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Abstract
Background: Malaria is a major public health problem in Malawi, however, quantifying its burden
in a population is a challenge. Routine hospital data provide a proxy for measuring the incidence of
severe malaria and for crudely estimating morbidity rates. Using such data, this paper proposes a
method to describe trends, patterns and factors associated with in-hospital mortality attributed to
the disease.

Methods: We develop semiparametric regression models which allow joint analysis of nonlinear
effects of calendar time and continuous covariates, spatially structured variation, unstructured
heterogeneity, and other fixed covariates. Modelling and inference use the fully Bayesian approach
via Markov Chain Monte Carlo (MCMC) simulation techniques. The methodology is applied to
analyse data arising from paediatric wards in Zomba district, Malawi, between 2002 and 2003.

Results and Conclusion: We observe that the risk of dying in hospital is lower in the dry season,
and for children who travel a distance of less than 5 kms to the hospital, but increases for those
who are referred to the hospital. The results also indicate significant differences in both structured
and unstructured spatial effects, and the health facility effects reveal considerable differences by
type of facility or practice. More importantly, our approach shows non-linearities in the effect of
metrical covariates on the probability of dying in hospital. The study emphasizes that the
methodological framework used provides a useful tool for analysing the data at hand and of similar
structure.

Background
Plasmodium falciparum malaria is a major public health
problem in most tropical countries in the world. Between
300 and 500 million cases of clinical episodes occur each
year, and 1–3 million people die of the disease [1,2]. The
sub-Saharan African region has the greatest burden with

over 90% cases and 80% malaria-attributable deaths [3].
Measuring malaria burden in a population is a challenge
in most developing countries [1,2], because most disease
incidences and deaths occur outside of the formal health
care, particularly at home [4,5]. Instead, routine hospital
data provide a proxy for measuring the incidence of severe
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malaria and for crudely estimating morbidity rates or
equivalent clinical indicators [6].

Analysis of these data may allow to assess, compare and
ultimately improve the care provided at all levels of health
care. It may assist in monitoring and planning resource
needs in a health system and designing appropriate inter-
ventions, tailored towards communities at high risk or
lead to further investigations to identify important risk
factors [7]. Variability in these indicators is a well known
issue, and is a function of various covariates, at both
patient or group level, some observed and others unob-
served, and maybe spatially correlated or time-varying [7-
10]. Geographical differences are driven by socio-eco-
nomic determinants, availability and access to health care
or health seeking behaviour [7,10]. Temporal variation
may again be a factor of access to care and malaria trans-
mission [9], for example, there can be increased access in
dry season and yet fewer cases in the same season. Ade-
quate statistical modelling and analysis is, therefore, of
epidemiological interest.

This paper is motivated by the analysis of malaria-related
hospital mortality data collected at patient's level, cover-
ing a period of two years among children admitted to a
referral district hospital in Malawi. The response variable
is binary (whether died of malaria in hospital or not) and
is linked to several covariates which are categorical or con-
tinuous, spatial and temporal. Unobserved heterogeneity
due to, for example, differences in practice style or type of
hospital, inequalities in utilisation or access, may exist
and should be explored. Hierarchical regression model-
ling provides a general framework to investigate the effect
of these cofactors.

We apply a geoadditive logistic model as proposed by
Fahrmeir and Lang [11]. Applications of such models are
many and literature is growing. These models can be esti-
mated through a fully or empirical Bayesian approach,
and are implemented in BayesX [12]. For example, Augus-
tin et al. [13] employed the model to study the relation-
ship between needle losses of pine-trees and various
covariates. Inference was performed with a full Bayes (FB)
approach making use of Markov Chain Monte Carlo
(MCMC) simulation techniques. Tutz [14] developed a
class of generalised semiparametric mixed models and
proposed penalized marginal likelihood approach for the
estimation of parameters. Fahrmeir et al. [15] considered
a penalised geoadditive model for space-time data with
inference performed using an empirical Bayesian (EB)
approach.

In this paper, we use the fully Bayesian approach via
MCMC simulation techniques. The advantages of FB
inference is that the functionals of the posterior can be

computed without relying on large sample Gaussian justi-
fications, and the approach is computationally feasible for
large datasets. Moreover, the uncertainty in the parame-
ters is easily quantified [15]. Furthermore, Bayesian meth-
ods are more flexible in that empirical information, when
available, can be incorporated with the data through an
informative prior distribution. When this information is
not available, a non-informative prior can be chosen. The
methodology is of substantive interest since the effects of
other covariates are jointly estimated with the random
effects, e.g., spatially structured and unstructured hetero-
geneity effects [16]. This is extended to incorporate non-
parametric terms for nonlinear continuous covariates and
time-varying coefficients, for example, time trend and sea-
sonal variation of calendar time. In addition, space-time
interactions are assessed within the varying-coefficient
models framework [17].

The rest of this paper is organised as follows. We first
describe the data. Next, we specify the model and outline
the Bayesian approach used for model estimation. This is
followed by the application of the model to the data, and
then results are presented. Discussion on the results and
limitations of the study conclude the article.

Methods
Data
Data were obtained from discharge records of all paediat-
ric hospital admissions at Zomba district hospital,
Malawi, between 1 January 2002 to 31 December 2003.
Each case was confirmed as malaria on admission through
microscopic identification of parasites in blood samples.
Zomba district hospital, with over 500 beds is the largest
health facility in the district and serves both as the first
consultation point for patients within its catchment, and
as a referral centre for other 23 primary health centres.
These facilities are managed by the Ministry of Health and
the Christian health association of Malawi, and variations
in health care management is expected.

The discharge registers included patients' age, sex, date of
admission and discharge, whether referred to the hospital
or not, the discharge outcome (i.e. death, discharged
home, home-based care or absconded), village or location
of residence, and treatment given. Based on the name of
the village, each case was matched to one of 21 residential
wards in the district. Approximately 86% of cases were
successfully linked to wards, the other 14% having either
missing or insufficient residential information. Only geo-
referenced cases are included in this analysis. Table 1 gives
a description of the variables used in this analysis.

A total of 302 deaths were registered among 3,969 chil-
dren hospitalised for malaria, between January 2002 to
December 2003, resulting in an overall case fatality ratio
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(CFR) of 7.6%. Table 1 shows the proportion who died in
different covariate levels. The proportion varies with age,
referral status, season, distance from the hospital and
length of hospital stay (LOS). The CFR drops from 8.5%
in the age of <1 year to 6.2% at age of between 1–4 years
and increases in the 5–14 years groups to 10.5. This sug-
gests a curvature in the association of age and the proba-
bility of in-hospital mortality. The number of cases are
relatively more in the wet season (October-March) com-
pared to the dry season (April-September), with a similar
pattern of CFR. Boys are more frequently hospitalised
than girls (58%), but the CFR is not different. The hospital
receives relatively more patients from a distance of more
than 5 kms (52%), with distant patient likely to die in
hospital. As for LOS, CFR is very high on day 1, drops and
then increases as the stay is prolonged. Again there is an
indication of curvature in the relationship between LOS
and the risk of inpatient mortality. Children referred to
the hospital are most likely to die in hospital (CFR =
8.8%). Further detailed descriptive and exploratory analy-
ses presented elsewhere clearly show spatial and temporal
variations [10].

The Model
Given a set of observations (yi, wi), i = 1, �, n, where yi is
a binary response such that yi = 1 if a child died in hospital

and yi = 0 a child is discharged, and wi = (wi1, �, wip)' are
covariates, we consider a logistic model to estimate the
probability of dying in hospital, yi = 1 versus the probabil-
ity of being discharged from hospital, yi = 0. The response
is distributed as a Bernoulli random variable such that:

where pi = P(yi = 1), and ηi = logit(pi) is a canonical param-
eter linked to the linear predictor

Here γ is a p-dimensional vector of unknown regression
coefficients.

Since the observations are associated with location of res-
idence, it is desirable to account for geographical differ-
ences. We introduce areal level effects to allow expected
spatial correlation and any unstructured areal heterogene-
ity of morbidity, using a convolution prior [16]. We also
specify health facility effects, which permit variations that
occur by type of facility. These supply effects may impact
on the referral patterns, admission patterns and case man-
agement. Furthermore, we assume additional flexibility in

f y p p yi i i
y

i
y

i i i
i i( | ) ( ) exp[ log( exp( ))]η η η= − = − +−1 11

(1)

η i i= ′w γγ . (2)

Table 1: Descriptive summary of variables used in the study.

Description n (per cent)§

Binary variables

Sex 1 = female 1683 (7.7)
0 = otherwise 2286 (7.6)

Day 1 = if admitted over weekend 2418 (7.5)
0 = otherwise 1492 (7.5)

Season 1 = if admitted during dry season 1128 (5.4)
0 = otherwise 1128 (5.4)

Distance 1 = if distance travelled is ≤ 5 km 1938 (7.4)
0 = otherwise 1999 (8.8)

Referral 1 = if referred to hospital from networking PHC 1895 (8.8)
0 = otherwise 1494 (6.1)

Metrical variable Mean (SD‡)

age Age of child 30.5 (30.7)
los Length of hospital stay 78.9 (264.1)
ct Calendar time 44.8 (30.1)

Spatial/heterogeneity variables

v 21 structured residential wards effects
u 21 unstructured residential wards effects
h 23 unstructured primary health care (PHC) facility effects
N Total number of observations 3969

§n = number hospitalised and percent died in that category
‡SD = standard deviation
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the predictor to allow for nonlinear or time-varying cov-
ariate effects. We, therefore, extend the predictor (2) to a
more general semiparametric predictor [11],

where vi, v ∈ {1, �, V} are spatially structured effects for
child i; ui, u ∈ {1, �, U} and hi, h ∈ {1, �, H} model
unstructured heterogeneity at area and health facility lev-
els respectively, fi are unknown functions for nonlinear
effects of continuous covariate xi (e.g., age of the child), or
calendar time effect ti. Note that the spatially structured
effects and unobserved heterogeneity tries to capture all
sources of unmeasured influential factors, some that
occur locally or at large scale, or those that may vary with
time.

Several extensions to the additive predictor (3) are possi-
ble. For example, the calendar effect f(ti) can be decom-
posed into time trend f(ri) and time-varying seasonal
component f(si), i.e.,

ηi = � + f(ri) + f(si) + �,

In addition, the model can be extended to include interac-
tion surfaces within the varying coefficient framework
proposed by Hastie and Tibshirani [17]. Here the effect of
some covariate z is assumed to vary smoothly over the
range of a second covariate x, giving the predictor

ηi = � + f(xi)zi + �,

of which the term f(x)z = g(x, z) is interpreted as an inter-
action term between z and x. In our case study, this can be
time-space interactions, leading to a predictor of the form

The function f4 quantifies the deviations from the effect at
some specified reference or baseline time period. This will
be discussed in detail in a separate analysis.

Estimation: fully Bayesian approach
Prior distributions for covariate effects
Modelling and inference uses the fully Bayesian approach.
In the Bayesian formulation, the speci-fication of the pro-
posed model (Equation 4) is complete by assigning priors
to all unknown parameters. For the fixed regression
parameters, a suitable choice is the diffuse prior, i.e., p(γ)
∝ const, but a weakly informative Gaussian prior is also
possible. For the time and continuous covariates we esti-
mate them nonparametrically through smoothness pri-
ors. We use the second-order Gaussian random walk prior
to allow enough flexibility, while penalising abrupt

changes in the function, as suggested by Lang and Brezger
[18]. The prior can be expressed in the pairwise difference
form as

where f = (f1, �, fp) and  is the variance, with diffuse

priors f1 ∝ const, f2 ∝ const for initial values.

For the time-varying seasonal effect, we also assign a
smoothness prior whose joint distribution, s, is given by

again assuming diffuse priors for initial values, s1, �, s11,

and  is a variance that controls the degree of smooth-

ness. The unstructured spatial heterogeneity term, ui is

assumed to follow an exchangeable Gaussian prior with

zero mean and variance, . A similar

prior is assigned to the heterogeneity term for the health

facility, i.e., .

Finally, for the spatial components vi, we assign a Markov

random field (MRF) prior [16]. This is analogous to ran-
dom walk models. The conditional distribution of vi,

given adjacent areas vj, is a univariate normal distribution

with mean equal the average vj values of vi's neighbouring

areas and variance equal to  divided by the number of

adjacent areas. This leads to a joint density of the form

where i ~ j denotes that area i is adjacent to j, and assumes
that parameter values vi and vj in adjacent areas are similar.

The degree of similarity is determined by the unknown

precision parameter .

By writing fj = Zjβj, h = Zkβk, u = Zlβl and v = Zmβm, for a
well defined design matrix Z and a (possibly high-dimen-
sional) vector of regression parameters β, all different pri-
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ors (Equations 5–7) can be expressed in a general
Gaussian form

with an appropriate penalty matrix Kj. Its structure

depends on the covariate and smoothness of the function.
In most cases, Kj is rank deficient and hence the prior for

βj is improper. For the variances  we assume inverse

Gamma priors IG(aj, bj), with hyperparameters aj, bj cho-

sen such that this prior is weakly informative.

Posterior distribution
Fully Bayesian inference is based on the analysis of poste-
rior distribution of the model parameters. In general the
posterior is highly dimensional and analytically intracta-
ble, which makes direct inference almost impossible. This
problem is circumvented by using MCMC simulation
techniques, whereby samples are drawn from the full con-
ditional of parameters given the rest of the data. Under
conditional independence assumptions the posterior dis-
tribution for the Bernoulli model is given by Bayes Theo-
rem

where the quantity p(β, γ, τ2) is the prior density function,
and L(data|β, γ, τ2) denotes the likelihood of the Bernoulli
model. More specifically, the posterior is given by

For updating the full conditionals of parameters, we use a
hybrid MCMC sampling scheme of the iteratively
weighted least squares (IWLS) proposals, developed for
generalised linear mixed models by Gamerman [19], and
Metropolis-Hastings algorithm. Full details are presented
elsewhere [11,14,15,18].

Applications
We analyse the following logistic models,

M0: ηi = 

M1: ηi =  + f1(age) + f2(los) + f3(ct)

M2: ηi =  + f1(age) + f2(los) + f3(ct) + vi + ui + hi

M3: ηi =  + f1(age) + f2(los) + f3(trend) + f4(season) + vi

+ ui + hi

Model M0 is a basic regression model of fixed covariates
only (Table 1). Model M1 assumes nonlinear functions
for the continuous factors, i.e., age f1(age), and LOS f2(los)
and calendar time f3(ct) measured in weeks, and tries to
assess the gains of fitting a semiparametric model. The
choice of estimating age and LOS using nonlinear
smoothing priors is motivated by preliminary results, see
Ref. [10], which clearly suggest a nonlinear relationship in
LOS and possibly one in age. Model M2 considers all pos-
sible risk factors, i.e., we simultaneously analyse nonlin-
ear effects of age, time trend of calendar time, structured
spatial effects, v, for the 21 residential wards, unstructured
spatial effects, u, heterogeneity effects, h, for the 23 health
facility, and fixed effects, w'γ, for the categorical variables.
In model M3, we extend model M2 to consider further
temporal effects, whereby the effect of calendar time is
decomposed into a time trend, f3(trend) and seasonal
component, f4(season).

We implement the models in BayesX ver 1.4 – a public
domain software for computing complex Bayesian tech-
niques [12]. For the four models, 40,000 iterations are
carried out after a burn-in sample of 10,000. We thin
every 20th iteration, yielding 2,000 samples for parameter
estimation. Convergence is monitored by plotting trace
and autocorrelation plots of the samples. Quantiles,
median, mean and standard deviation for all parameters,
estimated from the posterior distributions, are used to
assess model fit. In particular, credible intervals are used
to assess the significance of parameters.

We also monitored the posterior deviance, and compared
the set of plausible models using the Deviance Informa-
tion Criterion (DIC) [20]. Specifically, we compare the
structured additive models (i.e., M1, M2 and M3) with the
simpler parametric alternative (M0). The DIC is given by

DIC =  + pD, where  is the posterior mean of the devi-

ance, which is a measure of goodness of fit, and pD is the

effective number of parameters, which is a measure of
model complexity and penalises overfitting. Since small

p
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values of  indicate good fit while small values of pD

indicate a parsimonious model, small values of DIC indi-
cate a better model. Models with differences in DIC of <3
compared with the best model can not be distinguished,
while those between 3–7 can be weakly differentiated
[[24], p.613].

Results
Model assessment
Comparing the goodness of fit of models M0, M1, M2,
and M3 we note that M3 is a preferred model (Table 2).
The difference between model M3 and model M0 is ∆DIC
= 661:01. Note that models M1 and M2 are also better fit-
ting than the basic model M0 with DIC = 1372:39.
Indeed, assuming a semiparametric model slightly
improved the model fit compared to estimating a fully
parametric model (DIC = 1372:39 in M0 versus DIC =
1369:06 in M1, ∆DIC = 3:33). The inclusion of random
effects further improves the model fitness despite
increased model complexity (DIC = 1369:06 in M1 versus
DIC = 729:07 in M2, ∆DIC = 639:99). Evidently, model-
ling the impact of known factors alone is not sufficient to
produce a satisfactory fit to the observations, and random
effects at area and health care level are needed to improve
fit and account for heterogeneity. In our analysis, we also
observe that the inclusion of random effects reduce the
effect size of some variable (results not shown). In what
follow, we only report results based on model M3.

Fixed effects
Table 3 gives posterior means and odds ratios (OR), and
the corresponding 95% credible interval (CI) for categor-
ical covariates. The risk of dying in hospital is related to
season, distance to the hospital and referral status of a
child. No association is observed between probability of
dying in hospital and sex, nor between probability of
dying and day of the week. The likelihood of dying in hos-
pital is lower in the dry season relative to the wet season
(OR: 0.63, 95% CI: 0.49 to 0.86). For children who travel
less than 5 kms to the hospital compare to those who
travel more than 5 kms, the risk of dying in hospital is

lower (OR: 0.005, 95% interval: 0.0006 to 0.28). Children
referred to the hospital are at increased risk of dying in the
hospital relative to those who do not (OR: 98.49, 95%
interval: 21.33 to 383.75).

Nonlinear effects
Figure 1 displays the nonlinear effects of age of child and
LOS on the probability of dying in hospital. The effect of
age is estimated to be almost linear, with the posterior
means increasing with increasing age (Figure 1a). In other
words the risk is lower for infants, but increases for much
older children. For LOS, the posterior means show slight
deviation from linearity (Figure 1b). The risk decreases
from day 1, remains almost constant from day 2 to 6, and
then increases from day 7 to 20.

Temporal effects
Figure 2 displays the temporal effect as measured by the
calendar effect. Again the time trend is estimated to be
nonlinear (Figure 2a). From week 1 to week 15, the risk
decreases, then starts to increase up to week 55. From
week 56 the risk is almost constant. The trend closely mir-
rored wet and dry seasons in the area, with high risk in the
rain season and low risk in the dry season. This should be
explained by the large number of children hospitalised
during the wet season. The seasonal effect is given in Fig-
ure 2b. There is a clear seasonal variation for the entire
study period. It is evident that the risk pattern displays
both within month and between month variability.

Spatial effects

Figure 3 shows the spatial effects with the corresponding
posterior probabilities map at 80% nominal level (Figure
4). Areas shade black show strictly negative credible inter-
vals, while white areas depict strictly positive credible
intervals, and grey areas indicate nonsignificant credible
intervals. There is evidence of spatial variation in risk of
dying in hospital. It is clear that areas at the center of
Zomba district, which is urban, report reduced risk, while
those in the peripheral have increased risk. The uncorre-
lated spatial heterogeneity is given by caterpillar plot in
Figure 5a. There are no clear differences in area specific
effects, and most of them have a near zero effect on the
probability of dying in hospital. It is clear that the spa-
tially correlated effects are dominant, based on the ratio of
variance components,

 (Table

4). The other plot (Figure 5b) displays the heterogeneity
effects at health facility level. We observe strong evidence
of variation in risk possibly due to differences in health
care management at various facilities.

D

φ = + = + =τ τ τv v u
2 2 2 26 20 26 20 2 26 0 92/( ) . /( . . ) .

Table 2: Comparison of the four fitted models using the 
Deviance information criteria. See text for details.

Models
M0 M1 M2 M3

Model fit
1360.41 1347.58 684.75 651.54

pD 11.98 21.48 61.01 59.84
DIC 1372.39 1369.06 729.07 711.38
∆DIC§ 661.01 657.68 17.69 0

§ Difference of the best model M3 against others

D
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Table 3: Estimates of fixed parameters based on Model M3.

Model coefficients Odds Ratio
Covariate Mean‡ 95% CI§ Mean 95% CI

Sex Female child -0.09 -0.35, 0.14 0.92 0.79, 1.19
Male 0 1.00

Day Weekend 0.19 -0.06, 0.38 1.19 0.94, 1.46
Weekday 0 1.00

Season Wet 0 1.00
Dry -0.48 -0.77, -0.24 0.63 0.49, 0.86

Distance ≤ 5 kms -5.15 -7.73, -2.60 0.005 0.0006, 0.28
> 5 kms 0 1.00

Referral Yes 4.59 3.45, 5.85 98.49 21.33, 383.75
No 0 1.00

§ CI = Credible interval; ‡Posterior mean

Residual spatial effect of 'residential ward' in Zomba districtFigure 3
Residual spatial effect of 'residential ward' in Zomba district. Shown are the posterior means. Red colour denotes regions with 
negative risk, green denotes regions with positive risk. Lake Chilwa is in diagonal solid lines.

-2.4 5.7

(a)
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Sensitivity analysis
Table 4 reports on the results investigating the influence of
hyperpriors since the performance of the model can be
sensitive to the choice of the variance components priors
[21]. We therefore consider alternative specifications, and
carry out sensitivity of our model assuming an IG with
scale and shape parameters a and b respectively. We
assume four alternatives a = 0.5, b = 0.0005, a = 1, b =
0.005, a = 0.001, b = 0.001 and a = 0.01, b = 0.01. The first

specification was suggested by Kelsall and Wakefield [22],
for modelling the precision of the spatial effects in an MRF
model. The second alternative was proposed in Besag and
Kooperberg [23]. The remaining two priors with equal
scale and shape parameters, especially a = b = 0.001, have
often been used as standard choice on the variances of
random effects [24]. Re-running MCMC simulations
based on these specifications, using model M3 for sim-
plicity, yield relatively similar inference on risks of dying

Nonlinear effect of (a) age of the child (in months); (b) length of hospital stay (in days)Figure 1
Nonlinear effect of (a) age of the child (in months); (b) length of hospital stay (in days). Shown are the posterior means (solid 
line) together with 95% pointwise credible intervals (dotted line).
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in hospital, variance components and model fit. Therefore
our choice of IG(a = 0.5, b = 0.0005) is appropriate for all
the analyses.

Discussion
This study apply Bayesian techniques to analyse patterns
and risk factors of malaria attributable case fatality data.
We develop and use logistic regression models to have an
in-depth understanding of factors associated with the
probability of dying of malaria in hospital, building on

the existing methodological contributions by Fahrmeir
and Lang [11], Fahrmeir et al. [15].

A number of variables are used to explain the variation in
the response and include spatial, continuous, categorical,
and heterogeneity terms. The spatially structured variation
and unstructured heterogeneity are modelled using MRF
prior and zero mean Gaussian heterogeneity priors as pro-
posed by Besag et al. [16]. The continuous variables are
estimated non-parametrically by applying second order

Temporal variation of risk: (a) time trend, and (b) seasonal effect at time of admission (in weeks)Figure 2
Temporal variation of risk: (a) time trend, and (b) seasonal effect at time of admission (in weeks). The posterior means (solid 
line) are plotted together with 95% pointwise credible intervals (dotted line).
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Gaussian random walk prior, which permits enough flex-
ibility while avoiding over-fitting the data [18]. The pro-
posed methodology allows all these factors to be
estimated in a single framework. Because the models are
highly parameterised and analytically intractable, the
maximum likelihood approach is not be feasible. Thus,
the Bayesian inference, making use of MCMC simulation
techniques, offers a viable alternative.

In this paper we find evidence that the risk of dying in hos-
pital due to malaria is lower in the dry season, and for
children travelling less than 5 kms to the hospital. How-
ever, for those referred to the hospital the risk increases.
These results seem to suggest that when health care is
accessible or available lives can be saved. Malaria is a pre-
ventable disease, but delayed treatment or lack of effective
treatment can lead to fatal malaria within days [1]. Chil-
dren are particularly vulnerable because of lack of immu-
nity against the disease [2]. The risk decreases with age,
again infants being the most vulnerable, but overall chil-

dren under five years are the most at risk. The increase in
risk for those aged 6–14 years, although these are sup-
posed to be protected through acquired immunity, may
reflect some aspects of health seeking behaviour, and
emphasize the need for prompt and effective manage-
ment of malaria for all children including those aged over
five years even if such cases may not frequently occur in
the general population [7,9,10].

The lower risk in the dry season should be interpreted
with care. While the risk of infection is reduced during this
period, this effect is directly linked to few cases being hos-
pitalised, hence fewer deaths, and if anything such death
should reflect disease management other than severity of
the disease. Another possible explanation is that during
the dry season access to the hospital is easier than during
rainy season, leading to early treatment, and therefore
fewer avoidable deaths. Referral children are at increased
risk because probably these are already worse-off when
they arrive at the hospital. Disease management differ-

Posterior probabilities, at nominal level of 80%, for the spatial effects in Figure 3Figure 4
Posterior probabilities, at nominal level of 80%, for the spatial effects in Figure 3. Black denotes regions with strictly negative 
credible intervals, white denotes regions with strictly positive credible intervals, while grey shows areas of no significant differ-
ence. Lake Chilwa is in diagonal solid lines.
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ences or inaccessibility of care may contribute towards
this finding.

The spatial effects are often a surrogate of underlying
unobserved information, and may give leads for further
epidemiological research or assist in designing malaria
interventions. For example, the increased risk in rural
areas may be an influence of different factors, such as una-

vailability or inaccessibility of health facilities resulting in
increased risk for such children. These effects may also
reflect health seeking behaviour, which plays a critical role
in accessing prompt and effective care. Since most antima-
larial remedies at first taken at home, effective care may be
delayed, leading to increased risk for rural children. Scal-
ing-up of interventions such as insecticide-treated nets or
health promotions on appropriate and effective treatment

Residual unstructured heterogeneity effects of (a) residential wards, and (b) primary health care facilitiesFigure 5
Residual unstructured heterogeneity effects of (a) residential wards, and (b) primary health care facilities. Shown are the cater-
pillar plots of posterior means (circles), with 95% error bars.
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in home or community based care should be emphasized
in rural areas [25].

The significance of health facility effects further suggests
that management of health care differs in the 23 referring
facilities in Zomba district. Indeed, as these are public or
private operated, resources such as drugs or ambulatory
support may be lacking mainly in government-run health
centers. Moreover, some facilities, for example, dispensa-
ries and clinics have limited capacity to treat severe
malaria, and may not refer severely sick in time because of
lack of communication. There is need to ascertain actual
factors contributing to such discrepancy, e.g. using health
facility surveys on malaria case management. If indeed,
these are the underlying factors, resources need to be com-
mitted to improve primary health care. The seasonal vari-
ations indicate that malaria transmission processes may
explain the variation in the probability of dying in hospi-
tal. This is because malaria transmission is highly seasonal
and may change within the same area as the year
progresses. Essentially, interventions or health promotion
campaigns should be tailored in recognition of these var-
ying risk patterns.

The data-driven approach we have taken in this analysis
has a greater advantage in that the nonlinear effects of

continuous variables are estimated, and avoids ad hoc cat-
egorizations although the effect of age can as well be esti-
mated as linear (Figure 1). Indeed, the methodological
framework we have applied provide useful tools for han-
dling this type of data, and in similar conditions. Our
application demonstrates that spatial and temporal anal-
ysis may reveal some salient features of the data, which
may be overstepped by the classical regression models
(Model M0) or the purely spatial models (Model M2).
Flexible modelling, via nonparametric or semiparametric
model enable us establish a better epidemiological rela-
tionship existing between the response and continuous
explanatory variables.

Model selection in this paper is based on the DIC, which
is a Bayesian analogue to the Akaike Information Crite-
rion. Although the DIC is now widely used for model
choice in complex hierarchical Bayesian models, its usage
is at least debatable [[24], pp.612-633]. The DIC measures
only the relative goodness of fit among a collection of
models. It does not provide information on the adequacy
of the model. A model diagnostic tool based on the pos-
terior predictive distribution can be used to assess model
adequacy by comparing the observed data with the sam-
ples drawn from the posterior predictive distribution. Dif-
ferent approaches for validation, when DIC is not

Table 4: Sensitivity analysis of model M3. Relative changes of fixed effects, deviance information criterion, and variance components 

for different choices of hyperparameters for ,  and .

Hyperparameters for ,  and 

a = 0.5, b = 0.0005 a = 1, b = 0.005 a = 0.001, b = 0.001 a = 0.01, b = 0.01

Model fit
651.54 650.12 652.66 650.06

pD 59.84 61.01 61.26 61.53
DIC 711.38 711.13 713.92 711.59

Fixed effects
Intercept§ -2.78 (-4.04, -1.39) -3.11 (-4.58, -1.69) -3.15 (-4.88, -1.43) -3.16 (-4.72, -1.87)
Sex (female) -0.09 (-0.35, 0.14) -0.07 (-0.32, 0.18) -0.08 (-0.34, 0.17) -0.08 (-0.32, 0.10)
Season (dry) -0.48 (-0.77, -0.24) -0.46 (-0.77, -0.14) -0.45 (-0.74, -0.18) -0.48 (-0.77, -0.22)
Distance (≤ 5 km) -5.15 (-7.73, -2.60) -5.21 (-8.34, -2.49) -5.19 (-8.36, -2.22) -5.17 (-10.02, -1.62)
Referral (yes) 4.59 (3.45, 5.88) 4.61 (3.30, 6.37) 4.51 (3.54, 6.48) 4.65 (3.17, 6.65)
Day (weekend) 0.19 (-0.06, 0.38) 0.20 (-0.01, 0.41) 0.20 (-0.03, 0.43) 0.19 (-0.04, 0.40)

Random effects†

Areal: structured ( )
26.27 (10.86, 58.77) 26.58 (12.18, 69.59) 26.44 (8.86, 57.28) 27.34 (11.33, 72.11)

Areal: unstructured ( )
2.26 (0.003, 9.23) 2.19 (0.008, 2.11) 2.34 (0.008, 6.93) 2.22 (0.008, 2.27)

HF: heterogeneity ( )
1.21 (0.48, 2.69) 1.24 (0.43, 2.82) 1.23 (0.29, 1.84) 1.24 (0.46, 3.80)

§Posterior mean and 95% credible intervals are given; HF = Health facility

†Variance components for the spatially structured effects , unstructured spatial effects , and health care random effects 
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appropriate for decision making on which model to
choose have already been employed, for example see
Gosoniu et al [26]. Nevertheless, some simulation results
[27] suggest that the DIC gives reasonable results even in
complex nonparametric regression models.

A major limitation of our analysis is that data used comes
from hospital registers. In most African countries, most
malaria cases occur at home, and the pattern may be
biased towards urban areas that are well covered by health
facilities. Moreover, one may argue that much of this data
represent severe forms of malaria, because studies on
health seeking behaviour for malaria report that biomed-
ical care is sought when the disease is nearly fatal [5].
Health facility data can best be described as providing
proxies for prevalence or morbidity and hence health
need. A more representative data is through cross-sec-
tional household surveys, e.g. the demographic and
health surveys (DHS), however, these are often carried out
every four years, thus the periodicity is not frequent
enough for surveillance and to inform immediate deci-
sion making [4].

Conclusion
In many resource-poor African countries, collection of
population-based health data is a challenge and hospital
data provide a critical source of information for decision
making. In this paper, we set out to analyse risk factors of
malaria mortality, using hospital register data. Our
model, using the Bayesian approach, shows that malaria
mortality is associated with both individual and group
level factors, as well as observed and unobserved risk fac-
tors, some of which exhibit spatial and seasonal variation.
From a public health perspective, with a goal of preven-
tion and control, our results highlight that reducing
malaria burden may require integrated strategies encom-
passing improved availability and access to effective care
at primary facilities; reinforcing home and community
case management where prompt care is inaccessible, and
encouraging early referral, as well as inducting health pro-
motion interventions aimed at interrupting malaria trans-
mission. Methodologically, this model can easily be
adapted to analyse other health indicator of similar struc-
ture and in like settings.
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