and neigh-
bourhood graph of seed should be as densely connected
as possible.
In our algorithm, the measurement method of node

weight in (2) satisfies requirements of seed selection.
Therefore, (2) is used in this step. In G, the node with
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the highest node weight among all nodes which are not
assigned to any generated cluster is selected as seed.
And the Visitedv attribute of seed is set to true.
Cluster formation
A cluster K starts at seed and then grows gradually by
adding nodes one by one from neighbours of K which
are included in the set NK . At each time, the node with
the highest priority in NK is taken into consideration.
The priority depends on the functional distance d (v, K)
between a node v and a cluster K in Equation (3). The
smaller d(v, K) is, the higher priority v has.
Before adding the node with the highest priority to clus-

ter K, two conditions must be checked. First, we make sure
that the node’s addition in K does not cause the robustness

degree of K to fall below θ which is the minimum robust-
ness degree allowed for generated clusters. Second, we
guarantee that the node’s addition in K does not lead the
minimum edge weight in K to fall below g which is the
allowed minimum edge weight in generated clusters.
These two conditions guarantee that resulting clusters are
densely connected. If any of the above conditions is not
satisfied, we delete the node in NK. Then, we continue to
check whether the node with the highest priority in the
updated NK satisfies the two conditions or not.
Post processing
Assume that CK is the set of all currently produced
clusters and K is a newly detected cluster. Before K is
added in CK , neighbour affinities between K and any

Figure 1 The flowchart of our algorithm. Figure 1 demonstrates concrete steps of our algorithm.
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cluster in CK are calculated and the cluster KM which
has the largest neighbour affinity with K in CK is dis-
covered. If the neighbour affinity NA (K, KM ) is greater
than or equal to 0.5, KM and K will be merged. Other-
wise, K will be added in CK as an independent cluster.
This step not only allows generated clusters share com-
mon nodes but also prevents generated clusters from
having too high overlapping degrees with each other.

Results
Datasets
In this paper, Gavin [12] dataset and DIP [19] which are
produced through high-throughput technology are used
to validate our algorithm. In Gavin dataset, there are
1430 proteins and 6532 interactions. And in DIP data-
set, there are 4,928 proteins and 17,201 interactions.
In order to evaluate the quality of predicted protein

complexes, a benchmark set presented in [20] is obtained
form MIPS [21], Aloy et al. [22] and Saccharomyces Gen-
ome Database (SGD) [23] according to GO notations. In
this benchmark set, 428 protein complexes are included.

Evaluation criteria
Precision, Recall and F-measure
Assume p is a predicted protein complex and b is a real
protein complex in the benchmark. Whether p and b
match to each other or not is determined by the neigh-
bour affinity NA( p, b). If NA (p, b). ≥ w, p and b are
thought to be matched. Usually, it’s a common way to
set w to 0.2.
Assume B is the benchmark set and P is the set of pre-

dicted protein complexes. The number of predicted pro-
tein complexes which match at least one real protein
complex in B is marked as Ncp. And the number of real
protein complexes which match at least one predicted
protein complex in P is marked as Ncb. Then, two kinds
of evaluation criteria which are precision and recall are
defined in Equation (6) and Equation (7) respectively.
F-measure defined in Equation (8) is the harmonic mean
of precision and recall. It is an important kind of criteria
to evaluate the quality of predicted protein complexes.

Precision =
Ncp

|P| (6)

Recall =
Ncb

|B| (7)

F-measure =
2 × Precision Recall
Precision + Recall

(8)

Co-localization
Although precise, recall and F-measure are very popular
evaluation criteria, they are not alone. Biological relevance

is also widely used in evaluating the quality of predicted
protein complexes. One way to evaluate the biological
relevance is co-localization score. Since proteins in the
same protein complex have a tendency to share common
functions, they tend to be at the same localization. And in
a protein complex, different localizations may exist. Thus,
the Co-localization score of a protein complex C is mea-
sured by the maximal proportion of proteins locating at
the same localization in C [20]. Assume the sum of pro-
teins in C which share location i is | Vi | and the total
number of proteins in C is | V |. Thus, the Co-localization
score of C can be defined in Equation (9).

Co − localization(C) = max(
|Vi|
|V| ) (9)

Obviously, the higher co-localization score is, the
higher functional similarity between proteins in the
same complex is. Therefore, co-localization score is a
good way to evaluate the quality of predicted protein
complexes.

GO semantic similarity
Comparing GO terms associated with proteins in a pro-
tein complex is another indicator of biological relevance.
According to GO information, a novel method to mea-
sure GO semantic similarity is proposed in [24]. In [24],
for a protein complex, GO semantic similarity score is
defined as the average of semantic similarity scores of
all protein pairs within the protein complex. And for a
set of protein complexes, GO semantic similarity score
is defined as the geometric mean of scores of three
ontologies which are “cellular component”, “biological
process” and “molecular function” ontology respectively.
These three ontologies scores are obtained from GO
semantic similarity scores of all complexes in the set.
Therefore, the higher GO semantic similarity score of a
set of protein complexes is, the better the quality of the
set of predicted protein complexes is.

Complex set comparative evaluation
In this section, the above three categories of evaluation
criteria are used to compare the performance of our
algorithm with three classic methods which are MCL,
CPM and CoAch.
Precision, Recall and F-measure Comparison
Table 1 and Table 2 show comparisons of MCL, CPM,
CoAch and our algorithm using Gavin and DIP dataset.
In these tables, Ncp is the number of predicted protein
complexes matching at least one real protein complex in
B and | P | is the total number of predicted complexes.
From Table 1, it is obvious that our algorithm has the

highest precision and the third highest recall among the
four algorithms. And in Table 1, F-measure of our algo-
rithm is the highest. Similarly, in Table 2, it can be found
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that our algorithm achieves the highest precision and the
third highest recall among the four algorithms. Also,
F-measure of our algorithm in Table 2 is the highest.
Recall of our algorithm is not very high because the

number of protein complexes predicted by our algo-
rithm is not large. And since MCL and CoAch predict
large number of protein complexes, they achieve higher
recall than our algorithm. The reason that our algorithm
predicts a limited number of protein complexes is that
our algorithm tries to use robustness degree and edge
weight to find reliable protein complexes in incomplete
and noisy PPI networks. Thus, protein complexes pre-
dicted by our algorithm have very high precision at the
cost of not high recall. Although recall is not high, our
algorithm still obtains the highest F-measure on both
Gavin and DIP dataset. And as F-measure takes both
precision and recall into consideration, it can be found
that protein complexes detected by our algorithm have
good quality.
Co-localization similarity
The localization dataset published by Huh et al. [25] is
used in the calculation of co-localization score.
It is often used in evaluating the quality of protein
complexes. And in this dataset, 75% of yeast proteome
are classified into 22 distinct sub-cellular locations. In
addition, ProCope [24], a popular tool which offers
easy access to different ways to predict and evaluate
protein complexes, is used to calculate the co-localiza-
tion score.
Figure 2 shows co-localization scores of protein com-

plexes detected through four algorithms on Gavin and
DIP dataset. The co-localization score of our algorithm
on Gavin dataset is 0.707, which is higher than 0.653
obtained by MCL, 0.621 obtained by CPM and 0.636
obtained by CoAch. And the co-localization score of

our algorithm on DIP dataset is 0.640, which is higher
than 0.587 obtained by MCL, 0.583 obtained by CPM
and 0.595 obtained by CoAch.
Since proteins within a complex tend to be at the

same sub-cellular locations, co-localization score can be
used to evaluate the biological relevance of predicted
protein complexes. And high co-localization score
means high biological relevance of predicted protein
complexes. Thus, as our algorithm achieve highest
scores on both Gavin and DIP dataset, it is obvious that
protein complexes detected by our algorithm have rela-
tively high quality from the biological view.
GO semantic similarity
The similarity of two different GO terms is determined
by their most recent common ancestors in the ontology
structure. And the similarity of GO terms related to
proteins in a protein complex can demonstrate the bio-
logical relevance within the complex. In this section, we
also use GO semantic similarity score which can show
the similarity of proteins within a complex to evaluate
the quality of predicted protein complexes. We still
make use of ProCope to calculate the GO semantic
similarity score.
Figure 3 shows results of comparisons of GO semantic

similarity scores achieved through using the four algo-
rithms on Gavin and DIP dataset. The GO semantic simi-
larity score of our algorithm on Gavin dataset is 0.83,
which is higher than 0.67 obtained by MCL, 0.72 obtained
by CPM and 0.78 obtained by CoAch. And The GO
semantic similarity score of our algorithm on DIP dataset
is 0.82, which is higher than 0.38 obtained by MCL, 0.66
obtained by CPM and 0.73 obtained by CoAch.
As high GO semantic score means high biological

relevance of predicted complexes, our algorithm which
achieves the highest GO semantic scores on both Gavin

Table 1 The comparison of various algorithms using Gavin dataset.

Algorithm Ncp | P | Precision(%) Recall(%) F-measure(%)

MCL 103 232 44.40 42.76 43.56

CPM 54 98 55.10 20.79 30.19

CoAch 178 326 54.60 41.36 47.06

Our algorithm 116 185 62.70 38.32 47.56

Table 1 shows the comparison of MCL, CPM, CoAch and our algorithm using Gavin dataset. The comparison is based on the number of predicted complexes, the
number of predicted complexes which match at least one known protein complex, precision, recall and F-measure.

Table 2 The comparison of various algorithms using DIP dataset

Algorithm Ncp | P | Precision(%) Recall(%) F-measure(%)

MCL 212 1246 17.01 59.81 26.49

CPM 84 245 34.29 25.93 29.53

CoAch 286 747 38.29 58.18 46.18

Our algorithm 192 422 45.50 54.21 49.17

Table 2 demonstrates the comparison of MCL, CPM, CoAch and our algorithm using DIP dataset. The comparison is based on the number of predicted
complexes, the number of predicted complexes which match at least one known protein complex, precision, recall and F-measure.
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and DIP dataset can detect protein complexes with rela-
tively good quality.

Conclusions
In this paper, a novel algorithm based on robustness to
detect overlapping protein complexes is proposed. First,
we present a method to measure the functional distance
between a cluster and a node in the neighbours of the
cluster. Then, we explain our algorithm in details. Our
algorithm is a dense-based approach and tries to find
reliable protein complexes in PPI networks. Finally,
three categories of evaluation criteria are used to com-
pare the performance of our algorithm with MCL, CPM
and CoAch. The results show that our algorithm is bet-
ter than MCL, CPM and CoAch in terms of F-measure,
co-localization and GO semantic similarity, which
means our algorithm can discover protein complexes

with good quality. Therefore, our algorithm is effective
and can be helpful in the future biological study.
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