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Abstract

Malaria pathogens are transmitted to humans by the bite of female Anopheles mosquitoes. The juvenile stages of
these mosquitoes develop in a variety of water bodies and are key targets for vector control campaigns involving the
application of larvicides. The effective operational implementation of these campaigns is difficult, time consuming, and
expensive. New evidence however, suggests that adult mosquitoes can be co-opted into disseminating larvicides in a
far more targeted and efficient manner than can be achieved using conventional methods.

Introduction
The basic tools for malaria vector control are the insecti-
cide-treated bed net (ITN) and indoor residual spraying
(IRS). These have a considerable impact on malaria trans-
mission [1,2] by exposing female, host-seeking mosqui-
toes to insecticide-treated surfaces every time they enter
a house to take a blood meal. Repeated contacts over the
life cycle amplify the impact of these tools on transmis-
sion, even though their effect on mosquito density may
remain limited [3]. However, fundamental limitations
regarding the coverage of houses or sleeping spaces [3,4]
ensure that ITNs and IRS alone may not stop malaria
transmission in intensely endemic regions [5]. Moreover,
these tools will not be optimally effective in areas where
mosquitoes exhibit outdoor resting and biting behav-
iours, or where the widespread use of ITNs and IRS has
controlled endophillic mosquitoes, but left a smaller,
more intractable population of exophillic and exophagic
mosquitoes behind (e.g. the appearance of Anopheles ara-
biensis as the most abundant vector in areas once domi-
nated by An. gambiae and An. funestus [6,7]). The
sustainability of IRS and ITNs is further threatened by the
appearance of pyrethroid resistance in some mosquito
populations [8]. All of these factors require that novel but
complementary control methods are developed, that use
novel insecticide classes that are not yet resisted.
Targeting the aquatic habitat is one obvious additional
strategy. This is an increasingly valued approach in many
African settings [9] but larvicides, unlike IRS and ITNs,

* Correspondence: gdevine@ihi.or.tz

! Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
Full list of author information is available at the end of the article

act on a single, non-transmitting stage in the mosquito
lifecycle and can only impact disease by reducing vector
abundance [10]. The myriad and cryptic nature of aquatic
habitats and the difficulty in identifying and targeting the
most productive of these [10] makes maximizing that
impact very challenging.

An efficient new larviciding technique

A recent field trial with the dengue vector, Aedes aegypti,
exploited the obligate behaviours of adult mosquitoes to
transfer a potent larvicide between resting and oviposi-
tion sites [11]. An impressive impact on the juvenile pop-
ulation was mediated by 1) a highly effective and
persistent insecticide, 2) the predictability of sites where
adult mosquitoes could be exposed, 3) a limited aquatic
habitat and 4) sufficient mosquito density. The use of
adult females as larvicide-disseminating vehicles resulted
in the very precise targeting of the insecticide; only those
aquatic habitats visited by adults were contaminated and,
the more popular the site, the greater the number of
transfer events. Treatment of a small proportion of rest-
ing places (<5%) resulted in high coverage of aquatic sites
(>95%). This amplification was facilitated by an abun-
dance of mosquitoes, the potential for multiple resting-
oviposition cycles (i.e. contamination events) over a sin-
gle mosquito lifetime and the persistence and potency of
the insecticide. Pyriproxyfen (PPF) has no discernable
effects on adult longevity or behaviour, but renders larval
habitats unproductive for long periods at tiny concentra-
tions [11,12]. It is approved by the World Health Organi-
zation (WHO) and has a recommended drinking water
limit of 300 ppb, which is orders of magnitude above the
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concentrations required for mosquito control [12]. It is
unrelated to any other WHO approved adulticide or lar-
vicide and resistance has not yet been documented in any
mosquito species.

Potential impact on malaria vectors

The auto-dissemination of PPF is well suited to the local-
ized and predictable resting and dispersal habits of Ae.
aegypti [11]. That species also exhibits prolonged contact
with the aquatic habitat during oviposition [13] which
serves to maximize the transfer of PPF between resting
and oviposition sites. Anopheline adults have more vari-
able dispersal patterns [14] and are variously described as
laying eggs whilst settled on the water, perched above the
water or whilst hovering over the surface [13,15]. Defini-
tive field studies are lacking, but the propensity of the
female to contact the water during oviposition will clearly
affect the efficacy of PPF transfer.

Deterministic simulation modelling can further help to
consider how the auto-dissemination of PPF might
impact Anopheline mosquitoes. The model is described
elsewhere [11] and describes the relationship between the
effective coverage of adult resting sites (C,) and larval
habitats (Cy) with PPF using a simple exponential func-
tion of the time over which contaminated habitats remain
unproductive (U), the number of ovipositions (O) by the
adult population, the number of larval habitats (H), and
the number of contaminating events needed to make a
single habitat unproductive (Q):

Ch :1_e—CrUO/HQ (1)

Some key malaria vectors in sub-Saharan Africa, such
as An. gambiae s.s. and An. funestus, feed predominantly
upon humans in and around houses [16]. Their special-
ized behaviours make them devastating carriers of
malaria, but ideal targets for vector control. They are so
adapted to humans that the use of the ITNs and IRS to
target their obligate host-seeking and indoor resting
behaviours can displace them from wide areas [7,17].
Treatment of similar barrier and resting surfaces with
PPF might therefore result in a high proportion of contact
sites being contaminated (C, > 0.5). It is speculated that
almost total coverage of the juvenile habitat (C, = 0.99)
can be achieved if breeding sites (H) are stable enough to
ensure the persistence of the larvicide (U > 14) and if a
favourable ratio of ovipositing mosquitoes to aquatic sites
exists (O/H > 1). This is illustrated in Figure la. The
importance of the larvicide's persistence (and by implica-

tion, the stability of the habitat) is emphasized in Figure
1b.
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Figure 1 Deterministic simulation model outcomes. a) Resting site
coverage (C,= 0.5) can be amplified by insecticide persistence (U) and
the number of contamination events per habitat (O/H) to achieve
complete coverage of the aquatic habitat (Cp,). b) Under stable condi-
tions of contamination (O/H Q = 1) the persistence of the insecticide

and (by implication) the stability of the habitat (U) is of key importance
to this amplification.

For An. gambiae s.1., the requisite of a favourable O/H
ratio is least likely to occur when oviposition sites are
constantly being created or flushed by rainwater or are so
large that they require an unfeasibly high number of con-
taminating events (Q) given a limited density of adult
mosquitoes and an abundance of aquatic habitats (O/H).
However, in many sub-Saharan regions, dry seasons
reduce flushing effects and render breeding sites less
common. These stable, limited habitats are essential for
mosquito survival [18] and are suitable for cumulative
contaminations by adult mosquitoes. Dry-season control
is often central to the success of habitat management
strategies for An. gambiae [18-20].

An auto-dissemination strategy using PPF might be
most useful against vectors that are not readily managed
by ITNs or IRS. An. arabiensis is an important malaria
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vector that feeds and rests on and near livestock [21]. It is
therefore less vulnerable to the insecticide treatment of
indoor surfaces than An. gambiae s.s. or An. funestus. In
some areas, it is an increasingly important focus of con-
trol campaigns now that these latter species are being
successfully displaced. It is possible that high coverage of
the resting and feeding sites of An. arabiensis with PPF
might be achieved by treating cattle and/or animal corrals
(C, > 0.5). The recent development of some highly effec-
tive baits for Anopheline mosquitoes [22,23] could also
be exploited to lure and contaminate large numbers of
female mosquitoes. The advantage of this "lure and dis-
seminate” technique over a simple "lure and kill"
approach lies in the potential amplification of coverage at
the aquatic habitat (C;) and in the utilization of a novel
chemistry for which resistance has not yet been docu-
mented.

An. funestus is an example of an important malaria vec-
tor that may be less sensitive to the auto-dissemination
technique. Its larvae tend to be restricted to larger aquatic
sites that are regularly flushed with water [16]. This will
decrease the persistence of PPF (U) and increase the
number of contaminations necessary to render habitats
unproductive (). However, under some conditions, the
relatively stable demographic composition of An. funestus
[16] might contribute to maintaining a practicable O/H
ratio.

Optimizing the contamination of aquatic sites, particu-
larly in the context of large water volumes or low density
mosquito populations, might be possible through
increasing the potency of the PPF formulation (such that
Q) is minimized and U is maximized). The levels of con-
trol detailed by Devine et al [11] were achieved with a
commercially available 0.5% PPF formulation. Increasing
the percentage active ingredient to 50% would raise the
contaminating potential of a single transfer event by 100-
fold. Additional ecological factors might further maxi-
mize the number of contaminating transfers between
treated surfaces and aquatic habitats. Single breeding
sites often receive visits from a number of Anophelines
and repeated sequences of resting and oviposition may
occur during a single gonotrophic cycle [24]. Perhaps
crucially, many abundant, non-target mosquitoes may
also be enlisted in the transfer process; Culex and Anoph-
eline species often share the same aquatic and terrestrial
resources [18]). Yet another potentially exciting element
of the strategy, still to be explored in a field setting is that
contact with PPF reduces the fertility of mosquitoes [12].
This trait has been exploited for the control of other dip-
teran pests [25].

Conclusion: an exciting new tool?
The obligate resting and oviposition behaviours exploited
by this novel technique underpin mosquito survival,
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reproduction and abundance but they have been largely
overlooked in deference to studies on host-seeking and
blood-feeding. Although the role of conventionally
applied larvicides for the control of malaria vectors has
been convincingly demonstrated [9,19] the optimization
and application of this new auto-dissemination method-
ology will require a detailed characterization of oviposi-
tion behaviour and of the effective transfer distances
between feeding, resting and aquatic resources. It will
also require an understanding of the abundance and
behaviour of co-existing species at those resources and a
study on the impacts of PPF on various aquatic habitats.
In principle however, the method offers a new way to
reduce mosquito densities (and therefore affect entomo-
logical inoculation and malaria rates [10]). Its concepts
are elegantly simple and safe and it promises substantial
reductions in the financial and labour costs of larviciding.
It may ultimately prove to be a useful complement to
ITNs and IRS, especially in areas where these are threat-
ened by the evolution of pyrethroid resistance and where
mosquitoes rest and bite out of doors.
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