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Abstract

Background: Soya and its derivatives represent nutritionally high quality food products whose major
drawback is their high content of a-galacto-oligosaccharides. These are not digested in the small intestine
due to the natural absence of tissular a-galactosidase in mammals. The passage of these carbohydrates to
the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal
flatulence. The aim of the work reported here was to assess the ability of a-galactosidase-producing
lactobacilli to improve the digestibility of a-galacto-oligosaccharides in situ.

Results: Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to
monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic
rats monoassociated with a Clostridium butyricum hydrogen (H,)-producing strain. Ingestion of native soy
milk by these rats caused significant H, emission while ingestion of a.-galacto-oligosaccharide-free soy milk
did not, thus validating the experimental system. When native soy milk was fermented using the o-
galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H,
emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with
native soy milk, a significant reduction (50 %, P = 0.019) in H, emission was observed, showing that -
galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats
monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced
a significant reduction of H, emission (70 %, P = 0.004).

Conclusion: These results strongly suggest that L. fermentum o.-galactosidase is able to partially alleviate
o-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic
acid bacteria could be used as a vector for delivery of digestive enzymes in man and animals.
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Background

The nutritional value of soya-derived products is high
since the amino acid profile of soy protein corresponds
more closely to human requirements than most other
plant proteins [1]. In recognition of this high quality, the
US Department of Agriculture issued a ruling in 2000
allowing soy protein to completely replace animal protein
in the Federal School Lunch Program [2]. Soy proteins
have also been shown to reduce the incidence of cardio-
vascular disease [3] and, in this context, the US Food and
Drug Administration has approved a health claim for the
cholesterol-lowering effect of soy proteins [4]. Other key
benefits of soya derive from its high content of isoflavones
which are thought to exert a range of biological effects
against hormone-dependent diseases such as breast and
prostate cancer, menopausal symptoms, cardiovascular
diseases, and osteoporosis [5]. Taken together, these
reported health benefits, along with growing consumer
preference for plant-derived food rather than meat, have
led to an increasing demand for soy products [6]. How-
ever, in addition to these positive properties, soya does
have one negative characteristic limiting its use in human
nutrition. As is the case with other legumes, soya contains
high levels of the a-galacto-oligosaccharides (a-GOS)
raffinose and stachyose that are composed of one sucrose
moiety and one or two galactose moieties, respectively.
Since mammals are deficient in the enzyme a-galactosi-
dase (a-Gal), which hydrolyses the a-1, 6 linkages found
in these sugars, a-GOS are not digested in the upper gas-
trointestinal tract and reach the large intestine where they
are fermented by the resident microbiota. The resulting
production of fermentative gases can induce abdominal
pain as well as the social embarrassment associated with
flatulence [7,8]. Such negative aspects reduce the accepta-
bility of soy products as a major human food source [9].

One means of avoiding this problem could be to remove
o-GOS from the raw agricultural products. This could be
achieved by fermenting soya-derived products, such as soy
milk, using food grade bacteria that are able to catabolize
a-GOS into digestible carbohydrates. Lactic acid bacteria
(LAB) have long been used in food processing, and some
of these are able to produce a-Gal, making them good
candidates to fulfil this task [10-12]. This approach is
promising for the manufacture of soy yoghurts since some
LAB are also able to reduce the concentration of the alde-
hydes responsible for the undesirable beany flavour of soy
milk [13]. However, this strategy is limited to food prod-
ucts that are to be fermented by LAB. For soya and a-GOS-
rich food products that are not intended to be fermented
by LAB, another method of reducing the quantity of gas-
producing substrates would be to use LAB as a vehicle for
delivering o-Gal to the small intestine, allowing the
enzyme to hydrolyse undigested a.-GOS prior to their pas-
sage to the large intestine. In previous experiments, we
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selected the Lactobacillus (L.) fermentum CRL722 strain for
its high a-Gal activity, which allowed it to degrade raffi-
nose and stachyose in vitro [11,14]. Following oral admin-
istration of live cells or cell-free extracts of this strain, we
were able to detect a short-lived a-Gal activity in the small
intestinal chyme of conventional rats [15].

The present study was designed to assess the efficiency of
L. fermentum CRL722 to reduce gas production in rats con-
suming a-GOS. Gnotobiotic rats which were monoassoci-
ated with Clostridium (C.) butyricum, a bacterial species
known to produce large amounts of gas from carbohy-
drate fermentation, were first used as an animal model. In
a second series of experiments, we investigated the effect
of L. fermentum CRL722 in a microbiological environment
similar to the human gastrointestinal tract, using human
microbiota-associated rats. In all the trials, L. fermentum
CRL722 was consumed as a bolus of live cells, and H,
excreted through breath and flatus was used as a biomar-
ker of gas production in the gastrointestinal tract.

Results

A model experimental system to assess the potential of o~
Gal-producing lactobacilli to improve a~GOS digestion in
rats

A model system was designed in order to assess the poten-
tial of L. fermentum-delivered a-Gal to improve the diges-
tion of a-GOS in rats. This system made use of respiratory
chambers to monitor gas excretion in gnotobiotic rats in
which the microbiota was first simplified to a single strain
of C. butyricum that produces H, from a-GOS fermenta-
tion (Cb rats). In these rats, the colonization of the gas-
trointestinal tract by C. butyricum ranged from 107 to 108
CFU/g of faeces. Initial experiments showed that adminis-
tration of 1 ml of native soy milk with raffinose and stach-
yose levels of 4.0 and 7.5 mM, respectively, did not
significantly induce H, emission in Cb rats (data not
shown). Therefore, native soy milk was enriched with var-
ious amounts of both a-GOS to yield final concentrations
of up to 48 and 76 mM of raffinose and stachyose, respec-
tively. These were the concentrations that were then used
for further studies. Given that legumes contain around 5
% (w/w) a-GOS (soybeans 5.0 %, lentils 5.5 %, beans 3.2
% and chick-peas 7.5 %), the amount of a-GOS adminis-
tered to rats corresponded to an intake of about 1.5 g of
legumes per rat. When Cb rats received this enriched soy
milk, they excreted H, in expired air and flatus at up to
500 umol/100 g metabolic weight as shown in Fig. 1. In
contrast, when rats received only peptone water, only a
slight H, emission, probably corresponding to back-
ground dietary fermentation, was observed. These obser-
vations suggest that H, emission by rats receiving enriched
soy milk is linked to their consumption of a-GOS. This
was confirmed by preparing soy milk in which a-GOS
were degraded using an exogenous o-Gal prior to admin-

Page 2 of 9

(page number not for citation purposes)



BMC Microbiology 2008, 8:22

600
§ A Soy milk
S 500 A a-GOS-free soy milk
o Peptone water
=)
S 400 4
g 300 -
2
$ 200 A
o
<
S 100 *
£ i
0 . .
0 2 4 6 8 10
time (h)
Figure |

0~-GOS-induced H, excretion in gnotobiotic rats
monoassociated with C. butyricum DSM10702 (Cb
rats). The rats (n = 12) were administered intragastrically
with the solution to be tested and they were placed in respi-
ratory chambers. Air samples taken from the chambers were
analyzed for H, concentration using GC. Treatments succes-
sively applied to all rats (for more details, see Material and
Methods section and Fig. 5) are boxed. Cross bars indicate
standard error of the mean. MW, metabolic weight; *, indi-
cates that P values (Student-Newman-Keuls test) of the dif-
ferences with the group receiving soy milk is P < 0.01.

istration. In this case, a significantly lower (P = 0.003) H,
excretion was observed than when rats received enriched
soy milk, indicating that the high H, excretion found with
the latter treatment was due to the presence of the a-GOS
raffinose and stachyose from soy milk. Nevertheless, a-
GOS-free soy milk induced a significantly higher H, emis-
sion than peptone water (P < 0.05). This was probably
related to the presence of non-digestible but fermentable
sugars, other than a-GOS, that remained in the soy milk
preparation after the a-Gal treatment [16].

a-Gal-producing L. fermentum CRL722 is able to remove
flatus-generating o~-GOS both in soy milk and in the
gastrointestinal tract of rats monoassociated with C.
butyricum DSM10702

Prior to assessing the potential of L. fermentum CRL722 to
allow the digestion of a-GOS in soy milk and in the rat
gastrointestinal tract, the effect of the strain alone was
assessed in a group of 4 Cb rats taken from the group of
12 rats tested above (Cb-A rats, Figs. 2 and 5). The admin-
istration of L. fermentum CRL722 to these rats had no
effect on H, excretion (Fig. 2A). H, emission following
this treatment was close to that observed previously in the
same rats receiving a-GOS-free soy milk. L. fermentum
CRL722 was used to ferment enriched soy milk whose
raffinose and stachyose content was monitored during the
fermentation process. This allowed the degradation of
about 90 % of raffinose and stachyose (data not shown).
The resulting product administered to Cb-B rats induced a
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Figure 2

Ability of L. fermentum CRL722 to reduce a-GOS-
induced H, excretion in gnotobiotic rats monoassoci-
ated with C. butyricum DSM10702. Same legend as Fig. |,
except for the number of rats (n = 4). A, Cb-A rats; B, Cb-B
rats; C, Cb-C rats (see Fig 5).

slight H, emission that was significantly lower (P = 0.004)
than that observed with a-GOS-rich soy milk (Fig. 2B).
This suggests that the degradation of a-GOS by L. fermen-
tum CRL722 upon the fermentation of soy milk, pre-
vented H, excretion in rats thus confirming that this
excretion was due to a-GOS fermentation in rats. We then
tested the potential of L. fermentum CRL722 as a vehicle
for a-Gal in the gastrointestinal tract of rats. To do this, a-
GOS-enriched soy milk and a bacterial suspension of L.
fermentum CRL722 were simultaneously given to the Cb-
C rats. These rats showed an H, excretion that was 50 %
lower than when they received soy milk only (P = 0.019),
and that was similar to values obtained when they were

Page 3 of 9

(page number not for citation purposes)



BMC Microbiology 2008, 8:22

given o-GOS-free soy milk (P > 0.05; Fig. 2C). Analysis of
bacterial populations from the faeces up to 72 h after the
experiment revealed that L. fermentum CRL722 was
present and stable at 106 CFU per g of faeces. This indi-
cates that L. fermentum CRL722 was able to persist in the
rats monoassociated with C. butyricum DSM10702. There-
fore, the observed a-GOS digestion activity was possibly
caused by (i) delivery of a-Gal to the gastrointestinal tract
following L. fermentum lysis, or (ii) consumption of a-
GOS by a viable and colonizing L. fermentum population.

a-Gal-producing L. fermentum CRL722 also exerts a

digestive activity in human microbiota-associated rats

In order to more closely mimic conditions in the human
gastrointestinal tract, the animal model described above
was modified so that the rat gastrointestinal tract was col-
onized by a human faecal microbiota. In this complex
microbial digestive environment, rats fed with the a-GOS-
rich soy milk used for Cb rats did not excrete significantly
more H, than rats given a-GOS-free soy milk (data not
shown). This may have been the result of either a low level
of gas-producing bacteria in the human microbiota used
as an inoculum, or, more probably, from the activity of
H,-consuming microorganisms [17]. Trials with 1 ml soy
milk with concentrations of raffinose and stachyose that
were artificially increased 2- or 3-fold higher were per-
formed. These trials showed that human microbiota-asso-
ciated (HMA)-rats administered with soy milk whose a-
GOS concentration was enhanced 3-fold, i.e. 144 and 228
mM raffinose and stachyose, respectively, exhibited H,
excretion levels of the same order of magnitude as those
observed in Cb rats (Fig. 3). Under these new conditions,
the activity of L. fermentum CRL722 was again assessed by
coadministration of the strain with the a-GOS-rich soy
milk. This experiment showed that H, emission was
reduced by about 70 % compared with the o-GOS-rich
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Figure 3

Ability of L. fermentum CRL722 to reduce o-GOS-
induced H, excretion in human microbiota-associ-
ated (HMA) rats. Same legend as Fig. |, except for the
number of rats (n = 4).
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soy milk treatment (P = 0.004, Fig. 3), and this reduction
attained statistical significance 3 h after feeding (P =
0.012). Monitoring of the L. fermentum CRL722 popula-
tion present in faecal samples showed that the population
decreased 100-fold each day, indicating that, in contrast
with the situation observed in Cb rats, this strain was una-
ble to colonize the gastrointestinal tract of HMA rats.

Discussion

The primary aim of this work was to assess the potential
of LAB to facilitate the digestion of soy a-GOS through
their a-Gal activity. In this context, we have previously
characterized o-Gals from various lactobacilli, and one
from L. fermentum CRL722 appeared to be the most active
[10]. The present work focused on assessing the ability of
the a-Gal producing L. fermentum CRL722 strain to
improve the digestibility of soy a-GOS via its a-Gal activ-
ity expressed either during soy milk fermentation or in the
gastrointestinal tract of rats. Using an animal model con-
sisting of gnotobiotic rats monoassociated with an H,-
producing C. butyricum strain, we first showed that deple-
tion of a-GOS from soy milk using L. fermentum CRL722
as a starter greatly decreased sugar fermentation in the gas-
trointestinal tract of rats as shown by an important reduc-
tion in H, excretion. We further showed that L. fermentum
CRL722, when coadministered with soy milk rich in o-
GOS, greatly reduced H, excretion derived from a-GOS
fermentation. This suggests that L. fermentum CRL722 a-
Gal is active and available in the intestine to degrade -
GOS. In our animal model consisting of gnotobiotic rats
monoassociated with an H,-producing C. butyricum
strain, we observed that L. fermentum CRL722 was able to
colonize the gastrointestinal tract. This means that at least
a fraction of the L. fermentum CRL722 inoculum survived
the conditions encountered in the upper part of the gas-
tro-intestinal tract and found an appropriate environment
to multiply in the large intestine, despite the presence of a
resident species. As a consequence, the observed reduc-
tion in gas production may have been caused either by the
metabolic activity of L. fermentum CRL722 in the small
intestine or as a result of the strain colonizing the large
intestine and competing there with C. butyricum for a-
GOS utilization. To assess which of these mechanisms
applied, we went on to use another animal model consist-
ing of rats harbouring a human faecal microbiota. This lat-
ter was expected to form a natural defence barrier [18],
preventing L. fermentum CRL722 to settle in the large
intestine. Using this system, the a-GOS amount previ-
ously administered to Cb rats did induce a lower H, emis-
sion than that monitored in Cb rats. This may result either
from a poor level of gas producing bacteria in the used
human microbiota, or, most likely, from the activity of
H,-consuming microorganisms such as methanogenic
archeae, sulfatoreducing or reductive acetogenic bacteria.
Therefore, the a-GOS amount administered to HMA rats
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was increased 3 fold. This corresponds to an average
intake of 4.5 g of legumes which is a physiologically
acceptable dose for rats. Under these conditions, L. fer-
mentum CRL722 still improved o-GOS digestibility
although, as expected, it was unable to colonize the large
intestine. This strongly suggests that the enzyme activity
occurs in the small intestinal compartment. In further pre-
liminary experiments to distinguish between L. fermentum
CRL722 a-GOS utilization and delivery of a-Gal activity
by L. fermentum CRL722, we used another o-Gal* L. fer-
mentum strain that is deficient in a-GOS transport. Inter-
estingly, this L. fermentum strain exhibited an in vivo effect
similar to that of L. fermentum CRL722, suggesting that the
latter strain acts through delivery of a-Gal to the small
intestine rather than via o-GOS utilization (data not
shown). This observation is consistent with a previous
study in which we found that the majority of L. fermentum
CRL722 cells did not survive the duodenal portion of the
small intestine, as has been found for another LAB, Lacto-
coccus lactis [15,19]. In this latter work, a significant,
although short-lived, a-Gal activity was found in the duo-
denum of rats fed L. fermentum CRL722. It appears that
this short life of a-Gal is sufficient to allow digestion of
the a-GOS present in the diet, as shown by the present
work.

The model presented here should allow further elucida-
tion of both the mechanisms and the parameters that gov-
ern the expression of LAB enzymatic activities in vivo. Few
other studies have been performed in this area. Lactococcus
lactis strains genetically engineered to produce lipase have
been shown to be capable of alleviating a lipase pancreatic
insufficiency caused by ligation of the pancreatic duct in
pigs [20]. Other studies have suggested that LAB improve
lactose digestion of dairy products in lactase-deficient
individuals by delivery of B-galactosidase to the gastroin-
testinal tract [21]. However, a recent systematic review
stressed the variability found in these studies and the dif-
ficulty in drawing definitive conclusions on the positive
effect of LAB in lactase supplementation [22]. The a-Gal
host deficiency retained in the present model system is, in
contrast to lipase and lactase deficiencies, constitutive in
mammals; this model should therefore reduce inter-indi-
vidual variation. Furthermore, the animal model
described here makes it possible to perform quick analy-
ses. This will allow the effect of different parameters such
as the influence of the LAB vehicle (susceptibility to lysis,
colonizing ability, etc.) and of the mode of administra-
tion of LAB to be studied.

Conclusion

This study showed that a given host enzyme deficiency
can be supplemented by orally administered LAB that pro-
duce this enzyme at high level. This type of work opens up
the possibility of using LAB vehicles for delivery of other
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digestive enzymes to the digestive tract. LABs have great
potential in this field. First, since these bacteria have long
been ingested by man in fermented products, the mucosal
digestive immune system has developed a tolerance to
these bacteria, some of which are commensal [23]. Fur-
thermore, LABs form a heterogeneous family of bacteria
originating from various ecological niches. These bacteria
therefore have a diverse range of enzymatic activities
required for their adaptation to those niches [24]. Finally,
their designation as GRAS (Generally Recognized As Safe)
by the US Food and Drug Administration, positions them
as particularly well-suited organisms for this type of appli-
cation.

Methods

Chemicals and culture media

Soy milk was kindly provided by Lallemand Inc. (Mon-
treal, Canada). Raffinose, stachyose, p-nitrophenyl-a-D-
galactopyranoside (pNPG) and o-Gal from green coffee
beans were purchased from Sigma-Aldrich (Saint-Quen-
tin-Fallavier, France). 5-Bromo-4-chloro-3-indolyl a-D-
galactopyranoside (X-o-Gal) was from Research Organics
(Cleveland, OH). Man Rogosa Sharp (MRS) medium was
prepared as described elsewhere [25], Brain Heart Infu-
sion (BHI) medium was purchased from Difco (Detroit,
MI) and peptone water contained 1 g/l peptone (Difco).

Bacterial strains

Lactobacillus fermentum CRL722 was obtained from the
Culture Collection of the Centro de Referencia para Lacto-
bacilos (CERELA, Tucuman, Argentina) and has been
characterized elsewhere [10,11,14]. A spontaneous
rifampicin-resistant (RifR) derivative was checked for the
a-Gal* phenotype, using the chromogenic substrate X-a-
Gal. Briefly, bacteria were grown on MRS agar plates con-
taining 0.5 % (w/v) glucose and spread with 50 ul of a 20
g/l X-o-Gal solution using glass beads. Quantification of
o-Gal activity was performed according to a previously
described method [26], using pNPG as a substrate. No sig-
nificant differences in o-Gal activity could be found
between the RifR derivative and the parental strain. L. fer-
mentum CRL722 and its RifR derivative were routinely
grown at 37°C under anaerobiosis in MRS medium, sup-
plemented with 100 pg/ml rifampicin when required.
Clostridium butyricurn DSM10702 was obtained from the
German Collection of Microorganisms and Cell Cultures
(DSMZ, Braunschweig, Germany); it originates from the
intestine of swine and is the type strain of the species. It
was chosen because of its ability to produce large amounts
of gas, namely hydrogen and carbon dioxide, from raffi-
nose and stachyose fermentation [27]. C. butyricum
DSM10702 was routinely grown in BHI medium at 37°C
under anaerobiosis. All strains were stored at -80°C in 20
% glycerol/80 % culture medium (v/v). The human faecal
microbiota originated from stools provided by a 37-year-
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old Caucasian woman with Western dietary habits who
had not taken any laxative or antibiotic during the pre-
ceeding three months.

Animals

Germ-free 10-12 week old male F344 rats (mean weight
266 g (SD 19 g)) were obtained from the Germ-Free
Rodent Breeding Facilities of UR910 - Unit of Ecology
and Physiology of the Digestive Tract (INRA, Jouy-en-
Josas, France). They were randomly separated into two
groups and housed in a series of Plexiglas® isolators fitted
with a double-door sealed transfer system (Ingénia, Vitry-
sur-Seine, France). Throughout the study, rats were kept in
pairs in standard macrolon cages with sterile wood shav-
ings as bedding. They were given free access to autoclaved
tap water and to a pelleted semi-synthetic diet (Scientific
Animal Food and Engineering, Augy, France) sterilized by
y-irradiation at 45 kGy (IBA Mediris, Fleurus, Belgium)
[28]. Isolators were maintained under controlled condi-
tions of light (07.00-19.00 h), temperature (20-22°C)
and humidity (45-55 %).

http://www.biomedcentral.com/1471-2180/8/22

Respiratory chambers and H, excretion analysis

Respiratory chambers used in the present study have been
previously described in detail, and have been routinely
used for measuring H, and CH, excretion in gnotobiotic
animals exposed to various dietary regimens [29-32].
They are shown in Fig. 4. Briefly, they consisted of sterile
32-litre cubic boxes made of thick polyvinyl chloride and
equipped with a polyethylene lid fitting the double-door
sealed transfer system of the isolators, to allow rapid
transfer of animals without breaking containment. Within
the chamber, the rat was placed in a macrolon cage with a
wire mesh in the bottom and a water-containing plastic
bottle on the wire lid. Both chamber and cage were trans-
parent so that the animal could be observed. During the
test period, chambers were operated in closed-circuit
mode. Air circulation was maintained by a gas-tight and
adjustable peristaltic pump (Masterflex, Cole-Parmer
Instrument Co., Vernon Hills, IL) at a flow rate of 120
litre/h. Thus, air circulated continuously through Tygon
tubing (inner diameter 9.0 mm), passing through sterile
paper filters (Camfil SAS, La Garenne Colombes, France)
on entering and leaving the chamber. Moisture and CO,

-
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\ \
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-..,% 'q%
52 52
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Figure 4

Typical respiratory chamber used to monitor H, excretion in rats. a, respiratory chamber fitted with a rapid transfer
system allowing connection to isolators housing gnotobiotic rats; b, oxygen probe; ¢, oxygen inlet controlled with a magnetic
valve; d, silica gel-containing cylinder to trap moisture; e, KOH-containing cylinder to trap CO,; f, peristaltic pump; g, sampling
port with syringe. Arrows indicate the direction of air flow through the system.
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culture (1 ml)?

Experimental design of the rat trials. Treatments applied to rats are indicated in italics and numbers of treated rats in
brackets. For more details, see Material and Methods section. PW, peptone water. !, Rats associated with C. butyricum
DSM10702; 2, rats associated with a human faecal microbiota; 3, a-GOS-enriched soy milk (see 4and 5) was added with a 5 %
(v/v) coffee bean a-Gal solution at | IlU/ml and was incubated for 12 h at 37°C; 4, the concentrations of raffinose and stachyose
in the a-GOS-enriched soy milk administered to Cb rats were 48 and 76 mM, respectively; 5, the concentrations of raffinose
and stachyose in the a.-GOS-enriched soy milk administered to HMA rats were 144 and 228 mM, respectively; ¢, L. fermentum
cultures were at 4 x 10° CFU/ml; 7, a-GOS-enriched soy milk (see 4) was added with a 2 % (v/v) inoculum of a 4 x 10° CFU/ml
L. fermentum CRL722 suspension and was allowed to ferment for 16 h at 37°C.

were removed by including 1-litre cylinders filled with sil-
ica gel and 7 M-potassium hydroxide, respectively, in the
circuit. An O,-sensor (Mettler Toledo Analyse Industrielle,
Paris, France) was connected to the air circuit. As O, con-
centrations decreased due to rat respiration, the sensor
triggered an electromagnetic valve that allowed gas entry
from a cylinder of compressed O, (Air Liquide, Paris,
France). In this system, H, and CH, produced by gastroin-
testinal fermentation and excreted via breath and flatu-
lence accumulated. Air samples were taken at intervals
through a sampling-port, using a gas tight 50-ml syringe
(Terumo Europe, Leuven, Belgium). H, and CH, concen-
trations were immediately determined by GC using a
QuinTron Model DP MicroLyzer (QuinTron Instrument
Company, Milwaukee, WI) with a solid-state sensor detec-
tor (sensitivity 1 ppm, accuracy 2 ppm, linear range 2-150
ppm). The QuinTron MicroLyzer was operated according
to the manufacturer's instructions: the injection port was

fitted with a tube containing a Drierite desiccant to allow
for drying of the air samples; injection volume was 20 ml
and medical-grade air was used as the carrier gas (23 ml/
min); external calibration was carried out twice daily with
a QuinGas™ reference standard (QT07021-G, QuinTron
Instrument Company).

Preparation of the L. fermentum CRL722 inoculum and
the o-GOS rich- and a-GOS-free soy milk

In order to selectively quantify L. fermentum CRL722 in
the rat faeces, the spontaneous RifR derivative was used in
the animal trials. The RifR strain was grown overnight in
MRS broth. The following morning, bacterial cells were
pelleted and suspended in peptone water at a concentra-
tion of 4 x 10° CFU/ml for immediate use. Soy milk was
sterilized by autoclaving (10 min, 110°C) and enriched
with aqueous sterile stock solutions of raffinose and
stachyose. Final concentrations of raffinose and stachyose
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in soy milk were 48 and 76 mM, respectively, for rats
monoassociated with C. butyricum DSM10702 and 144
and 228 mM, respectively, for human microbiota-associ-
ated rats. The a-GOS-free soy milk was prepared by incu-
bating the a-GOS-enriched soy milk with coffee bean a-
Gal (5 % of a 1 IU/ml stock solution, v/v) at 37°C for 12
h. The enzyme was then inactivated by heat treatment (10
min, 100°C) and total degradation of raffinose and stach-
yose was confirmed by HPLC (Waters 625LC system,
Mildford, MA) using a Bio-Rad Aminex HPX-87H column
(Bio-Rad Labs, Hercules, CA). Elution was performed at
25°C with an isocratic flow of 0.4 ml/min 0.005 N-phos-
phoric acid. Eluted sugars were detected by differential
refractometry (Waters 410). Sugar quantification was per-
formed using the external standard method [33]. Both soy
milk preparations were stored at -20° C until use.

Experimental design of the rat trials

All procedures were carried out in accordance with the
European guidelines for the care and use of laboratory
animals. Animals of one group (n = 12) were inoculated
intragastrically with 1 ml of an overnight culture of C.
butyricum DSM10702 (1010 CFU/ml) using a stainless-
steel stomach tube; they were subsequently designated as
Cb (C. butyricum) rats. Animals belonging to the other
group (n = 4) were colonized with a faecal suspension
made from the stools of the human donor, as described
previously [34]. Briefly, fresh stools were introduced into
an anaerobic glove box and dispersed in BHI broth (1 %,
w/v); aliquots of the suspension were subsequently trans-
ferred to the isolators and given to the rats with a stomach
tube (1 ml/rat); these rats were designated as HMA
(human microbiota-associated) rats. The experiment
began after a 3-wk acclimatization period to the new bac-
terial status. First, fresh faecal pellets were collected from
each rat to confirm the microbial colonization of the gas-
trointestinal tract. Serial 10-fold suspensions, prepared
from faecal samples of Cb rats, were spread onto BHI agar
plates which were then incubated under anoxic condi-
tions at 37°C for 48 h prior to colony counting. In HMA
rats, the microbiological abundance and diversity of the
faeces was assessed by light microscopic examination. The
Cb rats were then randomly allocated to three groups (n =
4), namely Cb-A, Cb-B and Cb-C (Fig. 5). In all groups,
each rat was successively fed orally with (i) peptone water
to determine the basal level of H, excretion, (ii) the a-
GOS-free soy milk as a negative control, and (iii) the a-
GOS-rich soy milk as a positive control. The fourth treat-
ment differed according to the group: the Cb-A rats were
fed with L. fermentum CRL722 alone to assess whether the
bacterium per se, affected H, excretion (strain control); the
Cb-B rats received the a-GOS-rich soy milk previously
incubated with the L. fermentum inoculum (2 %, v/v) for
16 h at 37°C under anaerobiosis; finally, the Cb-C rats
received the a-GOS-rich soy milk along with the L. fermen-

http://www.biomedcentral.com/1471-2180/8/22

tum inoculum. In the case of the HMA rats, they received
successively (i) the a-GOS-free soy milk (negative con-
trol), (ii) the a-GOS-rich soy milk (positive control), and
(iii) the combination of the a-GOS-rich soy milk and the
L. fermentum inoculum. In both Cb- and HMA groups, a
one-week wash out period was allowed between each
treatment. The trials were performed as follows. After
overnight deprivation of food, the rats were fed with a 2
ml-mixture, the composition of which is detailed in Fig. 5,
using a stainless-steel stomach tube. Immediately after
feeding, each rat was transferred to a respiratory chamber
where it remained for up to 9 h, and air samples were
taken in duplicate every 90 min for H, analysis. Rats were
thereafter returned to their original isolators and fresh fae-
cal pellets were collected at intervals for 72 h to enumerate
the L. fermentum population.

Enumeration of L. fermentum CRL722 in rat faeces
Freshly-collected faecal pellets were thoroughly homoge-
nized in peptone water and serial 10-fold dilutions were
prepared. These were spread onto MRS agar plates that
contained rifampicin at 100 pg/ml, and plates were incu-
bated under anoxia at 37°C for 48 h prior to colony
counting. Under these conditions, only the RifR L. fermen-
tum derivative could grow while both C. butyricum and the
microbiota of human origin were inhibited. Bacterial
counts were expressed as CFU/g of faeces.

Calculations and statistical analyses

All data are expressed as mean values of H, excretion per
100 g of rat metabolic weight (MW; live weight to the 0.75
power) and standard errors of the mean. In each group of
rats, the effect of the treatments on H, excretion was
assessed using ANOVA for repeated measurements. When
ANOVA indicated significant differences, treatments were
compared using the Student-Newman-Keuls multiple
comparison test. Statistical significance was set at P < 0.05.
Calculations were performed using the SigmaStat software
package (Systat Software Inc., Richmond, CA).
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