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Abstract

are discussed.

active amount by the number of deposition steps.

Background: For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of
proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this
respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest
since several examples with high activities and direct electron transfer have been found. Our study describes the
investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer
architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial
architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica
nanoparticles is performed with regard to formation and electrochemical behavior of these systems.

Results: We report on interprotein electron transfer (IET) reaction cascades of cytochrome ¢ (cyt ¢) immobilized by the
use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has
been used for the formation of silica particles/cytochrome ¢ multilayer assemblies on electrodes. The silica particles are
characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and
transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial
network for cytochrome ¢ and to allow efficient interprotein electron transfer reactions. We demonstrate that it is
possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is
increasing linearly with the number of layers deposited, reaching a cyt ¢ surface concentration of about 80 pmol/cm?
with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size

Conclusions: This study demonstrates the ability to construct fully electro-active cyt ¢ multilayer assemblies by
using carboxy-modified silica nanoparticles. Thus it can be shown that functional, artificial systems can be build up
following natural examples of protein arrangements. The absence of any conductive properties in the second
building block clearly demonstrates that mechanisms for electron transfer through such protein multilayer
assemblies is based on interprotein electron exchange, rather than on wiring of the protein to the electrode.

The construction strategy of this multilayer system provides a new controllable route to immobilize proteins in
multiple layers featuring direct electrochemistry without mediating shuttle molecules and controlling the electro-

Background

Silica particles at the nano- and microscale are widely
used in various areas of science [1,2]. Their universalism
is due to the ease of preparation and possibility of con-
trolling size, a high surface-to-volume ratio, and the bio-
compatibility of silica. Accordingly, several synthetic
approaches for the synthesis of silica nanoparticles
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(SiNPs) are available [3-5]. Different surface modification
protocols have been developed in order to immobilize
various biomolecules such as enzymes, proteins, and
DNA [6-8]. As a stable solid support for such molecules
or biomolecular conjugates they have opened the door to
applications in sensors [9], drug delivery system [10], and
smart materials [11]. For bioanalytical systems sensitivity
and biomolecule activity are very critical issues. SiNPs
can provide an artificial matrix and thus keeping and
enhancing the bioactivity. Various approaches have been
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developed for increasing the sensitivity of sensors
[12-18]. Particular advantage is the defined increase in
surface concentrations of the recognition element. The
immobilization of proteins into multilayer systems by the
layer-by-layer deposition has become one of the favorite
methods [19-24]. Moreover, the combination of nanopar-
ticles with biomolecules on electrodes is a matter of par-
ticular interest since several examples with direct
electron transfer have been found [25-29]. By the use of
the redox protein cyt ¢ and the polyelectrolyte polyaniline
sulfonic acid (PASA) fully electro-active multilayers have
been constructed on electrodes. Raising the number of
layers a continuous increase of the voltammetric cyt ¢
signal has been achieved with this system and can be
used for the detection of superoxide radicals with
enhanced sensitivity [30,31]. Such multilayer assemblies
have recently been shown to enable incorporation of
enzymes and establish communication to the electrode,
thus allowing the construction of different analytical sig-
nal chains [24,32,33]. SiNPs have already been used in
biosensors since the high surface area of nano-sized silica
particles can increase the surface molecule loading and
thus lead to a higher performance of the biosensor
[25,34-36].

In this study we want to show that silica nanoparticles
can be used as building blocks in layered architecture of
proteins on electrodes. It can be expected that the particle
size and the surface charge of the used silica nanoparticles
play a key role in modulating the properties of such multi-
layer architectures.

We propose that multilayer assemblies with the redox
protein cyt ¢ and different-sized surface modified SiO,
particles, ranging from 5 - 60 nm can lead to novel archi-
tectures in which the cyt ¢ molecules can exhibit direct
electrochemistry. Thereby we combine the layer-by-layer
technique and modified SiNPs for construction of fully
electro-active cyt ¢ multilayer electrodes. The conditions
of assembly formation and the stability are determined by
quarz crystal microbalance (QCM). The electrochemical
properties of the multilayer architectures are analyzed by
cyclic voltammetry (CV). Special focus is on the size influ-
ence of the particles and the mediator-free electron trans-
fer ability of the multilayer assembly.

Results and Discussion

We select cytochrome ¢ and silica nanoparticles for this
study on the basis of the following considerations. First,
silica nanoparticles can be synthesized and functiona-
lized in a variety of sizes, and characterized by a narrow
particle size distribution. Second, silica is a dielectric
material, which does not absorb light or conduct elec-
trons. As an inert host, it may enable the assembly of
biological materials (e.g. cyt ¢) while keeping its natural
function.
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Finally, the pI values of carboxy-modified silica col-
loids and cytochrome c¢ are acidic and basic respectively
[37,38], and therefore, sufficient Coulomb interaction
can be expected between silica and the opposite charged
cytochrome c.

Synthesis and characterization of SiNPs

Silica nanoparticles are prepared by the Stober method. In
order to enhance surface charge of the SiO, spheres, they
are modified by grafting a y-aminopropyl silane (APTES)
onto the silica particles, followed by nucleophilic addition
reaction using succinic acid anhydride and the amino
function of the grafted silane to finally obtain the carboxy-
modified SiNPs. Figure 1 illustrates the major steps of the
synthetic route. The surface-modified SiO, particles are
first characterized in terms of size and polydispersity using
dynamic light scattering (DLS) - see Figure 2. The average
diameter of the different batch sized particles are found to
be around 5, 8, 10, 15, 20, 40 and 60 nm, respectively, with
a polydispersity index (PI) between 0.05 - 0.15 which
implies that they are of fairly uniform size. These results
are confirmed by TEM data (Figure 3) which show the
SiNPs not to be aggregated. The size as estimated from
the TEM data is slightly smaller than the size found by
DLS because in DLS the hydrodynamic radius of the parti-
cles is measured.

Since the Zeta-potential is an important factor for con-
trolling the surface charge of the SiNPs suspensions further
characterization has been performed with this method.
Table 1 shows the Zeta-potentials of the unmodified and
modified SiO, spheres. It is obvious that the Zeta-poten-
tials of SiO, spheres correspond to the introduced charge
on their surface. FT-IR analysis is further used to confirm
the introduction of the different functional groups onto the
surface of SiO, spheres. Figure 4a shows the FT-IR spec-
trum of the bare SiO, spheres. The absorption peak at
1020 - 1110 cm™ is assigned to the Si-O-Si asymmetric
stretching vibration, and the peaks at 960 cm™ are ascribed
to the asymmetric bending and stretching vibration of Si-
OH, respectively. By contrast, Figure 4b shows the asym-
metrical deformation vibration of the amino group at 1425
and 900 cm™, indicating the amino groups were fixed onto
the SiO, particle surface successfully. The further modifica-
tion of the SiO,-NH, particles with succinic acid anhydride
for the introduction of the carboxyl function can be seen in
the FT-IR spectra through the occurrence of the carboxy-
late peak, and the peaks at 1725, 1461 cm, all correspond
to the vibration peaks of the -COOH (Figure 4c). Thus, it
can be concluded that a sequential modification on the
SiO, spheres surface takes place.

Adsorption characteristics of SiNPs and cyt ¢
For the construction of a multilayer assembly with SiNPs
and cytochrome c the binding behavior of the modified
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Figure 1 Scheme SiNP synthesis. Synthetic route for the synthesis of SiNPs and the surface modification by self-assembly of APTES followed by
the coupling reaction of succinic acid anhydride for the introduction of the carboxylic group onto the SiNPs surface.
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SiNPs to a cyt ¢ layer is important. This process has been
studied with a cyt ¢ monolayer adsorbed onto a mercap-
toundecanol/mercaptoundecanoic acid (MU/MUA)
modified gold chip using the QCM technique. As shown
in Figure 5 a well-defined binding behavior of the 5 nm
SiNPs at pH 7 at low ionic strength can be found. During
the washing steps with buffer the signal for adsorbed
SiNPs changes only slightly. Thus it can be stated, that
only a small amount of the material is loosely bound. We
have also investigated whether cyt ¢ binds to the SiNP-
layer. For an electrostatically driven process it can be
expected that this adsorption is rather fast and almost
comparable to the binding of cyt ¢ to other negatively
charged layers, such as SAMs or polyelectrolytes. By

analyzing the binding behavior, it is obvious that there is
a rather high amount of adsorbed cyt ¢, but not all pro-
tein molecules are tightly bound and a part of the cyt ¢
can be washed away in the following washing step.

Multilayer assembly of SiNPs and cyt ¢

On the basis of the binding experiments the construction
of SiNP/cyt ¢ -multilayers has been performed first on
QCM gold chips to study the impact of the particle size
on the binding performance by the use of different-sized
SiNPs (5, 8, 10, 15, 20, 40, 60 nm, Figure 5). If the particle
size exceeds 20 nm the binding and accordingly the for-
mation of the multilayer assembly (cyt ¢/SiNP) can hardly
be detected. Nevertheless, a recharging at the surface can
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Figure 2 Dynamic light scattering measurement. Dynamic light scattering (DLS) measurement of the synthesized silica nanoparticles. For
example the unmodified bare silica spheres (@ = 2.5 nm in average, Pl = 0.07).
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resolution 0.24 nm).

Figure 3 TEM. TEM image of synthesized silica nanoparticles. (a) 5 nm silica particles, (b) 10 nm silica particles (200 kV operation voltage,

be concluded since a further adsorption of SiNPs after
the cyt ¢ incubation is feasible. This may be attributable
to a partial displacement of the larger SiNPs (20 and
40 nm) during the adsorption of cyt c. For the smaller
sized SiNPs (@ = 5 - 15 nm) however, successful assem-
bly formations have been detected (Figure 5). The
adsorbed amount of cyt ¢ increases rather linearly with
growing number of layers. For comparison polyelectro-
lyte-based protein assemblies with polyaniline sulfonic
acid or DNA have shown an exponential layer growth.
The reason for this difference can be attributed to a dif-
ferent structure of SiNP/cyt ¢ -multilayers. The SiNP-
layers seem to be more ordered than polyelectrolyte-
based layers, because of a rather high homogeneity of the
SiNPs and the absence of layer interpenetration which is
discussed as one reason for exponential layer growth
[39,40].

Electrochemical characteristics of the multilayer
assemblies (SiNPs/cyt c)

The demonstrated binding forces between SiNPs and cyt
¢ are strong enough for the arrangement of layered
architectures, but this is only one precondition for a
functional system with an electro-active protein. To
ascertain the electrochemical characteristics, SINP/cyt ¢
multilayers have been prepared on a MU/MUA modi-
fied gold electrode. The SiNPs are introduced in the cyt
¢ assemblies as schematically illustrated in Figure 6.

Table 1 Zeta-potentials.

Electrochemical studies using cyclic voltammetry show
that cyt ¢ in the protein-SiNPs assembly is electro-active.
The electrode-addressable amount of cyt ¢ molecules
corresponds to an increase in cyt ¢ loading on the elec-
trode. Obviously the presence of SiNPs does not disturb
the electron transfer through the assembly and cyt ¢ can
be addressed by the electrode at least up to 5 layers (Fig-
ure 7a). No direct electron transfer into the inert nano-
particles has been found in the potential range of -350 to
+350 mV vs. Ag/AgCl. With raising number of layers the
amount of electrochemically detectable cyt ¢ increases.
About 10 times more cyt ¢ (80 + 10 pmol/cm?) is found
for a 5-layer assembly (cyt ¢/SiNP) than in a monolayer
(Figure 7a). Control experiments in which either the
SiNPs or the cyt ¢ solution is replaced by buffer solution
show only the response of a monolayer electrode, which
demonstrates that both components are necessary for a
successful formation of the multilayered protein assem-
bly. The distinct increase of electro-active cyt ¢ with
growing number of deposited layers proofs the efficient
electron transfer through the system (Figure 7b). If we
take a closer look on the peak width at half peak height
we can see, that the half peak width of the monolayer
(130 + 5 mV) and the multilayer assembly (132 + 6 mV)
are almost the same. This is indicative that cyt ¢ mole-
cules within the assembly are present in a rather similar
state of heterogeneity (since the peak width is larger than
90 mV for a homogeneous state). So the introduction of

SiO,-nanoparticles Bare Modified SiO,-NH, spheres Modified SiO,-CO,H spheres
SiO, spheres
Zeta-potential (mV) -4144 +39.63 -54.71

Zeta-potentials of the synthesized and modified SiNPs
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Figure 4 FT-IR. FT-IR spectra of synthesized and modified silica nanoparticles. (@) SiO,, (b) SiO»-NH,, (c) SiO,-CO,H. ATR (Diamond) is used with
a resolution 8 cm™', scans 16, in the range of 400-4,000 cm’.

SiNPs does not result in new states of the redox protein
on the electrode surface. The peak separations found for
SiNPs-based multilayer electrodes (5-layers: 26 + 2 mV)
is increased compared to that of a monolayer (5 + 3 mV)
but the absolute values are rather small (Figure 7c). This
observation is an indication for a rather fast electron
transfer between the cyt ¢ molecules in the multilayer
assembly.

An electron transfer rate constant kg for all cyt ¢
molecules in the multilayer assembly cannot be given
since the reaction rate decreases with increasing dis-
tance to the electrode. This circumstance can be seen
by experiments with increasing scan rate; thereby a

decrease in the electro-active cyt ¢ amount is found. At
higher scan rates cyt ¢ molecules in the outer shells can-
not take part in the redox conversion since the rate of
potential change exceeds the rate of electron transfer
through the assembly to the electrode. Therefore only a
k-range of 27-75 s! can be given. Here the latter value
reflects kg of cyt ¢ immobilized in the first monolayer
directly on the MU/MUA promoter, and the first value
reflects kg of cyt ¢ in a 5-layered cyt ¢/SiNPs (5 nm)
assembly.

To gain a further impression on the reaction rate
between the cyt ¢ molecules within the assembly the
self-exchange rate k., for the immobilized cytochrome ¢
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Figure 5 QCM - Multilayer assembly. Multilayer formation of a 4-bilayer assembly of cyt ¢/SINP @ = 5 nm). The adsorption behavior of SiNPs
(@ =5 nm) to cytochrome ¢ and vice versa is shown for a 4-bilayer architecture. QCM chips modified with self-assembled monolayer of MUA/
MU are successively flushed with solutions of SiNPs (0.5 mg/mL) and cyt ¢ (20 uM), flow rate 25 uL/min. Inset: QCM - Frequency change during
the formation of 4-bilayer (cyt ¢/SiNPs) assemblies on a QCM chip by the use of different sized SiNPs (5, 8, 10, 15, 20 nm).
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SiNPs

transfer between the cyt ¢ molecules and onto the electrode.

-

Figure 6 Schematic representation of the SiNPs/cyt ¢ multilayer architecture. Schematic representation of an SiNPs/cyt ¢ multilayer
assembly prepared on a monolayer electrode (M). Layer structure [SiNPs/cyt ], (n = 1, 2, 3, 4). Yellow arrows indicate the direct electron

is estimated. Therefore, the Dahms-Ruff equation has
been used, assuming an intermolecular electron hopping
process between the cyt ¢ molecules in the multilayer
6Deﬁective
82 [eyt c]

The effective diffusion coefficient Deggecrive i calculated
according to the Randles-Sevcik equation by evaluating
the peak currents at small scan rates. For the cyto-
chrome ¢ (horse heart) in the multilayer, a Degective Of
496 x 10™* cm? s is calculated. The approximate dis-
tance between the adjacent redox centers 9 is estimated
to be 2.6 nm and a reasonable cyt ¢ concentration of 23
mM is used. With these values, a self-exchange rate
constant of 1.99 x 10* M™' s for the cytochrome ¢ in
the multilayer is calculated. The literature values for ke,

film: kex =

of horse heart cyt ¢ in solution are in the range of 10> -
10° M 5! depending on the ionic strength. The rather
high key for the cyt ¢ in the multilayer assembly reflects
the small values found for peak separation, and there-
fore is a further indication of a rather fast electron
transfer within the cyt ¢ multilayer system. In the
SiNPs-based multilayer assemblies the formal potential
is comparable to cyt ¢ immobilized as a monolayer, e.g.
on MU/MUA [41] and can be determined to be -24 +
5 mV vs. Ag/AgCl.

In other multilayer systems using PASA or DNA as
building blocks the electron transfer has been suggested
to occur via protein-protein electron exchange [30,31].
But till this day no definite proof can be given that the
polyelectrolyte or DNA are not acting as conducting
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Figure 7 Cyclic voltammetric integration of different multilayer assemblies. 7a) Cyclic voltammetry of 1, 2, 3, 4-bilayer assemblies of cyt ¢/
SiNPs (@ = 5 nm) and a cyt ¢ monolayer (M) Au-MU/MUA-cyt ¢ for comparison. Inset: 7b) Electrochemical determined concentration of
cytochrome ¢ in the multilayer assemblies [1, 2, 3, 4-bilayers SiNPs (@ = 5 nm)/cyt c], compared to a monolayer (M). Inset: 7¢) Peak separation of
cyt ¢ multilayer assemblies determined by cyclic voltammetry for 1, 2, 3, 4-bilayers of SiNPs/cyt ¢ assembled on a monolayer (M). For the data
represent in this figure a scan rate of 100 mV/s, KPP pH 7 was used.

mediators between the cyt ¢ molecules within the
assemblies. Based on the current work using non-con-
ductive SiNPs it becomes clear that artificial multilayer
architectures can be prepared with the interprotein elec-
tron exchange as the dominating mechanism.

To study the influence of the particle size on multi-
layer formation we perform series of experiments with
larger SiNPs (5, 8, 20, 40 nm), see Figure 8. By cyclic
voltammetric experiments for electrodes with the same
number of layers (4-bilayer) a decrease in electro-active
cyt ¢ amount with increasing particle size (SiNPs) is
found.

This observation reflects almost the results of the
adsorption experiments by QCM. This means that the low
electrochemical response for layer structures with larger
particles is mainly caused by a less efficient layer formation
process. The observations during this work anticipate that
the nanoparticle size strongly influences cyt c-silica nano-
particle interactions.

In conclusion a certain balance on the interactive
forces seems to be necessary for a stable layer formation
on the one side and rotational flexibility of cyt ¢ within
the system for efficient electron exchange on the other

side. This works best when both components of the
assembly are of comparable size.

In a further step of characterization the stability of the
prepared multilayer architectures has been investigated.
Figure 9 shows 150 voltammetric cycles for a 4-bilayer
chip-electrode directly after the layer formation. The
results illustrate a good stability of the assembled chip-
electrode. It has to be pointed out that no thermal treat-
ment is necessary as reported for polyelectrolyte-based
systems and thus sufficient operational stabilities can be
provided with the new strategy for arranging proteins
on multiple electro-active layers.

Conclusions

This study demonstrates the ability to construct fully
electro-active cyt ¢ multilayer assemblies by using car-
boxy-modified silica nanoparticles of small diameter (5 -
8 nm) as second building block. The absence of any
conductive properties in the second building block
clearly demonstrates that mechanisms for electron
transfer through such protein multilayer assemblies is
based on interprotein electron exchange, rather than on
wiring of the protein to the electrode. Furthermore it is
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Figure 8 CV - Multilayer with different-sized SiNPs. Cyclic voltammetry of 4-bilayer-assemblies of cyt ¢/SiNPs: @ = 5 nm, 8 nm, 20 nm, 40 nm
and a cyt ¢ monolayer (M) for evaluation of the influence of the SiNPs particle size (scan rate 100 mV/s, KPP7). Inset: Bar plot of the cyt ¢
concentrations of 4-bilayer-assemblies (cyt ¢/SiNPs) with different-sized SiNPs.
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demonstrated that polymer-free cyt ¢ multilayer assem-
blies can be built up.

Prepared on gold electrodes these multilayer architec-
tures give a well defined, quasi-reversible response of cyt c.
The formal potential of cyt ¢ is not significantly influenced
by the immobilization and is around -24 + 5 mV vs.
Ag/AgCl. However the peak separation is rather small.
This is indicative for a fast and efficient electron transfer
through the layered system. The peak width at half peak
height for the multilayer system (132 + 6 mV) is almost
the same as for a cyt ¢ monolayer (130 + 5 mV). This
shows that the cyt ¢ molecules within the assembly are
present in equal states, and thereby the protein molecules
are expected to be bound in a rather similar microenviron-
ment within the SiNPs matrix.

SiNP-based cyt ¢ assemblies exhibit a linear increase of
the cyt ¢ amount with the number of adsorption steps as
shown by the voltammetric response. For a 5-layer assem-
bly an electro-active surface concentration of 80 *
10 pmol/cm® can be found. A significant increase in the
amount of protein with the number of layers is also veri-
fied by QCM. Furthermore it can be demonstrated that
the cyt ¢/SiNP assemblies are stable without any thermal
treatment at low ion strength at neutral pH.

The construction strategy of this multilayer system pro-
vides a new controllable route to immobilize proteins in
multiple layers featuring direct electrochemistry without
mediating shuttle molecules. Our system offers new possi-
bilities particularly for biosensing. For this purpose, the
use of a multilayer sensor with higher amounts of electro-
active redox proteins (e.g. cyt ¢) can be expected to yield a
significantly enhanced sensitivity.

The efficient reproducible DET and IET through several
layers also provide an opportunity to simulate biological
electron transport systems based on redox proteins. Hence
the approach may be applicable to the construction of a
new generation of signal chains for bioelectronic
functionalities.

Further studies are thus directed to generalize the effects
observed in this work to other proteins and biological
molecules.

Materials and methods

Description of Chemicals

Mercaptoundecanoic acid (MUA), 11-mercapto-1-undeca-
nol (MU), horse heart cytochrome ¢ (cyt ¢), ammonium
hydroxide (99.99%), tetraethyl orthosilicate (99.99%), etha-
nol absolute, (3-aminopropyl)-triethoxysilane, succinic
acid anhydride, toluene anhydrous (99.8%) are purchased
from Sigma-Aldrich (Steinheim, Germany), tetrahydro-
furan spectranal is purchased from Riedel-de Haen (Seelze,
Germany), di-potassium hydrogen phosphate, potassium
di-hydrogen phosphate are provided by MERCK
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(Darmstadt, Germany), and gold-wire electrodes by Good-
fellow (Bad Nauheim, Germany), Goldchips for QCM are
delivered by QSense (Froelunda, Sweden). Two different
buffers have been used during these investigations: 5 mM
potassium phosphate buffer pH 7 and 1 mM potassium
phosphate buffer pH 7.

Synthesis of monodispersed SiNPs

Mono-dispersed spherical silica nanoparticles were
synthesized following the Stober-Fink-Bohn method
starting from tetraethyl orthosilicate (TEOS), water,
ammonia, and absolute ethanol, as precursor alkoxide,
hydrolyzing agent, catalyst and solvent, respectively [3].
The overall experimental procedure is shown in Figure
1. Two mother solutions were prepared: one containing
ammonia-water, the other containing TEOS-ethanol.
The same volumes of the two solutions were always
mixed in a thermostatically controlled water bath (45 +
1°C). A micro feed pump Harvard Apparatus (Model 11
Plus) with a constant flow rate (5.0 mL/min) fed the
starting solution A (TEOS, ethanol) into the reactor to
solution B (ammonia, water, ethanol) at 45°C and vigor-
ously stirring, thereafter the mixture prepared was agi-
tated for 1 h to 5 d, dependent on the particle size to be
synthesized. The SiO, dispersion was transferred out of
the reactor and centrifuged (at 4.000-14.000 rpm for 1
h). The precipitate was washed with ethanol by repeated
centrifugation (at 4.000 -14.000 rpm for 1 h) and dried
at 70°C for 12 h.

Preparation of y-aminopropyl modified silica
nanoparticles SiO,-NH,

The amino groups modified SiO, particles (SiO,-NH,),
were prepared by the self-assembly of APTES onto the
surfaces of SiO, particles adapted from literature [42].
First 1.0 g of SiO, particles was charged into a 25 mL
three-necked round bottom flask containing 10 mL of
dry toluene, and then the suspension was dispersed with
ultrasonication for 30 min. Secondly the reaction flask
was equipped with an N, inlet, a thermometer, and a
Graham condenser. Then, 2.5 mL of APTES was added
quickly and the suspension was refluxed at 110°C for 12
h under N, atmosphere and magnetic stirring. After the
reaction was finished, the suspension was centrifuged at
4.500 - 14.000 rpm for 1 h and the precipitate was col-
lected. Finally, the precipitate was redispersed into 25
mL of dry toluene with ultrasonication for 20 min and
then centrifuged again. Next, the precipitate was dis-
persed into anhydrous ethanol with ultrasonication and
centrifuged once again. The operation of dispersion and
centrifugation was repeated for three cycles, and the
resulting precipitate, SiO,-NH, was dried under vacuum
at 40°C for 24 h.
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Introduction of the carboxyl groups onto SiO,-NH,
particle surface

After the amino groups were grafted onto the SiO, parti-
cle surface, they need to be coupled with succinc acid
anhydride to introduce the carboxyl groups onto the sur-
face. The coupling procedure was adapted from literature
[43]. Briefly, SiO,-NH, particles (1.0 g) were dissolved in
anhydrous THF (50 mL) and then the suspension was dis-
persed with ultrasonication for 30 min. Then succinc acid
anhydride (3.5 g) was added in two portions to the reac-
tion suspension at 0°C and stirred for 2 h. Afterwards the
reaction mixture was stirred at room temperature for
another 24 h. The remaining succinc acid anhydride was
hydrolyzed by addition of water. The resulting product
(SiO5-COOH) was dispersed by ultrasonication for 15 min-
utes and centrifuged at 4,000 - 14,000 rpm for 1 h. Next,
the precipitate was redispersed in anhydrous THF and
centrifuged again. Finally, the precipitate was dispersed
into water and centrifuged for another 30 min at 4,000
rpm, and the resulting precipitate, SiO,-COOH, was dried
under vacuum at 40°C for 24 h.

Characterization of the prepared silica particles

The synthesized SiNPs were characterized by dynamic
light scattering analysis (DLS). DLS was used to monitor
the change in hydrodynamic radius (particle size) and
aggregates. Measurements were carried out on a Beckman
Coulter Delsa Nano C Particle Analyzer (Krefeld, Ger-
many) working at a fixed angle of 90° in ethanol or water
to obtain the number-average diameters of the particles.
Each analysis was repeated three times to give the average
particle size.

Zeta-potential of the SiNPs was measured with a Beck-
man Coulter Delsa Nano C Zeta Potential Analyzer (Kre-
feld, Germany) and the measurement was repeated three
times, and the average of them was reported as the final
result.

FT-IR analysis for monitoring the surface modification
on SiNPs was measured by Fourier transform infrared
spectroscopy (FT-IR) with a Varian 680-IR FT-IR spectro-
meter (Varian, Australia), ATR (Diamond), resolution
8 cm’}, scans 16, in the range of 400 - 4.000 cmL.

TEM measurements were applied to characterize the
morphology and size of the different SiNPs, with a FEI
Tecnai G* 20 S-TWIN transmission electron microscope,
200 kV operation voltage, resolution 0.24 nm, EDAX
EDX-system with a Si(Li)-detector, detection limit start at
Bor (Z = 5).

Fabrication of mono- and multilayer assemblies with
SiO,-NPs

Gold-wire electrodes are cleaned by 2 times incubation in
piranha solution (3:1 H,SO4/H,0,) for 10 min. The elec-
trodes are washed with Millipore water after the cleaning
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steps. For the construction of multilayers the electrodes
are modified by incubation for 48 h in 5 mM 3:1 solution
of mercaptoundecanol/mercaptoundecanoic acid. The
cyt ¢ monolayers are prepared by incubation of the elec-
trodes in 20 pM cyt ¢ in KPP 5 mM pH 7 for 2 h [41].
The assembly of SiNPs/cyt ¢ multilayers has been per-
formed by alternating incubations of the cyt ¢ monolayer
electrode in 20 uM cyt ¢ and SiNPs (0.3 - 5.0 mg/ml) for
10 min per step [31]. Each of the 10 minute long adsorp-
tion steps was followed by rinsing the electrodes in 5
mM KPP pH 7. The procedure was repeated until the
desired number of layers was reached.

QCM Measurements

A Q-Sense-D E4 piezoelectric instrument (QSense,
Vaestra Froelunda, Sweden) was used for the quarz crys-
tal microbalance measurements. A clean gold covered
quarz sensor chip (5 MHz, QSense, Vaestra Froelunda,
Sweden) was incubated in ethanol solution containing 5
mM MUA/MU (1:3) for 24 h, then rinsed with water
and mounted into the QCM flow system. The solutions
containing SiNPs and cyt ¢ of above given concentra-
tions were successively pumped through the cell for
10 minutes with 5 minutes of buffer flow in between, at
a flow rate of 25 pL/min. We estimated the mass
increase [Am (ng)] from QCM frequency shift [Af (Hz)]
of fixed films by using the Sauerbrey equation [44]. Tak-
ing into account the diameter of the electrode (d = 10
mm) and the other technical parameters [45], this equa-
tion can be written as: Am = 1.03 Af. According to this
a layer mass increase can be estimated. Since measure-
ments have been performed in solution, these values are
estimated due to unknown amount of bound water.

Electrochemistry

All electrochemical measurements were carried out in a
1 mL cell using an Ag/AgCl/1 M KClI reference (Micro-
electrodes, Inc., Bedford, USA) and Pt-wire counter
electrode. The working electrodes were modified gold
wires (diameter 0.5 mm) obtained from Goodfellow
(Bad Nauheim, Germany) which are modified according
to the procedures described above. Cyclic voltammetric
experiments were carried out with CH Instruments CHI
660D device (Austin Texas, USA). Scan rates were var-
ied between 0.01 and 50 V/s, but a scan rate of 100
mV/s was normally used. The potential range has been
chosen between -0.3 and +0.3 V vs. Ag/AgCl. Data ana-
lysis has been performed using CHI 660D (Austin
Texas, USA) software.
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