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Abstract

cells is not completely understood.

\.

Background: Recent studies suggest the potential benefits of statins as anti-cancer agents. Mechanisms by which
statins induce apoptosis in cancer cells are not clear. We previously showed that simvastatin inhibit prostate cancer
cell functions and tumor growth. Molecular mechanisms by which simvastatin induce apoptosis in prostate cancer

Methods: Effect of simvastatin on PC3 cell apoptosis was compared with docetaxel using apoptosis, TUNEL and
trypan blue viability assays. Protein expression of major candidates of the intrinsic pathway downstream of
simvastatin-mediated Akt inactivation was analyzed. Gene arrays and western analysis of PC3 cells and tumor lysates
were performed to identify the candidate genes mediating extrinsic apoptosis pathway by simvastatin.

Results: Data indicated that simvastatin inhibited intrinsic cell survival pathway in PC3 cells by enhancing
phosphorylation of Bad, reducing the protein expression of Bcl-2, Bcl-xL and cleaved caspases 9/3. Over-expression
of PC3 cells with Bcl-2 or DN-caspase 9 did not rescue the simvastatin-induced apoptosis. Simvastatin treatment
resulted in increased mMRNA and protein expression of molecules such as TNF, Fas-L, Traf1 and cleaved caspase 8,
major mediators of intrinsic apoptosis pathway and reduced protein levels of pro-survival genes Lhx4 and Nmeb5.

Conclusions: Our study provides the first report that simvastatin simultaneously modulates intrinsic and extrinsic
pathways in the regulation of prostate cancer cell apoptosis in vitro and in vivo, and render reasonable optimism
that statins could become an attractive anti-cancer agent.
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Background

Statins, the cholesterol lowering drugs, are some of the
most commonly prescribed medications. Recently, atten-
tion has focused on the development of statins as
therapeutic agents for the treatment of solid and hema-
tological cancers [1]. Statins elicit pleiotropic effects on
various cell types and differentially modulate cellular
functions such as cell migration, proliferation, cell sur-
vival and apoptosis in normal and malignant cells [2].
Lipophilicity, dose and duration of the treatment as
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well as cell type are all determining factors on the
specific effect of a statin on the outcome of a cell func-
tion. According to the American Cancer Society, pros-
tate cancer is the most commonly diagnosed cancer
and the second leading cause of cancer death in
American men. Many recent clinical studies have indi-
cated that use of statins is associated with >50% reduc-
tion in prostate cancer deaths [3,4]. Our previous study
showed that simvastatin, a lipophilic statin inhibited
multiple prostate cancer cell functions in vitro such as
migration, proliferation, cell survival and colony forma-
tion as well as tumor growth in a nude mouse xeno-
graft in vivo, mainly via inhibition of Akt pathway [5].
However, exact molecular mechanisms by which statins
modulate each of the prostate cancer cell function are
not clear.
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One of the factors that determine the efficacy of a can-
cer drug is its ability to inhibit cancer cell survival and
induce apoptosis. Meantime, a major concern over the
use of anti-cancer drugs for therapy is the side-effects
that they can inflict on normal cells. For a very long
time, scientists are on the search of anti-cancer agents
that specifically target tumor cells with no or minimum
effects on normal cells. A very recent study indicates
that simvastatin, at doses that we had previously shown
to induce apoptosis in prostate cancer cells [5], does not
compromise cell survival in normal airway epithelial and
fibroblast cells, while inducing apoptosis in breast, hepa-
tocellular and lung carcinoma cells [6]. Although this
study provides the necessary assurance that simvastatin
may be a potential drug for specifically targeting cancer
cells for therapy, the molecular mechanisms by which
simvastatin induces apoptosis in cancer cells remains to
be determined.

Bcl-2-mediated, mitochondria associated cell survival
pathway (intrinsic pathway) is one of the major pathways
that are targeted for inducing apoptosis in cancer cells.
In addition to this, another major pathway that promotes
apoptosis in cancer cells is the death receptor-mediated
pathway (extrinsic pathway) [7]. Tumor necrosis factor
(TNF), TNF-related apoptosis inducing ligand (TRAIL),
Fas-ligand (Fas-L), TNF-related factor-1 and 2 (Trafl/2)
etc. are some of the key molecules that belong to the ex-
trinsic pathway or death receptor signaling that are
known to be de-regulated in cancers [8,9]. While inhib-
ition of Bcl-2-mediated intrinsic pathway leads to the re-
lease of cytochrome c from the mitochondria to the
cytosol, resulting in the activation of caspases 9 and 3,
death receptor-mediated extrinsic pathway involves cas-
pases 10 and 8 in inducing apoptosis [7]. A pre-requisite
for the latter is the formation of a death-inducing signal-
ing complex (DISC) between Fas-assciated death domain
(FADD) and pro-caspase 8 [10]. Resulting cleavage of
pro-caspase 8 to active cleaved caspase 8 leads to the ac-
tivation of downstream caspases such as caspase 3 [11].

Until recently, docetaxel-based chemotherapy is the
only available treatment option for the androgen-
insensitive prostate cancer patients and is shown to
modestly improve survival [12], marking the first real
advance after the identification of therapeutic castration
by Charles Huggins in 1941 [13]. Docetaxel (Taxotere®)
acts via suppression of microtubule assembly and disas-
sembly, microtubule bundling and inhibition of Bcl-2,
leading to apoptosis [14]. However, use of docetaxel is
associated with a number of serious side-effects due to
yet unknown reasons [15,16]. According to many reports
doses of statins, even 50 times higher than the pre-
scribed doses for the treatment of cardiovascular dis-
eases, did not inflict any serious side-effects or toxicity
to liver and kidney in men [17-19]. In the current study,
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we investigated the various mechanisms by which sim-
vastatin induce apoptosis in prostate cancer cells as
compared to the known effects of docetaxel treatment.
Our study indicates that simvastatin induces apoptosis
in prostate cancer cells in vitro and prostate tumor
xenograft in vivo by simultaneously modulating intrinsic
and extrinsic apoptotic pathways. These results suggest
that simvastatin can be developed as an important drug
for the treatment of prostate cancer either alone or in
combination with reduced doses of chemotherapeutic
drugs such as docetaxel to improve the efficacy and re-
duce the side-effects.

Methods

Cell lines, reagents, and antibodies

Human PC3 and LNCaP cell lines were obtained from
ATCC (Manassas, VA) and maintained in DMEM High
Glucose (HyClone) with 10% fetal bovine serum (FBS),
100 units/ml penicillin, and 100 pg/ml streptomycin in
5% CO, humidified atmosphere at 37°C. Primary anti-
bodies against pBad, Bcl-2, Bcl-xL, Bim, cleaved caspase
3, cleaved caspase 9, cleaved caspase 8, cytocrocme c,
Fas-L, survivin and Trafl were purchased from Cell Sig-
naling (Boston, MA). Primary antibodies anti-Nme5 was
obtained from Abcam (Cambridge, MA/ San Francisco,
CA), anti-Trp53inpl was from R&D (Minneapolis, MN)
and anti-B-actin was from Sigma (St Louis, MO). Anti-
mouse and anti-rabbit HRP conjugated secondary anti-
bodies were obtained from BioRad (Hercules, CA).
Docetaxel and simvastatin were purchased from Sigma
(St Louis, MO). Simvastatin was activated in the labora-
tory using the manufacturer’s instructions.

Transfections

Adenoviral particles for Bcl-2 and DN-Caspase-9 used
for the experiments were obtained from Vector BioLabs
(Eagleville, PA). For adeno-infections, PC3 cells were
grown until reaching 75 % of confluence in 6-well plates.
Next, cells were washed with 1X PBS and 1 ml of
DMEM without FBS, supplemented with 10 ug of poly-
brene was added, followed 5X10° PFU/ml of adeno-Bcl-2
virus and/or 1X10' PFU/ml of andeno-CMV-caspase9
virus. After 48 hours cells were lysed, protein levels were
quantified using DL protein assay (Bio-Rad, Hercules, CA)
and subjected to western blot analysis.

Trypan blue viability assessment

In the trypan blue method, cells were grown to conflu-
ence in DMEM with 10% FBS. The cells were treated
with 25 pM simvastatin, 10 nM docetaxel, or a combin-
ation of both in DMEM. After 24h, cells were collected
and re-suspended in PBS with 0.4% trypan blue solution.
Total cells and trypan blue-stained (i.e., nonviable) cells



Goc et al. BMC Cancer 2012, 12:409
http://www.biomedcentral.com/1471-2407/12/409

were counted, and the percentage of nonviable cells was
calculated.

Apoptosis assay

Cytoplasmic histone-associated DNA fragments were
quantified by using the Cell Death Detection ELISA""Y®
kit (Roche Applied Science, Indianapolis, IN) according
to the manufacturer's protocol. Briefly, PC3 cells were
plated in 96-well plate at a density of either 10* cells/
well. After 24h, the cells were treated with 25 uM sim-
vastatin and/or 10 nM docetaxel for 16h in DMEM con-
taining 10% FBS. Control cells received 0.1% DMSO
(vehicle control). Cells were lysed and centrifuged at
200g for 10 min, and the collected supernatant was sub-
jected to ELISA. The absorbance was measured at 405
nm (reference wavelength, 492 nm).

Caspase-9 activity assay

Caspase-9 activity assay were performed using Caspase-
Glo® 9 Assay kit according to the manufacturer’s pro-
tocol (Promega, Madison, WI). Briefly, PC3 cells were
either treated with 25 pM simvastatin, 10 nM doce-
taxel, and a combination of both, or infected with
5X10° PFU/ml of adeno-Bcl-2 virus and/or 1X10'
PFU/ml of adeno-DN-caspase9 virus particles. After
plating PC3 cells were plated on a 96-well plate at the
density of 2.5x10% 100 pl of Caspase-Glo® 9 Reagent
was added to each well and cells were incubated in
room temperature for 2.5 h followed by the lumines-
cence measurement using an ELISA plate reader. The
data are presented as mean + S.D.

In vivo nude mouse tumor xenograft model

All animal procedures listed in this article were per-
formed as per the protocol approved by the Institu-
tional Animal Care and Use Committee at the Charlie
Norwood Veterans Affairs Medical Center, Augusta,
GA (protocol 09-07-011, dated July 10, 2009). PC3 cells
were grown to confluence in 250-ml flasks. Cells were
re-suspended in PBS to a concentration of 10%/ml. Cell
suspension (1 pl) was injected subcutaneously in 6- to
8-week-old nude mice (athymic nude mice; Harlan,
Indianapolis, IN). The mice were subjected to intraperi-
toneal injections of simvastatin at a dose of 2 mg/kg
body weight every 12h for 2 weeks. The respective con-
trols were injected intraperitoneally with 0.9% saline
every 12h. Mice were sacrificed on day 14, and tumors
were dissected, weighed, and snap frozen using dry ice
for further processing to use on western or qRT-PCR.

Terminal deoxynucleotidyl transferase-mediated dUTP
nick end labeling (TUNEL) assay

The TUNEL assay for in situ detection of apoptosis was
performed by using the ApopTag® Fluorescein In Situ
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Apoptosis detection kit (Millipore, MA) according to the
manufacturer’s instructions. Cells were plated in 24-well
flat bottom plates at a density of 1 x 10> cells/well and
treated with 25 pM simvastatin, 10nM docetaxel or a
combination of both for 24h. Following treatments, cells
were fixed in 2% paraformaldehyde at 4°C for 30 min.
Fixed cells were then permeabilized in 0.1% Triton X-100
and labeled with fluorescein 12-dUTP using terminal
deoxynucleotidyl transferase. Nuclei were counterstained
with DAPI. Frozen nude mouse prostate tumor (PC3)
xenograft sections were also processed accordingly.
Cells/tissue sections were analyzed for apoptotic cells
with localized green fluorescence using an inverted fluor-
escence microscope (Zeiss Axiovertl00M, Carl Zeiss,
Germany).

QReal-time PCR arrays

PC3 cells were grown until reaching 75% of confluence
in 6-well plates and subjected to RNA isolation, followed
c¢DNA synthesis and qPCR quantification. Briefly, cells
were lysed and RNA was isolated according to manufac-
turer’s protocol using RNAese Mini Plus Kit (Qiagen,
Valencia, CA). Next, 25 pl of cDNA was produced by
RT? First Strand Kit (SABioscience, Frederick, MD),
mixed with qPCR SyberGreen master mix and loaded
into Human Apoptosis RT* Profiler PCR Array plate
(SABiosciences, Frederick, MD). Reading was completed
in Eppendorf Mastercycler realplex 2 instrument.

Western blot analysis

PC3 cells were cultured in 6-well plates to reach a
monolayer. At that point, the cells were treated with 25
UM simvastatin and/or 10 nM docetaxel in DMEM sup-
plemented with 10% FBS. Control cells received 0.1% of
DMSO. Whole cell lysates were prepared using lysis buf-
fer [50 mM Tris—-HCl (pH=7.4), 1% TritonX-100,
150mM NaCl, ImM EDTA, 2mM NazVO,, and 1X
Complete protease inhibitors (Roche Applied Science,
Indianapolis, IN)]. Tumors isolated from mice with
C53BL/6 background treated with 2mg/kg simvastatin
for 11 days, were first snap frozen in liquid nitrogen and
then pulverized with mortar and piston. Next, tissues
lysates were prepared using lysis buffer. The protein
concentration was measured by the DL protein assay
(Bio-Rad, Hercules, CA). 60 pg/ul of protein was sub-
jected to western blot analysis according to standard
Laemmli’s method.

Statistical analysis

Mean activities were calculated from 3-5 independent
experiments done at least in triplicates. The Student’s
two-tailed t test was used to determine significant differ-
ences between treatment and control values.
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Results

Simvastatin induces cell death and apoptosis in prostate
cancer cells

Since simvastatin inhibited activity of the cell survival
kinase Akt [5], we studied whether treatment with sim-
vastatin will compromise cell survival and induce apop-
tosis in prostate cancer (PC3 and LNCaP) cells. A
trypan-blue dye based study indicated that treatment
with 25 uM simvastatin induced >2-fold increase in PC3
cell death in 24h, compared to saline treated controls
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(p<0.001) (Figure 1A). The effect of simvastatin on PC3
cell death was higher than the effect of 10 nM docetaxel,
a currently approved drug for prostate cancer therapy.
Interestingly, a combination of simvastatin and docetaxel
further enhanced PC3 cell death by another fold, com-
pared to simvastatin treated cells (p<0.01) and 3-fold
higher compared to saline treated controls (p<0.001)
(Figure 1A). We next performed apoptosis assay using a
method that measures the cytoplasmic histone-associated
DNA fragments. Our data confirmed that both simvastatin
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Figure 1 Simvastatin induces cell death and apoptosis in prostate cancer cells. (A) Bar graph showing trypan blue positive PC3 cells treated
with control saline, simvastatin, docetaxel or a combination of simvastatin and docetaxel for 12 h. (B) Bar graph showing apoptosis in PC3 cells
treated with control saline, simvastatin, docetaxel or a combination of simvastatin and docetaxel for 24 h as measured calorimetrically. (C) Bar
graph showing quantification of TUNEL positive PC3 cells treated with control saline, simvastatin, docetaxel or a combination of simvastatin and
docetaxel for 24 h. (D) Bar graph showing quantification of TUNEL positive LNCaP cells treated with control saline, simvastatin, docetaxel or a
combination of simvastatin and docetaxel for 24 h. (B) Bar graph showing apoptosis in LNCaP cells treated with control saline, simvastatin,
docetaxel or a combination of simvastatin and docetaxel for 24 h. The data are presented as mean + SD (n=4 of quadruplicate experiments).
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and docetaxel significantly induced apoptosis in PC3
cells (p<0.001 and p<0.05, respectively) (Figure 1B).
However, although a trend was noted, the combined ef-
fect of simvastatin and docetaxel on the apoptosis of
PC3 cells was not observed. In order to further confirm
our data, we performed TUNEL assay to assess DNA
fragmentation as a late event in the process of apoptosis
in PC3 cells. Our TUNEL staining data further con-
firmed that while simvastatin and docetaxel independ-
ently induced apoptosis in PC3 cells (p<0.001 and
p<0.05, respectively), a combination of these drugs
exhibited a modest increase in apoptosis compared to
each of these drugs alone (Figure 1C). We went on to
determine whether the effects of simvastatin on apop-
tosis are also applicable to androgen-responsive LNCaP
cells. Our data indicated that confirmed that both sim-
vastatin and docetaxel induced apoptosis in LNCaP cells
as evidenced from the TUNEL staining (p<0.05) and
(p<0.01 and p<0.001, respectively) apoptosis assays
(Figure 1D and E). Overall, our study demonstrates that
simvastatin induces apoptosis in prostate cancer cells.

Simvastatin inhibits Bcl-2-mediated intrinsic pathway in
prostate cancer cells

Akt is known to modulate Bcl-2-mediated cell survival
pathway via phosphorylation of Bcl-2-associated death
promoter (Bad). We determined whether simvastatin
treatment inhibited Bcl-2-mediated cell survival pathway
in prostate cancer cells. Our data indicated that treat-
ment with simvastatin significantly impaired phosphoryl-
ation of Bad (p<0.05), decreased protein expression of
Bcl-2 and Bcl-xL (p<0.01 and p<0.05, respectively) as
well as increased protein levels of BimL/BimS (p<0.01),
cleaved caspase 9 and cleaved caspase 3 (p<0.001)
(Figures 2A and B). These effects were similar to the
treatment of prostate cancer cells with docetaxel.
Eventhough a synergistic effect on the protein expres-
sion of Bcl-2 and Bcl-xL. was seen in prostate cancer
cells with combined treatment of simvastatin and doce-
taxel, a net significant additive effect on the final pro-
ducts of intrinsic pathway such as cleaved caspase 3 and
cleaved caspase 9 was not observed (Figure 2A and B).
Together, our results indicate that inhibition of Bcl-2-
dependent intrinsic pathway is involved in the
simvastatin-mediated effects of PC3 cells.

Simvastatin induces apoptosis in prostate tumor

xenografts via inhibition of intrinsic cell survival pathway
We next determined whether simvastatin treatment has
any effect on prostate tumor cell survival in vivo. In
order to do this, frozen sections of PC3 tumor xeno-
grafts from athymic nude mice were subjected to
TUNEL assay. Our data indicated that treatment with
simvastatin in nude mice (2mg/kg body weight/12 hours,

Page 5 of 13

intra-peritoneally) significantly enhanced apoptosis in
tumors compared to saline treated controls by >2-fold
(p<0.05) (Figure 3A and B). Western analysis of the
tumor lysates indicated that, similar to prostate cancer
cells in vitro, treatment with simvastatin significantly
impaired phosphorylation of Bad (p<0.01), decreased
protein levels of Bcl-2 and Bcl-xL (p<0.01 and p<0.001,
respectively), increased release of cytochrome C from
the mitochondria to cytosol (p<0.05 ) as well as
increased protein expressions of BimL/BimS, cleaved
caspase 9 and cleaved caspase 3 (p<0.05), compared to
saline treated controls (Figures 4A and B).

Prostate cancer cells over-expressing Bcl-2 and/or DN-
Caspase 9 are not resistant to simvastatin induced
apoptosis

We first determined the effect of simvastatin and doce-
taxel on caspase 9 enzymatic activity in PC3 cells. Our
data show that both simvastatin and docetaxel signifi-
cantly induced caspase-9 activity in PC3 cells (p<0.05)
with a combined effect when simvastatin and docetaxel
are used together (p<0.01) (Figure 5A). To determine
whether Bcl-2-mediated intrinsic cell survival pathway is
the solely affected pathway in prostate cancer cells, we
performed rescue experiments by treating PC3 cells over
expressing either Bcl-2 or DN-caspase 9 (cleavage resist-
ant) or a combination of both, along with control cells
over expressing plasmid vectors. Changes in enzymatic
activity of caspase 9 were also confirned with Bcl-2 and
DN-caspase 9 plasmid expression in PC3 cells
(Figure 5B). Our data indicated that over-expression
with Bcl-2, but not caspase-9, enhanced cell survival in
PC3 cells (p<0.001) (Figure 5C and D) as measured by
the ELISA-based apoptosis assay kit. However, these
cells were not resistant to treatment with simvastatin.
No significant inhibition of simvastatin-induced apop-
tosis was observed by over-expressing PC3 cells with
Bcl-2, DN-caspase 9 or a combination of both, com-
pared to vector only expressing controls (Figure 5C and
D). Our data indicate that pathways in addition to in-
trinsic pathway are involved in simvastatin-induced
apoptosis in PC3 cells.

Simvastatin modulates expression of genes involved in
the death receptor-mediated apoptotic pathway in
prostate cancer cells

Since over-expression of PC3 cells with Bcl-2 and/or
DN-caspase 9 did not rescue from simvastatin-induced
apoptosis, we hypothesized that pathways other than in-
trinsic cell survival pathway may also be inhibited by
simvastatin. To study this, we performed Real-Time
qPCR-based gene arrays specific for genes involved in
the regulation of cell survival and apoptosis. From our
gene array analysis, we identified several candidate genes
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that are likely involved in the simvastatin-induced apop-  regulation of extrinsic pathway through a Fas/Fas-L in-
tosis in PC3 cells (Table 1). Some of the candidate genes  dependent mechanism (Figure 7B).
whose expressions were significantly modulated by statin Using Western analysis of the tumor lysates, we next
in PC3 cells included Bcl-2, Fas-L, Lhx4, Nme5, Trafl  determined whether simvastatin has effect on extrinsic
and Trp53inpl (p<0.001), many of them involved in the pathway components in PC3 tumor xenografts in vivo.
extrinsic death receptor-mediated apoptosis pathway  Our data indicated that while protein levels of Fas-L and
(Figure 6). Trafl was significantly increased in PC3 tumors treated
with simvastatin, compared to saline treated controls
(p<0.05 and p<0.001, respectively), protein expression of

Simvastatin, but not docetaxel is involved in the Nme5 was significantly reduced (p<0.05) (Figure 8A and
activation of Fas-L mediated extrinsic pathway in prostate  B). Further analysis of tumor cell lysates revealed that
cancer cells and tumor xenografts protein expression of cleaved caspase 8, a molecule

To investigate whether these genes were regulated by involved in the extrinsic pathway downstream of acti-
simvastatin in prostate cancer cells at the protein level, vated caspase 10 was significantly increased in tumor
we performed western analysis of PC3 cells treated with  xenografts treated with simvastatin, compared to saline
either saline control or simvastatin. Our data showed treated controls (p<0.01) (Figure 8A and B).

that treatment with simvastatin while significantly

increased protein expression of pro-apoptotic Fas-L  Discussion

(p<0.05), it inhibited expression of pro-survival protein = Many recent studies [1], including ours [5] show that
Nme5 (p<0.01) (Figure 7A and B). Although a trend to-  statins are beneficial as anti-cancer agents via inhibition
wards increased protein expression of Trafl was of prostate cancer cell functions in vivo such as prolif-
observed with simvastatin treatment in PC3 cells lysates,  eration, cell survival, cell migration and colony forma-
this was however not significant (Figure 7B). In any case,  tion etc. In this study, we have shown that treatment of
treatment with docetaxel did not have any effect on the  prostate cancer cells with simvastatin in vitro and mice
expression of proteins involved in the extrinsic pathway bearing prostate tumor xenograft in vivo significantly in-
involving Fas/Fas-L. Interestingly, we did observe some duce apoptosis in prostate cancer cells. Simvastatin-
changes in cleaved caspase 8 protein levels with both  mediated effects on prostate cancer cell viability and
simvastatin (p<0.001) and docetaxel treatment (p<0.05), apoptosis was superior to the effects of docetaxel, a cur-
suggesting that docetaxel may also be involved in the rently approved drug for the chemotherapy of prostate
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over-expressing Bcl-2, DN-caspase 9 and both. (D) Bar graph showing apoptosis of PC3 cells over-expressing Bcl-2, DN-caspase 9 and both,
compared to vector control in the presence and absence of 24h treatment with simvastatin. The data are presented as mean + SD (n=4 of
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cancer patients. Although a combined effect on prostate
cancer cell viability was observed by treating simvastatin
along with docetaxel, this effect was not observed in
assays specific for apoptosis such as TUNEL and cyto-
plasmic histone-associated DNA fragment assays. While
Bcl-2-mediated mitochondria-associated intrinsic cell
survival pathway was significantly inhibited in PC3 cells
and tumor xenografts by simvastatin treatment, over-
expression of PC3 cells with Bcl-2 and/or dominant
negative caspase 9 did not reverse the simvastatin-
mediated PC3 cell apoptosis. While simvastatin treat-
ment reduced the expression of phosphorylated-Bad,
Bcl-2, Bel-xL and survivin in PC3 cells, it resulted in
increased protein expression of Bim, cleaved caspases 9
and 3, with an increased effect in the presence of doce-
taxel. Modulation of Bcl-2-pathway with simvastatin was
also observed in PC3 tumor lysates. Gene arrays fol-
lowed by western analysis of PC3 cell and tumor lysates
treated with simvastatin identified several genes involved
in the extrinsic death-receptor apoptosis pathway modu-
lated by simvastatin, but not with docetaxel, such as
tumor necrosis factor (TNF), Fas-L, Trafl and cleaved
caspase 8, along with other genes such as Lhx4, Nme5

and Trp53inpl, which are novel, yet unknown regulators
of cell survival and apoptosis in prostate cancer cells.
Altogether, our results have demonstrated that simvasta-
tin induces apoptosis in prostate cancer cells via simul-
taneous modulation of intrinsic and extrinsic pathways
(Figure 9).

Because of its ‘crossroad’ role in multiple essential sig-
naling pathways in cancer cell maintenance, and its
enhanced expression and/or activation in multiple cancer
cells as compared to normal, Akt kinase is being actively
pursued as a novel target for cancer therapy [20-23].
However, since Akt is essential for many normal cell
functions [24-26], cell survival in particular, targeting Akt
for cancer therapy is a bottle neck due to the serious
side-effects associated with it. This asks for novel therap-
ies that can inflict a significant but selective effect on can-
cer cells in inhibiting pathways like Akt without affecting
the normal functioning of extra-tumor tissues. Many re-
cently published reports suggest that statins, at certain
higher doses, can be a selective and very efficient drug
to treat cancers without inflicting any major side-
effects [17-19]. We previously showed that simvastatin,
at a dose ~5 times higher than the therapeutic dose
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Table 1 Genes modulated by simvastatin in PC3 cells as identified by qRT-PCR arrays
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GeneBank Symbol Description Change (X fold)
NM_030693 Atf5 Activating transcription factor 5 20|
NM_009741 Bcl2 B-cell leukemia/lymphoma 2 20|
NM_009743 Bcl2l1/2 Bcl2-like 1 and 2 1.7]
NM_013479 Bcl2l10 Bcl2-like 10 20|
NM_008670 Bircla Baculoviral IAP repeat-containing 1a 2471
NM_007464 Birc3 Baculoviral IAP repeat-containing 3 167
NM_009689 Birc5 Baculoviral AP repeat-containing 5 307
NM_009807 Casp1 Caspase 1 287
NM_007702 Cidea Cell death-inducing DNA fragmentation factor, alpha subunit-like effector A 167
NM_010015 Dad1 Defender against cell death 1 25|
NM_010175 Fadd Fas (TNFRSF6)-associated via death domain 207
NM_010177 Fasl Fas ligand (TNF superfamily, member 6) 197
NM_010548 1110 Interleukin 10 167
NM_010712 Lhx4 LIM homeobox protein 4 33]
NM_080637 Nme5 Non-metastatic cells 5, protein expressed in (nucleoside-diphosphate kinase) 18]
NM_030152 Nol3 Nucleolar protein 3 (apoptosis repressor with CARD domain) 16|
NM_023258 Pycard PYD and CARD domain containing 20|
NM_013693 Tnf Tumor necrosis factor 327
NM_020275 Tnfrsf10b Tumor necrosis factor receptor superfamily, member 10b 167
NM_011611 Cd40 CD40 antigen 357
NM_009425 Tnfsf10 Tumor necrosis factor (ligand) superfamily, member 10 167
NM_011617 Cd70 CD70 antigen 337
NM_009421 Traf1 Tnf receptor-associated factor 1 407
NM_021897 Trp53inp1 Transformation related protein 53 inducible nuclear protein 1 327

prescribed for the treatment of cardiovascular diseases,
significantly inhibited Akt activity in PC3 tumor cells and
prostate tumor xenograft growth in vivo [5]. Another
recent report indicated that at similar doses, simvastatin
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Figure 6 Simvastatin modulates expression of genes in PC3
cells involved in the extrinsic pathway regulating apoptosis. Bar
graph showing changes in the mRNA levels of genes such as Bcl-2,
Fas-L, Lhx4, Nme5, Traf1 and Trp53inpTwith 24h simvastatin
treatment normalized to multiple housekeeping genes. The data are
presented as mean + SD (n=4 of quadruplicate experiments).

induced apoptosis in breast cancer cells, but not in nor-
mal airway epithelial cells or fibroblasts [6]. Thus, the
ability of simvastatin to selectively inhibit Akt activity
and induce apoptosis in prostate cancer cells without
affecting the normal cells makes it an attractive candi-
date for drug re-purposing for cancer therapy.

Many of the effects of simvastatin on prostate cancer cell
apoptosis can be credited to its ability to inhibit Akt activ-
ity. Akt is known to enhance the intrinsic mitochondria-
associated cell survival pathway in cancer cells via increased
phosphorylation of Bad and enhanced expression of Bcl-2
and Bcl-xL [7]. Upon inhibition of Akt by simvastatin in
PC3 cells, we saw reduced phosphorylation of Bad,
decreased expression of Bcl-2 and Bcl-xL, associated with
increased expression of Bim as well as cleaved caspases 9
and 3. Activated caspase 3 is expected to further
cleave PARP in inducing apoptosis [7]. Inhibition of
Bcl-2-mediated pathway by statins has also been shown by
other labs in multiple cancer types [6,27,28]. However, our
attempt to rescue the PC3 cells from apoptosis by re-
constituting the Bcl-2 pathway by over-expressing PC3 cells
with Bcl-2 and/or DN-caspase 9 did not reverse the
simvastatin-induced  apoptosis. This suggested that
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Figure 7 Simvastatin modulates expression of pro-apoptotic extrinsic pathway proteins in PC3 cells. (A) Western blots showing protein
expression of Fas-L, Nme5, Traf1, cleaved caspase-8 and Trp53inp1 in PC3 cells treated with simvastatin or docetaxel, compared to control saline
treated cells. (B) Bar graph showing quantification of the above data by densitometry analysis normalized to 3-actin. Increase in the protein
expression of Traf1, Fas-L and Trp53np1 as well as decreased protein expression of Bcl-2 and Nme5 was observed with simvastatin treatment, but
not with docetaxel, compared to control. The data are presented as mean + SD (n=4 of quadruplicate experiments).
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Figure 8 Simvastatin modulates expression of Fas-L, Traf1 and cleaved caspase 8 in prostate tumor xenografts. (A) Western blots
showing protein expression of Fas-L, Nme5, Traf1, cleaved caspase 8 and Trp53inp1 in PC3 cell tumor xenografts treated with simvastatin,
compared to control saline treated tumors. (B) Bar graph showing quantification of the above data by densitometry analysis normalized to
B-actin. Increased protein expression of Traf1, Fas-L, Trp53np1 and cleaved caspase-8 as well as decreased protein expression of Bcl-2 and Nme5
with simvastatin treatment, but not with docetaxel, compared to control is evident. The data are presented as mean + SD (n=4 of quadruplicate
experiments).




Goc et al. BMC Cancer 2012, 12:409
http://www.biomedcentral.com/1471-2407/12/409

Page 11 of 13

Simvastatin

Intrinsic
Pathway

(@ .

l..

Release of Cyt-C from the
mitochondria

Cleaved Caspases I
/ 10 and 8
Prostate

tumor cell

I |:> Apoptosis
\ 9and 3

~E 21 )

Extrinsic
Pathway

Cleaved I
Caspase 3,

intrinsic and extrinsic pathways.

Figure 9 Working hypothesis on the mechanisms by which simvastatin induces apoptosis in prostate cancer cells involving both

pathways other than intrinsic survival pathway are involved
in simvastatin-induced apoptosis in prostate cancer cells.

On the other end, gene arrays as well as western ana-
lysis of cell and tumor lysates identified a number of
novel candidates that are involved in the simvastatin-
induced apoptosis in prostate cancer cells. One of the
pro-survival proteins that were found to be less
expressed in simvastatin-treated PC3 cells was survivin,
which is also associated with mitochondria-associated
cell survival pathway. Survivin is highly expressed in
many cancer cells [29], including prostate cancer cells
[30,31]. Regulation of survivin expression in multiple ex-
perimental models has been linked to increase in Akt ac-
tivity [32]. In prostate cancer cells, survivin expression
has been shown to be regulated by IGF-1 stimulated
Akt-mTOR signaling [33], which Is impaired upon sim-
vastatin treatment [5]. A second pro-survival molecule
that is significantly less expressed in simvastatin-treated
PC3 cells is non-metastatic cells 5 (Nme5). Nme5, also
known as the inhibitor of p53-induced apoptosis-beta
(IPIA-beta) is known to confer protection from cell
death by Bax and alter the cellular levels of several anti-
oxidant enzymes such as Gpx5 [34]. A third molecule
that was significantly less expressed in PC3 cells with
simvastatin treatment was Lhx4, a molecule abundantly
expressed in many cancers [35,36], but exact function is
yet to be determined. Other molecules that are de-
regulated with simvastatin-treatment in PC3 cells in-
clude CD70 (TNFRSF7), CD40, caspase-1, Trp53inpl
and TNFRSF10b etc. (Table 1).

Another mechanism by which apoptosis can be trig-
gered in cancer cells is via signaling by death receptor

members that belong to the tumor necrosis factor recep-
tor super-family [37]. Among the eight members of the
death receptor family, most common are the TNF recep-
tor 1 (TNFR1 or DR1) and Fas (CD95 or DR2) [7]. Our
gene array results indicated an increase in TNF and Fas-
L in prostate cancer cells, which are ligands for TNFR1
and Fas, respectively, with simvastation treatment. Fur-
thermore, increase in the expression of other molecules
associated with the Fas receptor such as Trafl and Fas
(TNERSF6)-associated via death domain (FADD) leading
to activation of caspase-8 was also observed in PC3 cells
and/or tumor lysates with simvastatin treatment. In order
to induce apoptosis, TNF and Fas-L utilizes two different
death receptor signaling complexes. Fas-L-mediated mech-
anism comprises the death-inducing signaling complexes
(DISCs) that are formed at the CD95 or Fas receptor
between Fas-assciated death domain (FADD) and pro-
caspases 10 and 8 [10]. Formation of DISC results in
the activation of caspases 10 and 8, which place a cen-
tral role in the transduction of death signal [10,38].
TNF induces apoptosis via a mechanism different from
Fas-induced cell death involving two different signaling
complexes [39]. Complex-I is formed at the membrane
and comprises TNF, TNFR1, receptor-interacting pro-
tein (RIP), TNFR-associated death domain (TRADD),
TNFR-associated factors 1 and 2 (Traf-1/2) etc. and
acts through a JNK-dependent mechanism. Complex-II,
also known as traddosome, consists of FADD and cas-
pase 8, which are absent in complex-I [11]. An in-
crease in the levels of cleaved caspase 8 in the PC3
tumor lysates from simvastation-treated mice indicate that
one or both of the Fas-L and TNF-mediated death-
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receptor signaling pathway is involved in simvastatin-
induced apoptosis in prostate cancer cells.

Conclusions

In conclusion, our results have demonstrated that treat-
ment with simvastatin induces apoptosis in prostate can-
cer cells in vitro and tumor xenograft in vivo via
simultaneous modulation of mitochondria-associated in-
trinsic pathway that comprises Bcl-2, Bcl-xL and caspases
9 and 3 as well as Fas-L and TNF-dependent extrinsic
death receptor pathway involving caspase-8. Our study
reinforces the rationale of selective pharmacologic inhib-
ition of prostate cancer cell survival using statins and
suggests re-purposing of lipophilic statins such as simvas-
tatin for prostate cancer therapy in humans. Alternatively,
statins may also be used in combination with other
cytotoxic agents such as docetaxel to improve the drug
efficacy and reduce the side-effects.
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