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Logistic regression (LR) classifiers have been used success-
fully in the single-trial analysis of EEG data, especially in
tasks of perceptual decision-making [1,2], but heuristics
govern the choices for classifier parameters, such as win-
dow size (δ). Furthermore, no rigorous definition exists as
to the number of epochs (N) of either class that would
allow sufficient classifier training before testing using
leave-one-out cross-validation. Here, we attempt to
address these issues by exploring this discrete parameter
space with the aid of a genetic algorithm. In doing so, we
draw preliminary conclusions on both subject-specific and
subject-general trends of these classifiers.
To establish a baseline for comparison, we utilize EEG

data from a previous study using LR to classify neural
response to a two-choice forced-decision face vs. car visual
task [1]. In this study, a window size (δ) of 60 ms was used
to segment epochs for classification. Other studies using
this technique also employ a comparable window size
[2,3], even though δ has the potential to drastically affect
classifier training and performance. Similarly, the number
of epochs used to train the classifier can greatly affect its
performance, a number too low causing an insufficient
number of points through which a dividing hyperplane
can be found.
Recognizing the dependence of classifier performance

on these discrete parameters, we use a genetic algorithm
to explore the δ vs. N design space. In doing so, we track
an objective function whose value depends on maximizing
an epoch window’s leave-one-out Az (area under receiver-
operating characteristic) value while decreasing its varia-
bility (determined from bootstrapping), which increases
with a low number of epochs. Once converging to subject-
specific values of δ* and N*, we then test the classifier

solution for statistical significance using the false discovery
rate across all windows [4], as there are approximately E/
2δ* multiple comparisons for an E milliseconds epoch
with 50% window overlap.
First, minimizing our objective function with N held

constant at its maximum, we find that δ* can be tuned
in a subject-specific way and we find on average a 3.7 ±
1.1% improvement in maximum Az from that of the ear-
lier study. Second, we vary δ (δ Î [5, 6, ..., 149, 150]ms)
and N (N Î [10, 11, ..., Nmax-1, Nmax] ) simultaneously
and converge using a genetic algorithm (6-bit resolution,
36-member population, 0.7 crossover probability, 0.7/
(population size) mutation probability, [5]) to a subject-
specific δ* and N*. In each subject but one we find that
N* < Nmax and that δ* is a subject-specific parameter
that differs from the heuristics offered by previous work.
Finally, on a group level, we find that the components
of our objective function exhibit distinct variation with
respect to δ and N, with an epoch’s maximum Az opti-
mizing for low N and low δ, while its Az variability
minimizes for high N and maximizes for low N, nearly
irrespective of δ.
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