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Abstract
Background: Spatial global clustering tests can be used to evaluate the geographical distribution
of health outcomes. The power of several of these tests has been evaluated and compared using
simulated data, but their performance using real unadjusted data and data adjusted for individual-
and area-level covariates has not been reported previously.

We evaluated data on prostate cancer histologic tumor grade and stage of disease at diagnosis for
incident cases of prostate cancer reported to the Maryland Cancer Registry during 1992–1997. We
analyzed unadjusted data as well as expected counts from models that were adjusted for individual-
level covariates (race, age and year of diagnosis) and area-level covariates (census block group
median household income and a county-level socioeconomic index). We chose 3 spatial clustering
tests that are commonly used to evaluate the geographic distribution of disease: Cuzick-Edwards'
k-NN (k-Nearest Neighbors) test, Moran's I and Tango's MEET (Maximized Excess Events Test).

Results: For both grade and stage at diagnosis, we found that Cuzick-Edwards' k-NN and Moran's
I were very sensitive to the percent of population parameter selected. For stage at diagnosis, all
three tests showed that the models with individual- and area-level adjustments reduced clustering
the most, but did not reduce it entirely.

Conclusion: Based on this specific example, results suggest that these tests provide useful tools
for evaluating spatial clustering of disease characteristics, both before and after consideration of
covariates.

Background
Spatial clustering tests are often used to determine
whether health events are geographically clustered or
whether they are distributed randomly throughout space
as expected by chance. When clustering exists in the data,

it is typically caused by geographic variation in disease risk
factors, which may include characteristics of individuals,
environmental influences on disease, or health care serv-
ices which may serve to influence the distribution of dis-
ease characteristics of interest. For example, without age
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adjustment, crude or unadjusted cancer incidence rates
vary geographically, as the risk for most cancers increases
with age, and age distributions in most populations vary
geographically. Lung cancer rates may vary geographically
because of geographical differences in smoking habits and
certain occupational exposures, while the proportion of
late stage breast cancer may vary geographically because of
geographical differences in access to mammography
screening programs. Examples of clusters identified in pre-
vious work are high prevalence gonorrhea transmission
areas [1], census tracts with significantly high proportions
of men diagnosed with distant-stage prostate cancer [2],
cases of acute lymphoblastic leukaemia in Great Britain
[3], health regions with a high incidence of liver cancer in
Ontario, Canada [4] and breast cancer deaths in the New
York City – Philadelphia metropolitan area [5]. When
studying the geographical distribution of disease, analyses
are almost always adjusted for age and gender, as we are
interested in geographical variation that is not explained
by these two factors. If there is still spatial clustering in the
data after such adjustments, there are other disease risk
factors that are unevenly distributed geographically.

There are two types of cluster detection: local or "hot-
spot" tests, and tests of global clustering. Hot-spot cluster
detection tests identify and evaluate specific local clusters,
which may be of interest to investigate specific local
causes of such clusters, or to target service delivery to
higher need areas. Global clustering tests are used to test
whether clustering exists as a general phenomenon in the
study region, and thus can be used to answer more general
questions regarding variation in the distribution of dis-
ease characteristics, and propensity of disease characteris-
tics to cluster geographically. For certain public health
questions, this may identify an infectious or communica-
ble aspect of a disease process. For non-communicable
diseases, assessing the degree of clustering in regard to dis-
ease characteristics of interest may inform researchers or
service providers about variation in rates of disease risk or
detection across a given geographic area [6,7].

If there are statistically significant hot-spot clusters, we
may search for such additional risk factors in the location
of the hot-spot cluster. If there is statistically significant
global clustering, we may search for additional risk factors
among variables of a more global nature. If there is no sta-
tistically significant clustering, we may search for addi-
tional risk factors that are more evenly distributed
geographically.

As an illustrative example of how global clustering tests
perform when evaluating residual spatial clustering, we
used prostate cancer data from the Maryland Cancer Reg-
istry, where registry data are mostly complete and previ-
ous work has been done on modeling risk factors for

higher grade and later stage at diagnosis. Prostate cancer is
the most common diagnosed cancer among men in the
US, representing 29% of incident cancer cases expected to
occur among men in 2007 [8]. It is estimated that the vast
majority of these cases will be diagnosed at stages where
5-year relative survival is near 100% [8]. However, among
cancer deaths reported from 2004, prostate cancer is the
second leading cause of cancer death in men in the US [8].
Prostate cancer disease characteristics and treatment vary
by a number of characteristics, including socioeconomic
status [9], race [10] and geography [10,11]. Area-level
measures of socioeconomic status have not been shown
to explain racial disparities in prostate cancer [12].

Prior studies have shown that geographical clustering can
be reduced or eliminated by adjusting for individual-level
covariates [13-16] and by incorporating random effects
into models [4,11,17,18]. Joint spatial survival models of
prostate cancer age at diagnosis and survival [19] and
Bayesian hierarchical models of prostate cancer stage at
diagnosis [18] have been used to investigate spatially clus-
tered patterns. These studies show that factors related to
individuals and their communities likely contribute to
disease clustering. They demonstrate that once clustering
is identified by a clustering test, further evaluation of
other predictors of disease can be important to further
investigate the risk.

Our current study further examines geographical cluster-
ing by evaluating the performance of 3 global clustering
tests on prostate cancer data adjusted for both individual-
level and area-level covariates. We selected 3 global clus-
tering tests which use frequentist methods of inference:
Cuzick-Edwards' k-NN [20], Moran's I [21] and Tango's
Maximized Excess Events Test (MEET) [22]. Prior studies
have examined the performance of these tests on simu-
lated data [23,24]. The current study evaluates the per-
formance of each test on real data on prostate cancer, from
a large population-based cancer registry, adjusted for var-
iables shown to be associated with prostate cancer grade
and stage at diagnosis [10], to examine and illustrate the
advantages and disadvantages of these methods. Addi-
tionally, using each test, we evaluate whether adjusting for
individual- and/or area-level variables eliminates geo-
graphical clustering of prostate cancer grade and stage at
diagnosis.

Methods
In our previous work, we examined predictors of prostate
cancer histologic tumor grade and stage of disease at diag-
nosis among incident cases reported to the Maryland Can-
cer Registry during 1992–1997. We dichotomized the
outcomes as stage 1 versus stages 2,3,4,5 and 7 ("later
stage"), and grades 1 and 2 versus 3 and 4 ("higher
grade"), representing one of several possible clinically
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meaningful cutpoints for dichotomization. Figure 1
shows the Maryland population density by block group
based on 1990 census data. Maps of the proportion of
higher grade (grades 3 and 4) and later stage (stages 2
through 7) cases at diagnosis are available at:
http:www.pubmedcentral.nih.gov/articler
ender.fcgi?tool=pubmed&pubmedid=15649329

Methods for assigning geographic location and area-level
covariates to cases are described in detail elsewhere [17].
We geocoded all cases by street address, and used an
imputation algorithm based on census population distri-
bution within zip codes to assign location to non-geoco-
ded cases.

In these analyses, for our dichotomized outcomes of
higher grade and later stage at diagnosis, we examine
unadjusted data (the ratio of block group-specific
observed to expected cases) as well as expected counts
from multivariate and multi-level binary logistic regres-
sion models that were adjusted for individual-level covari-
ates (race, age and year of diagnosis) and both individual-
and area-level covariates (census block group median
household income and a county-level socioeconomic
index). The choice of covariates used here was based on
the most explanatory models for these outcomes in our
previous work, and is explained in more detail elsewhere.
The adjusted expected counts were used to calculate the
block group-level expected counts for the four models
(Table 1), as previously described [25]. Briefly, the logistic

regression model with individual-level adjustments only
included the following predictors of higher grade: older
age, black race, and more recent year of diagnosis; and the
following predictors of later stage: older age, black race,
higher tumor grade, missing tumor grade, and more
recent year of diagnosis. Models with individual-and area-
level adjustments included the above predictors, as well as
block group median household income and a county-
level socioeconomic index (for higher grade) and block
group percentage of white collar workers among those
employed and a county-level socioeconomic index (for
later stage). Two additional models were created for each
outcome: one that included random intercept terms for
both block group and county in the model with individ-
ual-level adjustments only, and one that similarly
included random intercept terms for block group and
county in the model with individual- and area-level
adjustments. The inclusion of such terms changes the esti-
mates of the covariates, and thus the expected counts in
each block group. Multi-level models were estimated
using the GLLAMM extension of STATA, and all modeling
was done using STATA (STATA Corp, College Station, TX).
We evaluated the performance of each of the three global
clustering test statistics on the unadjusted data and on the
expected counts from the four models.

We used the following notation:

ci = the observed number of cases in block group i

Maryland Population Density – 1990 Census – Population per Square Mile by Census Block GroupFigure 1
Maryland Population Density – 1990 Census – Population per Square Mile by Census Block Group.
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ni = the expected cases in block group i

H = the total number of block groups

dij = the Euclidean distance between block group i and j

Si(k) = the area in the smallest circle around i with at least
k expected cases

The first test we evaluated was Cuzick-Edwards' k-NN (k-
Nearest Neighbors) [20], which is defined as:

where I is the indicator function, such that I(true) = 1 and
I(false) = 0.

Cuzick-Edwards' k-NN test was originally created to eval-
uate clusters in case-control data, but can easily be modi-
fied to handle aggregate data as well. We evaluated this
test using 5 different parameter values. We defined k/N as
a proportion of the population, where k is the number of
cases, and used the following parameter values: k/N =
0.1%, 1%, 10%, 25% and 50%. Higher values of the test
statistic indicate more clustering.

The next test we evaluated was Moran's I [21], which is
defined as:

where aij = 1 if jεSi(k) ; 0 otherwise

Moran's I is a correlation test between nearest neighbors,
originally designed to evaluate continuous data. Modifi-

cations to Moran's I have been used to assess spatial clus-
tering, and in particular Local Moran's I is used as a local
indicator of spatial correlation [26]. Moran's I is depend-
ent on a weight function aij. We define aij to be 1 if the
population (within the distance of block group j and
block group i) is within a certain range. A distance-based
proximity matrix also exists, but we did not evaluate it
here. Results for Moran's I may differ depending on the
chosen matrix. We evaluated this test by setting the range
to each of the same 5 parameter values: k/N = 0.1%, 1%,
10%, 25% and 50%. Higher values of the test statistic
indicate more clustering.

The final test we evaluated was Tango's MEET (Maximized
Excess Events Test) [22], which is defined as:

where:

and

and Ci is the random number of cases in block group i as
generated by the null hypothesis.

Tango's MEET was designed to extend a general spatial
clustering test to one that does not require specification of
the scale parameter value λ, and thus avoids concerns with
multiple testing if the same test is used more than once
with different parameter values. Although this test uses a
distance-based proximity matrix, tests with different dis-
tance parameters have been compared previously
[23,27,28]. Smaller values of the test statistic indicate
more clustering.
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Table 1: Data and models used to evaluate test statistics.

Data/Model Number Data/Model Description

1 Unadjusted data

2 Individual-level adjustments; no area-level random effects

3 Individual-level adjustments; area-level random effects

4 Individual- and area-level adjustments; no area-level random effects

5 Individual- and area-level adjustments; area-level random effects
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All three test statistics were implemented using Monte
Carlo hypothesis testing [29], which is a randomized per-
mutation based inference method that is commonly used
in spatial statistics.

Results
A total of 23,993 individuals were included in the popu-
lation used for this analysis (Table 2). Approximately half
were under 70 years of age, about three-quarters were
white and one quarter was black. About 20% were later
stage (stage 2, 3, 4, 5 or 7) when diagnosed, and about
20% were higher grade (grades 3 or 4) when diagnosed.

We found that Cuzick-Edwards' k-NN and Moran's I were
very sensitive to the parameter selected for both grade and
stage at diagnosis, with p-values ranging from 0.001 to
1.000 for the same method and data. The test performed
most consistently when intermediate parameter values
(1% and 10% of the population) were chosen rather than
low or high parameter values (Table 3).

To compare the performance of the clustering tests, we
selected the Cuzick-Edwards' k-NN and Moran's I results

using k = 1%. Tango's MEET does not require selection of
a parameter value.

For prostate cancer stage at diagnosis, the models with
individual- and area-level adjustments reduced clustering
(i.e. explained that some of the spatial variation was due
to these individual- and area-level influences) the most
(Table 4). This was shown by all three tests. Of the two
models with individual- and area-level adjustments, the
one with no area-level random effects reduced clustering
slightly more. The models with only individual-level
adjustments also reduced clustering when compared to
the unadjusted data. The additional area-level adjust-
ments, however, further reduced the clustering.

For prostate cancer grade at diagnosis, models 2, 3 and 4
had consistent results across all tests, showing a reduction
in clustering. However, the results from model 5 showed
more clustering than in the unadjusted data, and this was
a consistent finding across all tests.

Discussion
We compared the performance of three global clustering
tests on real unadjusted data, and data adjusted for varia-

Table 2: Demographic characteristics of individuals included in the Registry.

Registry Population N = 23993 Stage Analyses N = 19223 Grade Analyses N = 18947

Age Group n % n % n %
16–49 403 2 352 2 325 2
50–69 11777 49 10228 53 9868 52
70–79 8739 36 6833 36 6853 36
80–106 3002 13 1810 9 1901 10
Missing 72 1 0 0 0 0

Race
White 16565 69 14255 74 14114 74
Black 5779 24 4968 26 4833 26
Other 366 2 0 0 0 0
Missing 1283 5 0 0 0 0

Stage at Diagnosis
0 80 1 0 0 0 0
1 15679 65 15233 79 13798 73
2 2250 9 2190 11 2000 10
3 263 1 255 1 220 1
4 170 1 165 1 152 1
5 150 1 145 1 127 1
7 1274 5 1235 7 945 5
Missing 4127 17 0 0 1705 9

Grade at Diagnosis
1 2505 10 2042 10 2289 12
2 13112 55 11301 59 12335 65
3 4425 18 3786 20 4199 22
4 128 1 113 1 124 1
Missing 3823 16 1981 10 0 0
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Table 3: Sensitivity of global clustering tests to the parameter chosen.

Parameter (results reported as p-values)

0.10% 1% 10% 25% 50%

Later Stage Cases (unadjusted data)

Cuzick-Edwards' k-NN 0.015 0.001 0.001 0.075 0.814

Moran's I 0.001 0.001 0.001 0.001 0.001

Higher Grade Cases (unadjusted data)

Cuzick-Edwards' k-NN 0.738 0.001 0.001 0.002 0.045

Moran's I 0.044 0.001 0.001 0.005 1.000

Table 4: Global clustering test results with different adjustments.

Data/Model Cuzick-Edwards k-NN Moran's I Tango's MEET

k = 1% k= 1%

Test Statistic p-value Test Statistic p-value Test Statistic p-value

Later Stage

1:Unadjusted data 173544 0.001 0.779 0.001 <10-15 0.0001

2:Individual-level adjustments; no area-level random effects 170735 0.001 0.672 0.001 3.89 × 10-15 0.0001

3:Individual-level adjustments; area-level random effects 170899 0.001 0.675 0.001 3.44 × 10-15 0.0001

4:Individual- and area-level adjustments; no area-level random effects 168227 0.001 0.483 0.001 2.18 × 10-08 0.0001

5:Individual- and area-level adjustments; area-level random effects 168684 0.001 0.489 0.001 7.17 × 10-10 0.0001

Higher Grade

1:Unadjusted data 197019 0.001 0.478 0.001 1.36 × 10-13 0.0001

2:Individual-level adjustments; no area-level random effects 195707 0.001 0.350 0.001 4.11 × 10-08 0.0001

3:Individual-level adjustments; area-level random effects 195727 0.001 0.351 0.001 4.31 × 10-08 0.0001

4:Individual- and area-level adjustments; no area-level random effects 195085 0.001 0.355 0.001 2.18 × 10-08 0.0001

5:Individual- and area-level adjustments; area-level random effects 197598 0.001 0.701 0.001 <10-15 0.0001

Higher values of the test statistic indicate more clustering for Cuzick-Edward's k-NN and Moran's I and less clustering for Tango's MEET. Test 
statistics can only be compared between models, not between the three methods.
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bles potentially associated with prostate cancer grade and
stage at diagnosis.

We found that the performance of Cuzick-Edwards' k-NN
and Moran's I are sensitive to the parameter chosen by the
user, and thus considered Tango's MEET the simplest test
to use since it does not require selection of a scale param-
eter value. Its results were consistent with the results from
Cuzick-Edwards' k-NN and Moran's I using an intermedi-
ate parameter value.

These statistical tests can be used to determine whether
there is residual clustering after adjustments are made,
and whether clustering is reduced or not by the adjust-
ments. In this dataset we found that individual-level and
area-level adjustments consistently reduced clustering in
data on prostate cancer stage at diagnosis, but significant
clustering remained. The results for prostate cancer grade
were less consistent. It is possible that there are additional
factors related to grade that we were not able to assess in
these data. There are likely additional geographic ele-
ments that we did not account for that contribute to the
clustering of prostate cancer grade and stage at diagnosis
in Maryland.

There are some limitations in using surveillance data, such
as the Maryland Cancer Registry data used here. Although
population-level surveillance data are more comprehen-
sive in terms of geographic and population coverage than
clinical records from care settings, they are more likely to
be missing clinical data of interest. Although the Mary-
land Cancer Registry has received the North American
Association of Central Cancer Registries "gold standard"
rating in most years, indicating the highest level of com-
pleteness and accuracy, in these data, grade and stage at
diagnosis were missing for 17% and 16% of the registry
population, respectively. Cases with missing grade or
stage at diagnosis differed in age and location, though not
race, from cases with complete diagnosis information
[25]. Furthermore, in this analysis we used specific dichot-
omous cut-points for our two clinical outcomes, and it is
likely that results would differ with other cut-points. For
example, we have previously also examined these as ordi-
nal outcomes [30].

More broadly, this analysis offers only one specific exam-
ple with which to evaluate these tests. Next steps should
include evaluations with data from other geographic areas
and disease questions of interest. Although hot-spot
detection of disease clusters remains a priority for clini-
cally focused surveillance and medical services delivery,
global tests of spatial randomness are also important tools
for public health research.
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