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Abstract

Background: Geobacter species are §-Proteobacteria and are often the predominant species in a
variety of sedimentary environments where Fe(lll) reduction is important. Their ability to
remediate contaminated environments and produce electricity makes them attractive for further
study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of
Geobacter in changing environments and for electricity production. Recent studies in other bacteria
have demonstrated that signaling pathways homologous to the paradigm established for Escherichia
coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili,
the production of extracellular matrix material, and biofilm formation. The classification of these
pathways by comparative genomics improves the ability to understand how Geobacter thrives in
natural environments and better their use in microbial fuel cells.

Results: The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple
(~70) homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven,
respectively). Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near
the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology
to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown
function. We identified large numbers of methyl-accepting chemotaxis protein (MCP) homologs
that have diverse sensing domain architectures and generate a potential for sensing a great variety
of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the
cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the
regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter
elements suggest that the alternative sigma factors 628 and 654 play a role in regulating the Geobacter
chemotaxis gene expression.

Conclusion: The numerous chemoreceptors and chemotaxis-like gene clusters of Geobacter
appear to be responsible for a diverse set of signaling functions in addition to chemotaxis, including
gene regulation and biofilm formation, through functionally and spatially distinct signaling pathways.
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Background

Chemotaxis is a trait shared by many bacteria that enables
cells to move toward chemical attractants and away from
repellents. The chemotaxis system of E. coli regulates flag-
ellar-based motility; it has been studied in the great detail
and has served as a paradigm for chemotactic motility
[1,2]. However, it is now apparent from genomic, genetic
and biochemical studies conducted with other bacteria
that a diversity of pathway functions and purposes exist
well beyond the E. coli paradigm [3-5].

The E. coli chemotaxis pathway includes 11 genes, most of
which are organized in a cluster near the flagellar genes
[6]. This cluster contains two of the five genes for the
transmembrane chemoreceptors, which are also known as
methyl-accepting chemotaxis proteins (MCPs), and a sin-
gle gene for each of the chemotaxis signaling proteins: the
autophosphorylating histidine kinase (CheA), a scaffold
protein (CheW), a methyltransferase (CheR), a methyl-
esterase (CheB), a response regulator (CheY), and a CheY
phosphatase (CheZ). The other three MCP genes are dis-
tantly located in the genome. Chemotactic signals are
detected by a membrane array of MCPs, to which CheW
and CheA are bound, and regulate CheA-mediated phos-
phorylation of CheY and CheB. By binding to the flagellar
motor protein, FliM, CheY phosphate (CheY~P) induces
swimming E. coli to tumble, which has the effect of reori-
enting the direction of swimming. CheB~P reduces kinase
activity by demethylating the MCPs, which reduces the
rate of CheY~P (and CheB~P) formation, and conse-
quently reduces the cell tumbling frequency. The tumble-
promoting activity of CheY~P is also extinguished by the
action of CheZ. Overall, this stimulus-response pathway
biases swimming motion of E. coli toward attractants and
away from repellents. Adaptation to stimuli, mediated by
the reversible methylation of MCPs in the process cata-
lyzed by CheR and CheB, allows cells to remain sensitive
to small changes in chemoeffector concentration over a
large range [7,8].

Analyses of bacterial genome sequences show that
homologs of chemotaxis genes are widespread [3,7]. From
these surveys, it is apparent that the MCP and che genes in
E. coli are relatively few in number, which may plausibly
reflect modest requirements for sensory transduction in
the environment that E. coli inhabits. By comparison, the
chemotaxis-like systems in other bacteria are greater in
number and diversity [4,5]. The copies of the 'core' genes,
e.g. cheAWY, are clustered in multiple distinct locations
and additional genes are present (cheC, cheD, cheV and
cheX) that generate greater mechanistic diversity [5]. For
example, Armitage and colleagues have shown that two
chemotaxis clusters in the genome of Rhodobacter sphaer-
oides play a role in chemotaxis [9], an observation that
plausibly reflects the greater need for different signaling
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pathways in complex environments. Pertinent to the anal-
ysis that we present below, is the fact that Geobacter sp.
also occupies complex ecological niches in sedimentary
environments. The published genome of Geobacter sul-
furreducens has 34 MCP genes and six major che gene clus-
ters [10]; these pathways are likely to play an important
role in environmental adaptation.

Biochemical, genetic and physiological investigations of
chemotaxis-like signaling pathways in bacteria other than
E. coli have led to the realization that some of these path-
ways carry out functions distinct from the well-established
role in regulating flagellar motor rotation. These functions
include regulation of type IV pili-dependent motility, the
expression of the motility apparatus (both flagella and
type IV pili) and biofilm formation. As examples, Pseu-
domonas aeruginosa, Rhodospirillum centenum, Myxoccocus
xanthus, and Synechocystis sp. all have multiple chemo-
taxis-like operons that have provided new insight into
their diverse functions. P. aeruginosa has four major che
clusters; two are involved in chemotaxis with different
suggested roles, a third that regulates type IV pili motility
and biosynthesis, and the fourth is involved in biofilm
formation [11-16]. R. centenum has three che clusters; one
mediates chemotaxis, a second regulates cyst develop-
ment, and a third regulates flagellar synthesis [17-19]. M.
xanthus has eight clusters; the functions for four clusters
have been identified to date [20]. Each cluster regulates a
different function, including cell motility, biosynthesis of
the motility apparatus, or regulation of developmental
genes [21-25]. The functions for two of the three clusters
found in the genome of Synechocystis PCC6803 have been
identified: one regulates type IV-dependent motility, the
other pilus biosynthesis [26]. In a final example, only one
of three che clusters in the Vibrio cholera genome regulates
chemotaxis. Mutations in the two remaining clusters do
not affect chemotaxis; their functions are yet to be identi-
fied [27].

Geobacter species are Gram-negative 8-Proteobacteria and
are predominant in the Fe(IlI)-reduction zone of sedi-
mentary environments. The ability to remediate subsur-
face environments contaminated with organics or metals
and to produce electricity from waste organic matter
makes Geobacter attractive species for further study
[28,29]. Geobacter species are facultative anaerobes that
can oxidize organic compounds completely to CO, by
using metal ions, e.g. Fe(IlI), Mn(IV) and U(VI), or elec-
trodes as electron acceptors [30]. Most of the electron
acceptors for Geobacter species are insoluble under envi-
ronmental conditions. To overcome this constraint, they
have developed mechanisms of electron transfer from the
cell interior to the electron acceptors outside the cell.
Shewanella and Geothrix use either chelators that solubilize
metal oxides, or electron-shuttling compounds that trans-
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fer electrons from the cell surface to the insoluble accep-
tors [31,32]. Geobacter species use a different mechanism
of electron transfer, in which the cells make direct contact
with insoluble electron acceptors [33]. Cell motility and
other processes that involve the synthesis of extracellular
structures to mediate electron transfer (type IV pili and
extracellular matrix materials) are critical for Geobacter
species survival in the environment, and could potentially
be regulated by chemotaxis-like pathways.

Clearly, flagella and pili play important roles in Geobacter
physiology. When grown with insoluble metal oxides, G.
metallireducens produce flagella and pili [34]. Moreover, it
is postulated that flagellar-based motility and chemotaxis
bring G. metallireducens cells to the metal oxide surfaces
more efficiently, and that pili promote attachment and/or
transfer electron [34]. In G. sulfurreducens, it has been
demonstrated that the cells make direct contact with
insoluble oxides via nanowires, pili that are electrically
conductive and are essential for oxide reduction [33], and
recent evidence suggests that this mechanism is more
widespread than first thought [35]. Other than a direct
role in electron conduction, pili, and the other extracellu-
lar matrix molecules that are involved in biofilm forma-
tion, are being studied for the role they play in efficient
electricity production in microbial fuel cells [36,37].

The diverse functions of chemosensory systems in other
bacteria suggest intriguing roles for the Geobacter chemo-
taxis and chemotaxis-like pathways. Therefore, we con-
ducted an analysis of the chemotaxis gene homologs in
three Geobacter species with completed genome
sequences: G. sulfurreducens, G. metallireducens and G. ura-
niireducens as an initial step to understand their cellular
functions better. All three genomes were found to contain
an abundance of che gene homologs, which were organ-
ized into six to seven gene clusters and subdivided into
predicted operons. The chemoreceptor (MCP) genes have
a different organization. While several are located in che
clusters, most are dispersed throughout the genome - this
organization is typical of genomes that contain numerous
MCP genes, e.g. M. xanthus [20]. We predict the functions
of a number of the Geobacter gene clusters by comparisons
to clusters of known function in other species. We have
also found clusters, which are, to our knowledge, unique
to the Geobacter species; these may be particularly impor-
tant to Geobacter physiology.

Methods

For protein sequence similarity searches, NCBI protein
BLAST and position-specific-iterated-BLAST (blastp and
psi-blast, respectively, http://blast.ncbi.nlm.nih.gov/) [38]
were used with default parameter values against the
genomes of G. sulfurreducens PCA, G. metallireducens GS-15,
and G. wuraniireducens Rf4 (GenBank accession numbers
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AE017180.1, CP000148.1 and CP000698.1, respectively,
http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi). To
identify the Geobacter homologs of chemotaxis genes, E.
coli, B. subtilis and Thermotoga maritima chemotaxis proteins
were used as the test sequences, because these proteins are
well-studied representatives, and are listed in the curated
databases [39-41]. The following sequences were used: the
E. coli aspartate receptor methyl-accepting (MA) domain

(residues 267-514) (gi|16129838), the complete
sequences of E. coli CheA (gi|1788197), CheB
(gi[16129835),  CheR  (gi|16129836),  CheW
(gi|16129839), CheY (gi|16129834) and CheZ

(gi|16129833); the complete sequences of B. subtilis CheC
(gi|2634017), CheD  (gi|2634018) and CheV
(gi|2633772), and the complete sequence of T. maritima
CheX (gi|81553634). ClustalW http://www.ebi.ac.uk/clus
talw/ was used with default values for the parameters to
conduct multiple sequence alignments to determine per-
cent identities and to establish the class membership of the
methyl-accepting domains [42]. TMHMM2 [43], TmPred
[44], and TopPred [45] were used (with parameters set to
default values) to predict the number of transmembrane
helices in the putative methyl-accepting chemotaxis pro-
teins. A polypeptide segment was designated a transmem-
brane o-helix when at least two of the three programs
identified the same polypeptide segment as a transmem-
brane helix. Phylip (version 3.6) was used to construct
CheA and CheY phylogenetic trees by the neighbor-joining
method [46,47], as implemented in NEIGHBOR. SEQ-
BOOT was used to generate 1000 bootstrap replicates and
pairwise distances were estimated with PRODIST. The JTT
model was used with no among-site variation. The trees
were left unrooted.

The organization of che gene operons in the Geobacter sp.
was predicted with FGENESB (Softberry Inc., http://
www.softberry.com). FGENESB identifies protein-coding
genes with Markov chain models of coding regions and
translation start and termination sites, and annotates
them with information from public databases. The
sequence parameters (coding content, oligonucleotide
composition, and gene length distribution) were esti-
mated in FGENESB for each genome separately through
an iterative procedure with the minimum ORF length set
to 100 nt. Additional features, e.g. tRNA and rRNA, ¢70
family promoters, and rho-independent terminators,
were predicted from sequence similarity, linear discrimi-
nant analysis, or modeling approaches. FGENESB-based
operon predictions were generated from the directions of
adjacent genes, the distribution of intergenic distances,
the presence or absence of predicted promoter and termi-
nator regions, and the conservation of pairs of adjacent
genes across microbial genomes (V. Solovyev, personal
communication). The operon annotation of the G. sulfurre-
ducens genome used in this study has been described pre-
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viously [48], and is available online

www.geobacter.org/research/gsel/[49].

http://

o54-regulated promoters were predicted from a search of
the G. sulfurreducens genome with PromScan [50]. This
software assigns a score representing the Kullback-Leibler
distance, based on 186 known sites from 47 bacterial spe-
cies [51]. The G. sulfurreducens genome was found to con-
tain 110 predicted o54-regulated promoters with a score
equal to or greater than 80 (the default value) in noncod-
ing regions upstream of genes and operons. The current
accuracy of prediction is 78%, an estimate obtained from
experiments that positively identified 14 RpoN-depend-
ent regulation out of 18 predicted sites (J. Krushkal, C.
Leang, M. Puljic, T. Ueki, R. Adkins, and D. Lovley, unpub-
lished results). In addition, PromScan was used to look for
o54-regulated promoters upstream of the major che clus-
ters in the G. metallireducens and G. uraniireducens
genomes. Finally, putative o28-regulated promoters
upstream of the flagellar filament gene (fliC) and the
major che clusters in the genomes of G. sulfurreducens, G.
metallireducens and G. uraniireducens were identified with
Virtual Footprint [52] and the Neural Network Promoter
Prediction software for bacterial species [53]. Five hun-
dred base pairs upstream of the putative initiation codons
of genes of interest were analyzed using default parame-
ters.

Results and discussion

Geobacter Chemotaxis Genes: Numbers and
Organization

BLAST analysis of the G. sulfurreducens, G. metallireducens,
and G. uraniireducens genomes identified multiple copies
of the chemotaxis genes; over 60 genes in each species
were homologous to the known che and mcp genes in E.
coli, B. subtilis and T. maritima (Table 1). Homologs of all
the che genes from E. coli were present in the Geobacter spe-
cies, except cheZ, which is found much more frequently in
genomes of - and y-proteobacteria in comparison to the
genomes of a-, &-, and especially §-proteobacteria [54].
The Geobacter genomes also contained cheC, cheD, cheV,
and cheX homologs. With the exception of the genes for
the chemoreceptors - the methyl-accepting chemotaxis
proteins (MCPs), which were dispersed throughout the
genomes, most of the che genes were clustered, as shown
in Figure 1. In some cases, additional genes encoding
hypothetical proteins of unknown function or annotated
proteins with functions not known to be involved in
chemotaxis-related signaling pathways were located in
these clusters. There are six major chemotaxis-related gene
clusters in G. sulfurreducens, and seven major clusters each
in G. metallireducens and G. uraniireducens; their physical
arrangements are depicted in Figure 1. None of these clus-
ters is located close to the flagellar gene clusters.

http://www.biomedcentral.com/1471-2164/9/471

The genomes of G. sulfurreducens, G. metallireducens and G.
uraniireducens code four, five and seven predicted cheA
genes, respectively. The homologs encoded by the cheA
genes are clustered in three groups of the phylogenetic tree
(Figure 2), demonstrating that the multiple cheA genes did
not result from recent gene duplication events, but are
paralogs that have been evolving separately for some time,
which suggests that they play distinct cellular roles. Each
CheA homolog, together with the other cognate che gene
products, is likely to regulate a separate chemotaxis-like
pathway. The presence of multiple che homologs and clus-
ters are a strong indication of different pathways that raise
intriguing questions about function, and whether or not
the pathways are redundant or exhibit crosstalk. By com-
paring the gene order and the percent identities of the
gene products from other bacteria, in which chemotaxis
and chemotaxis-like pathways are studied extensively, we
were able to predict the functions for many of the Geo-
bacter che clusters. From this analysis, it seems unlikely
that different clusters constitute redundant pathways;
instead, each pathway has a distinct function. In addition,
plausible mechanisms to reduce unwanted crosstalk
between pathways emerged.

The Geobacter genomes are predicted to have large num-
bers of standalone response regulators proteins that are
comprised only of the receiver domain [55]; we refer to
these as CheY-like proteins. The G. metallireducens, G. sul-
furreducens, and G. uraniireducens genomes have 21, 25,
and 25 homologs, respectively, but the majority is proba-
bly not involved in chemotaxis-like signaling [54]. Only
38% of the homologs are located in the major che or flag-
ellar gene clusters (Table 1), the remainder (11, 18 and
15, respectively) are located elsewhere on the chromo-
some. Of those we suspect to play a role in chemotaxis-
like signaling, i.e. the cheY genes that are located in the
major che or flagellar gene clusters, about 50% reside in a
branch of the phylogenetic tree with E. coli and Salmonella
CheY (four apiece from G. metallireducens and G. sulfurre-
ducens; five from G. uraniireducens, Figure S1) [see Addi-
tional file 1]. These CheY homologs are most likely to
have response regulator functions as the substrates of
CheA-mediated phosphorylation in chemotaxis path-
ways. The Geobacter CheY-homologs located elsewhere in
the tree (relatively distant to E. coli and Salmonella CheY),
but are situated in che or flagellar gene clusters on the
chromosome, probably also function in chemotaxis-like
pathways, perhaps in some other manner. By contrast, the
genes encoding the most distantly-related CheY-like pro-
teins, i.e. located outside che clusters, away from the flag-
ellar genes, and are (relatively) distant to E. coli and
Salmonella CheY in the phylogenetic tree (Figure S1) [see
Additional file 1], probably function in other two-compo-
nent pathways. For instance, B. subtilis and Nostoc CheY-
like homologs, which are not in the che clusters, are
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These assignments were made by the relative agreements between che gene content, the physical arrangement in the cluster
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d-Proteobacteria, respectively.

involved in two-component pathways unrelated to chem-
otaxis [56,57]. Therefore, we postulate that the standalone
receiver proteins encoded within the Geobacter che and
flagellar gene clusters plausibly represent predicted CheYs
with chemotaxis-like pathway function.

Number and Diversity of Geobacter MCPs
The three Geobacter genomes investigated in this study
were found to have significant numbers of genes for

MCPs: 34 in G. sulfurreducens, 18 in G. metallireducens, and
24 in G. uraniireducens (Table 1). These putative MCPs
were identified through the presence of the highly con-
served methyl-accepting (MA) domain, which was first
assigned a biochemical function in the E. coli chemorecep-
tors as the domain methylated in a CheR-dependent proc-
ess [58,59]. The large number of MCP-coding genes in the
Geobacter genomes, by comparison to either E. coli or B.
subtilis, plausibly reflects a greater need to detect sensory
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Table I: Numbers of che gene homologs in E. coli, B. Subtilis and Geobacter sp.?

Species

Gene E. coli B. subtilis G. met. G. sul. G. ura.
cheAb | | 5 4 7
cheB | | 8 4 5
cheR | | 9 5 10
cheW | | 8 10 10
cheYe () 3) 10 (21) 7 (25) 10 (25)
cheZ | 0 0 0 0
cheC 0 | 2 | |
cheD 0 | 3 3 2
cheX 0 0 | | |
cheV 0 | | | |
mcp 5 10 18 34 24
Total 11 17 65 70 71
No. of che clustersd | | 7 6 7

9The numbers of homologs were determined by blastp searches (with default values for the parameters).
bThe number of cheA homologs in the genomes of G. met. and G. ura. includes a contribution from one cheAY fusion.
<The numbers are cheY genes in the major clusters. Numbers in parentheses also includes genes that encode for singleton CheY-like receiver

domain proteins.

dChemotaxis gene clusters are defined to contain three or more che genes.

stimuli in the subsurface environment. With the excep-
tion of the aerotaxis receptor, all E. coli MCPs have peri-
plasmic ligand-binding domains that detect the external
chemoeffector concentrations, two transmembrane (TM)
helices, and the (juxtamembrane) HAMP and the methyl-
accepting (MA) domains located in the cytoplasm. The
sequences of the predicted Geobacter MCPs reveal signifi-
cantly greater diversity in the domain organization and
architecture of the sensing domains (Figure S2) [see Addi-
tional file 1].

The N-terminal regions of MCPs sense various environ-
mental stimuli through diverse means, because the length
and heterogeneity of these regions are greater, compared
to the cytoplasmic domains, which are mostly organized
like the E. coli MCPs (a single HAMP domain followed by
the MA domain). Domain architectures of representative
Geobacter MCPs are shown in Figure S2 and Table S1 [see
Additional file 1]. With respect to transmembrane (TM)
segments, the Geobacter MCPs fall into three groups
according to the number of predicted TM helices (zero,
one or two). Of the 76 predicted MCPs found in the
genomes of G. metallireducens, G. sulfurreducens and G.
uraniireducens, ninety percent have two TM helices. Most
of these, 80%, have periplasmic domains that are ~150-
200 amino acid residues (aa) in length, which are most
similar in size to the periplasmic domains of the major E.
coli MCPs. Three percent of the Geobacter MCPs have larger
periplasmic domains (~250-430 aa), while the others
have a significantly smaller domain (<100 aa). MCPs with
the Tar-like and larger periplasmic domains probably
detect signals through these domains by ligand binding.

While the structures of most of these MCPs are not
known, the sensory domains of two MCPs (Gsu0935 and
Gsu0582) are PAS domains with covalently-bound hemes
[60]. Interestingly, this places redox-active sensing
domains in the periplasm. By contrast, the MCPs with
small periplasmic domains are more likely to detect sig-
nals via associations with other proteins, as in the case of
DifA of M. xanthus [24,61], or detect intracellular signals
when the MCPs have no TM segments [4].

MCP MA domains were recognized to belong to a super-
family based on a multiple sequence alignment first con-
ducted by Le Moual and Koshland [59]. A more recent
analysis of approximately 2000 MCPs identified seven
classes (named 24 H, 28 H, 34 H, 36 H, 38 H, 40 H and
44 H), which are defined by the number of heptad repeats
(H) in the cytoplasmic domain [62]. The most well char-
acterized MCPs of E. coli, Tar and Tsr, belong to class 36
H, and the MCPs from T. maritima (TM1143) and B. sub-
tilis (McpA and McpC) belong to class 44 H. Multiple-
sequence-alignments of the Geobacter MCPs revealed that
G. metallireducens has MCPs in classes 24 H, 34 H, 36 H
and 40 H; G. sulfurreducens has MCPs in classes 24 H, 34
H, 40 H and 44 H, and G. uraniireducens has MCPs in
classes 24 H, 34 H, 36 H, 40 H and 44 H. The majority of
the MCPs are members of class 34 H (17, 24, and 21% in
G. metallireducens, G. sulfurreducens and G. uraniireducens,
respectively) and class 40 H (61, 71 and 46%, respec-
tively). [Additional file 2 is the multiple sequence align-
ment of the Geobacter MCPs.| G. metallireducens and G.
uraniireducens each have one MCP in class 36 H
(Gmet1078, Gura2167), and G. sulfurreducens and G. ura-
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Figure 2

Neighbor-joining tree of putative CheA homologs of Geobacters and CheAs from other well studied species.
These include Escherichia coli (Ecoli), Bacillus subtilis (Bsub), Pseudomonas aeruginosa (Paer), Sinorhizobium meliloti (Smel), Rhodos-
pirillum centenum (Rcen), Vibrio cholerae (Vcho), Myxococcus xanthus (Mxan), Salmonella typhimurium (Styp) and Synechocystis sp.
strain PCC6803 (Syne). The Genlnfo Identifier protein sequence numbers are displayed in parentheses at right. All positions
with gaps in the aligned sequences were excluded. Bootstrap values from 1000 replicates of >600 are shown in respective
nodes. The tree figure was generated with TreeView, version 1.6.6 [96].
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niireducens each have one MCP in class 44 H (Gsu3196,
Gura0724).

MCPs and Che proteins form specific clusters. In E. coli, all
the MCPs and most of the Che proteins are found in clus-
ters that are often located at the cell poles [63-65]. When
bacteria have two or more chemotaxis (or chemotaxis-
like) gene clusters, the clusters are observed to have dis-
tinct locations and compositions [66-68]. We speculate
that MCP class membership is a contributing factor of
cluster specificity. According to this reasoning, MCPs in
the same class are more likely to belong to the same clus-
ter, and conversely, MCPs in different classes are likely to
segregate. Cluster formation, in part, is generated by con-
tacts between the MCP MA domains. The MA domain is a
coiled-coil hairpin that dimerizes to form a long four helix
bundle [69,70], where the bundle length is determined by
the number of heptad repeats, ~210 A for class 36 H MCP
(E. coli Tsr) and ~260 A for class 44 H MCP (T. maritima
TM1143). We postulate that class-specific MCP clusters
are more likely to form for the following reason: two dif-
ferent MCPs, which contain MA domains belonging to the
same class, are more likely to engage in the interactions
that lead to the formation of clusters than two MCPs that
contain MA domains from different classes (and therefore
different MA-domain lengths).

The localization of P. aeruginosa and R. sphaeroides protein
clusters provide some support for class-specific cluster for-
mation. P. aeruginosa McpB and WspA, which are found in
distinct signaling clusters in distinct locations (polar and
lateral, respectively), belong to different classes (36 H and
40 H, respectively) [66,67]. R. sphaeroides McpG and TIpT
(a soluble MCP) belong to different MA classes (34 H and
36 H, respectively) and locate in different clusters (polar
membrane and cytoplasmic locations, respectively) [68].
We anticipate that the multiple classes of MCPs present in
the Geobacter species contribute to the formation of segre-
gated MCP signaling clusters. On the other hand, MA class
membership is certainly not the only factor to consider.
For example, this mechanism cannot easily explain the
localization of MCPs that do not belong to any class [62].
In addition, the compositions of signaling clusters are
influenced undoubtedly by the specificity of interactions
between the different MA domain and Che protein
homologs. These effects (and others), considered
together, can contribute to the assembly of specific signal-
ing units, which function in the same cell without
unwanted crosstalk.

The Prevalence and Specificity of CheR Tethering
Segments

The role of a semi-conserved pentapeptide at the C-termi-
nus of some MCPs, and first observed in the E. coli high
abundance receptors Tar and Tsr (NWETF) [71], has a well
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established role in sensory adaptation by mediating effi-
cient receptor methylation and demethylation [7,71-74].
In the process of receptor methylation, the pentapeptide
NWETF binds to the B-subdomain of CheR at a location
that is distinct from the active site — methylation site inter-
action [75]; this interaction tethers CheR near the methyl-
ation sites of clustered receptors. It is plausible to expect
that all MCPs containing the C-terminal NWETF or a pen-
tapeptide similar to NWETF provide adaptational assist-
ance via the mechanism established in E. coli [73,76].
MCPs that contain the CheR-binding pentapeptide are
restricted primarily to the Proteobacteria; the genomes of
bacteria in other phyla reveal few, if any, MCPs that con-
tain a recognizable CheR-tethering segment, as defined
previously [7]. In such species - for example B. subtilis and
T. maritima, methylation operates through a different,
pentapeptide-independent mechanism [77]. Less than
10% of the ~2500 MCPs listed in the SMART database of
completed bacterial genomes contain a recognizable
CheR tethering segment; this segment always follows the
MA domain (SM00283) in the primary sequence of the
MCP, which then ends in a pentapeptide that binds CheR
[7]. Therefore, many MCPs are probably methylated and
demethylated via a pentapeptide-independent mecha-
nism.

Closer analysis of all the MCPs that contain the NWETF
pentapeptide or a similar pentapeptide, reveal a restricted
class membership, either to class 34 H or to class 36 H
[62]. 85% of these MCPs belong to class 36 H and con-
tained the class-specific xWxxF pentapeptide motif; 15%
belong to class 34 H and contained the class-specific xF/
YxxF/Y motif for the pentapeptide [7]. In contrast to the
kingdom-wide percentages, most pentapeptide-contain-
ing Geobacter MCPs belonged to class 34 H (100%, 75%,
and 80% for G. sulfurreducens, G. metallireducens and G.
uraniireducens, respectively). G. metallireducens and G. ura-
niireducens have one mcp gene apiece in the class 36 H
with a C-terminal DWKEF pentapeptide, a sequence more
similar to the E. coli consensus (NWETF). Using the pen-
tapeptide-containing MCPs as one criterion, we defined
the che clusters to which these mcp genes belong as 'E. coli-
like' clusters (Figure 1).

To identify possible class-specific MCP-methyltransferase
tethering interactions, we compared the aligned B-sub-
domain sequences of the Geobacter CheR homologs to the
Salmonella and E. coli CheR sequences. The Salmonella
CheR structure, co-crystallized with the NWETF pentapep-
tide has enabled the identification of residues in the B-
subdomain that are involved in the peptide-CheR interac-
tion (Q182, G188, R187, G190, G194 and R197, num-
bered according to Salmonella CheR, PDB# 1bc5) [75,77].
Figure 3 shows aligned sequences from the -subdomain
of all the Geobacter CheR homologs, together with the E.
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coli and Salmonella sequences (residues 166-199). Using
this alignment, we divided the Geobacter CheRs into three
groups. Two groups (A and B) displayed significant iden-
tity with residues important for binding a pentapeptide;
the third and largest group (C) did not (Figure 3). Conse-
quently, we concluded that the CheR homologs in Group
C probably do not methylate MCPs by the E. coli mecha-
nism.

The colocalization of mcp and CheR genes within the same
clusters provided evidence that group A and B CheR
homologs bind to MCPs containing a C-terminal pen-
tapeptide; these CheR homologs are located in che gene
clusters containing at least one gene that encodes a pen-
tapeptide-containing MCP (Figure 1). The two CheR
homologs that comprise group A are located adjacent to
class-:36 H MCPs (Gmet1078, Gura2167) and have
DWKEF as the C-terminal pentapeptide - judged to be
more similar to the E. coli consensus (NWETF). By con-
trast, the consensus pentapeptide coded by mcp genes
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located in the che gene clusters with group B CheR
homologs is EFEKF. All 14 MCPs that contain this consen-
sus pentapeptide belong to class 34 H (Figure 3) [also see
Additional file 2], and 10 of these are located in the che
gene clusters that contain the group B CheR genes (Figure
1). Differences in the consensus pentapeptide for class 34
versus class 36 MCPs correlate with differences in the -
subdomain amino acid residues in pentapeptide-binding
pocket of group A versus B CheR homologs (respectively,
Figure 3). Thus, it is plausible that these differences con-
tribute to (and reflect) class-specific MCP-CheR interac-
tions.

By contrast, all group C CheR homologs are either (a) not
located in a che gene cluster, (b) located in che clusters that
do not contain an mcp gene, or (c) located in che clusters
that contain genes encoding class 40 H or 44 H MCPs,
These MCPs do not contain recognizable CheR tethering
segments (terminating in a pentapeptide) according to
criteria defined previously [7]. Thus, it is probable that

1|82 187 1?7 Pentapeptide Class Species
Ecoli CheR Gl YREEELKNLTPORIJOR- - - - Y[FMRGTGPHEGLVR NWETF  36H Ecoli
Styp_CheR GII YRLSELKTLSPQRIOR----Y[FIMRGTGPHEGLVR NWETF 36H Styp
Group A | et 1077 G YRLDRIERLPREQVRR - - -~ FFJLRGDGKNAGLAR DWKEF 36H Gmet
Gura2166 GVYPIEHVQKLSPGRLKR - -~ - FfLKGDGKCAGF VK DWKEF 36H Gura
GSU1143 2y DHER I DPV PMSLRRK -~ - - Y[I] EQKGLVR (Q/E)FE(K/T)F 34H Gsu
GroupB Gmet2420 IY ERVE SLPK———— I DGQKGLVR EFEKF 34H Gmet
Gura2984 ANVYDEJERV I[PV PMTILKKK - — - - YLLLRSKDKSCORVRT (D/E) (F/Y)EKF 34H Gura
GSU0295 GIYNSYSVRNTPDFYLKK----YFREETGG---RFLLS
Gmet3267 GVYNAYSVRNTPDYYKKK----YFRQEPGE---RYVLS
Gura4421 GIYNTYSVRNTPEFYRRK----YFKEEPGE---RFTLA
GSU2215 GVYGKSSFRVTDEGYVRR----YFTEQDG----MFRVN
Gmet2305 GLYGKSSFRVTDDSYIRR----YFTEQDG--~--MYRVN
Gura3139 AAYGKSSFRSTEEIYIKR----YFQEQEG----MFKVN
Gura4168 GIYGPWAMRVIEKRYLDR----YFD-KIGK---GYRLK
Gura2689 GHYEDERLKGLPADYLDR----YFRKCDN----GFHVK
Gura2691 GHYEDERLKGLPADYLDR----YMEPTAG----GFIVN
Group C |ret2707 GIYSDWSFRGVPEWVKER----YFTRCPDG---RLEVP
GSU3195 GMYGHERLQEAPAHVLDR----HFCRNGDK----YCLS
Gmet3212 GIYSPERLAEVPAEVKDR----YFRPMGER----FVLD
Gura0725 AAYNEDRLSEMSESIKTR----YFDRIESK----YHLL
GSU0291 AFFPHDQRRGEVLRSFAA----PLLAAGAATSIGEVRE
Gmet3271 GFFPHDPPRQEAFRLLRD----ELRPTGAL--GRIRFI
Gura0136 GYFPHEPLRQVSYRNNIQ----PLFQCGAADRMHFRQE
Gmet0780 GLFLPNIASDVSAERLNR----YFVKDEDG----YRIK
Gura2454 ARYYSSSLREVPPDARAR----FFIREKGLWSLAGEVK
Gmet2641 GIFPLKEMQKYTRNYQAAGGKGAFSDYYLARYEHAIMI
Figure 3

Alignment of the beta-subdomain of Geobacter CheR homologs with E. coli and S. enterica CheR. Based on
homology, the Geobacter CheRs were divided into three groups. Two groups (A and B) displayed significant identity with resi-
dues important for binding pentapeptide (highlighted in grey) and the third group (C) did not. Gene positioning provides fur-
ther evidence that the group A and B homologs bind to MCPs containing the C-terminal pentapeptide: these homologs are
located in che clusters with pentapeptide-containing MCPs (Figure ). Group A consists of two CheR homologs that are
located near two class-36 H MCPs. The consensus pentapeptide of the MCPs that are cognate to the Group B CheR

homologs, EFEKF, is found in class-34 H MCPs.
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group C CheRs use a pentapeptide-independent mecha-
nism for receptor methylation, similar to that observed
with T. maritima [77]. In addition, we interpret the specific
pairings within the che gene clusters, of the CheR groups
(A, B, C) and the MCP classes (36 H, 34 H, 40 H/44 H,
respectively), as support for the idea of class-specific
receptor signaling.

Predicted Function of E. coli-like Chemotaxis Clusters
Above, we defined Geobacter che clusters operationally as
'E. coli-like' by the presence of one or more mcp genes that
encode MCPs with CheR tethering segments. In addition,
the Geobacter CheA homologs in these clusters belong to
the same phylogenetic grouping as E. coli CheA (Figure 2).
These clusters were sorted further into two types. Type 1
clusters - clusters one and two in the G. metallireducens
and G. uraniireducens genomes, respectively (Figure 1),
have significant resemblances to the E. coli mocha-meche
cluster, judged by the gene order and by the percent iden-
tities between predicted Geobacter proteins and the E. coli
proteins (Figure 2 and Figure S3) [see Additional file 1].
Notably, the Geobacter mcp genes in these two clusters
encode for MCPs that belong to class 36 H, the same as E.
coli MCPs.

Type 2 clusters are also characterized by significant
sequence identity (although lower than Type 1), but the
gene positions bear a comparatively small resemblance to
the E. coli cluster. Moreover, the Type 2 clusters contain
predicted ORFs in significant numbers that have
unknown function or assigned functions other than
chemotaxis. (See Figure S3 [Additional file 1] for compar-
isons of gene arrangement and the percent identities of
individual gene products.) The Type 2 clusters possess
multiple genes coding for MCPs that belong to class 34 H;
many of these contain a CheR-tethering segment that ter-
minates in an 'NWETF-like' pentapeptide at the C-termi-
nus.

Three features distinguish the E. coli-like Geobacter che
clusters from the E. coli cluster. (1) The E. coli meche
operon contains cheZ, but Geobacter genomes do not, so a
CheZ-independent signaling mechanism must operate in
Geobacter pathways. (2) Multiple CheW genes are found
in each cluster (except for G. metallireducens), an observa-
tion made previously with other bacteria. Studies of the
CheW homologs in R. sphaeroides have led to the sugges-
tion that these homologs do not perform redundant func-
tions, but engender MCP-specific interactions, a proposal
based on observed differences in binding affinity [9]. It
has also been suggested that multiple CheWs allow addi-
tional MCPs to be incorporated within the chemosensory
system, since there tends to be more mcp genes than cheW
genes [11]. Another interesting hypothesis has been pro-
posed: the different CheWs may recognize MCPs in a
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class-specific manner, which produces different specific
signaling pathways in a che cluster [54]. (3) Finally, cheD
and other non-che genes - not found in the E. coli chemo-
taxis cluster, are present in the E. coli-like Geobacter Type 2
clusters. By analogy to the functions assigned in B. subtilis
and T. maritima, the presence of CheD signifies that a dif-
ferent mechanism is in play for deamidating MCPs and
regulating CheY~P hydrolysis [78,79]. The presence of
genes with unknown function within chemotaxis operons
has been reported in various bacteria, and appears to be
commonplace in bacteria with more complex chemotaxis
pathways [27,80-82].

Based on these observations, we suggest that the Type 1
che clusters functions like the E. coli chemotaxis pathway,
albeit with the differences noted above, in which case che
cluster 1 of G. metallireducens regulates signaling through
a lone class 36 H MCP (Gmet1078) [34]. If cluster 2 of G.
uraniireducens serves a similar role, then a lone 36 H MCP
(Gura2167) serves to detect the environmental stimuli in
this situation as well. According to this reasoning, we do
not expect G. sulfurreducens PCA (AE017180.1) to have a
flagellar-based chemotaxis pathway that uses this signal-
ing logic, because it lacks both a Type1l E. coli-like che gene
cluster and class 36 H MCPs. However, the absence of
class 36 H MCPs does not rule out other modes of flagel-
lar-based motility or chemotaxis. For example, the chem-
otaxis pathway in B. subtilis uses class 44 H MCPs, and the
genome of G. sulfurreducens contains several mcp genes
that belong to this class. Fewer investigations of Type 2 E.
coli-like che clusters have been conducted, yet in their
study of a Type 2-like cluster in R. sphaeroides, Armitage
and colleagues found that this cluster is essential for flag-
ellar-based motility [83]. All the Geobacter sp. genomes
contain at least one Type 2 cluster; these too could poten-
tially participate in flagellar-based chemotaxis. Further
work is needed to verify the actual functions and relation-
ships of Type 1 and 2 E. coli-like clusters, which will serve
strengthen the confidence of predictions based on percent
gene identity, gene cluster organization and mechanistic
similarities reflected in protein organization.

Dif-like Clusters May Regulate Extracellular Matrix
Formation and Chemotactic Motility

G. sulfurreducens and G. uraniireducens possess clusters
comprised of similar genes and gene ordering to the dif
cluster of M. xanthus. These clusters contain class 44 H
MCPs with two predicted transmembrane segments, but
small periplasmic domains (~3 to 10 aa), genes for CheA,
CheW, CheY, CheC and CheD, and genes with unidenti-
fied function. (Figure $4 lists the gene arrangements and
percent identities of the individual gene products [Addi-
tional file 1].) The dif signaling system of M. xanthus has
been studied most, where it is known to be involved in the
regulation of exopolysaccharide formation, an essential
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component of the Myxococcus social motility apparatus
[61,84]. It has been noted that phenomenon of social
motility in M. xanthus resembles biofilm formation in
other bacteria [85]. In addition, the dif cluster is also
involved in sensing of certain lipids [24]. One difference
between the M. xanthus dif cluster and the Geobacter dif-
like clusters is the presence of CheR in the Geobacter cluster
instead of difB. A plausible consequence of this observa-
tion is that the Geobacter dif-like pathways are CheR-
dependent, whereas the M. xanthus dif system is CheR-
independent. The involvement of Geobacter dif-like clus-
ters in the synthesis of extracellular matrix material, which
is essential for biofilm formation, is currently under inves-
tigation.

Che Clusters with CheAlY Fusion Proteins

G. metallireducens and G. uraniireducens each have one che
cluster with a gene that encodes a CheA-CheY fusion pro-
tein (CheA/Y). In R. centenum, M. xanthus, P. aeruginosa,
and Synechocystis strain PCC6803, CheA/Y-containing che
clusters carry out various functions, including the regula-
tion of flagellar-based motility [86,87], typelV-pili based
motility and/or the biosynthesis of typelV pili [21,25,26],
cell development [17,23], and biofilm formation [16].
The Geobacter che clusters in Figure 1 that encode CheA/Y
fusion proteins are most similar to the M. xanthus Frz clus-
ter, cluster 3 of P. aeruginosa, and cluster 3 of R. centenum.
This conclusion was reached through comparisons of the
gene cluster content, gene order and the percent identity
among CheA/Y homologs (Figure S5) [see Additional file
1]. These gene clusters function in developmental cell
aggregation [88], biofilm formation [16], and cyst cell
development [17], respectively — processes that involve
cell-cell interaction. By these same criteria, the Geobacter
clusters were least similar to che cluster 1 of R. centenum
(chemotactic and photactic responses [86]), M. xanthus
cluster 3 (the regulation of fruiting body formation [23])
and Synechocystis cluster 2 [26]. Overall, these findings
suggest that the corresponding Geobacter che clusters may
also regulate processes involving cell-cell interactions
and/or social motility, but this idea is in need of experi-
mental proof.

Che Clusters that are Unique to the Geobacter Species
and J5-Proteobacteria

Two groups of che clusters are highly conserved among the
Geobacter sp., we refer to these as o and 3 groups. The clus-
ters belonging to these two groups contain the well-
known homologs of chemotaxis genes (cheA, cheW, cheB,
and CheR), but no mcp genes. Cluster 1 of G. sulfurreducens
and cluster 7 of G. metallireducens and G. uraniireducens
belong to the a group; the B group che clusters are 5, 2 and
5, respectively (Figure 1). An extensive search of both
completed and draft bacterial genomes led to the finding
that group o che gene clusters are present only in the
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genomes of the Geobacteraceae, including Geobacter bemid-
jiensis Bem ctg130, Geobacter lovleyi SZ, Pelobacter propioni-
cus DSM 2379, and Geobacter sp. FRC-32.

Group a clusters have not been found in genomes outside
the Geobacteraceae family. (See Figure S6 [Additional file
1] for gene arrangements and percent identities.) Each
group o cluster contains a gene encoding a protein with
an HD domain - which defines membership in an
enzyme superfamily of metal-dependent phosphohydro-
lases, where the conserved His-Asp (HD) doublet has a
role in catalysis [89]. Within a variety of contexts, HD-
domain-containing proteins have diverse biochemical
functions, including nucleic acid metabolism and signal
transduction. The predicted Geobacter homologs contain
no other recognizable domains, i.e. they may function as
standalone proteins. Standalone HD domain proteins in
E. coli have low amino acid identity with each other and
to the Geobacter homologs (~10%), yet the E. coli proteins
all act on nucleotide substrates [90]. The predicted HD
domain proteins located within the group a che clusters
are probably regulated by, or participate in, chemotaxis-
like signaling pathways of special significance to the cellu-
lar physiology of Geobacter.

Group B clusters are conserved among od-Proteobacteria,
and have been detected in the genomes of G. bemidjiensis,
G.lovleyi,Geobacter sp. FRC-32, Stigmatella aurantiaca DW4/
3-1, Anaeromyxobacter dehalogenans 2CP-C, Plesiocystis
pacifica SIR-1, and Myxococcus xanthus DK 1622. (See Fig-
ure S6 [Additional file 1] for gene arrangements and per-
cent identities.) In general, the functions of B group
clusters are not known. However, we have obtained pre-
liminary results with G. sulfurreducens cluster 5 knockout
mutants, which indicate that this B group cluster regulates
the expression of extracellular matrix material, and may
represent a new way that chemotaxis-like signaling path-
ways can participate in biofilm formation (HT Tran, DR
Lovley and RM Weis, unpublished observations).

Chemotaxis Gene Expression Regulated by Alternative
Sigma Factors 28 and 54

The mechanisms for regulating the expression of chemo-
taxis and flagellar genes are complex, but diverse, and
should provide clues to the diversity and purpose of
chemotaxis-like signaling systems. Therefore, we con-
ducted a preliminary investigation into the regulation of
che gene expression, in particular 628- and o°4-regulated
promoters upstream of che and flagellar gene clusters. In
E. coli and Salmonella, the che and late flagellar genes,
including fliC (the flagellar filament), are positively regu-
lated by 628 [91-93]. In other bacteria, especially those
with more than one che cluster, expression is also regu-
lated by 654 [94]. For instance, R. sphaeroides has a 628-reg-
ulated system that shows coupled expression of the
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chemotaxis proteins and flagella, and a system that regu-
lates flagellar synthesis independently via o 54 [95].

We searched upstream of the major Geobacter che operons
and fliC loci for evidence of o28-regulated expression. As
Figure 4A shows, o©28 binding sites were identified
upstream of fliC in G. metallireducens, G. sulfurreducens and
G. uraniireducens, but only one major che cluster, the G.
sulfurreducens group o cluster (cluster 1, Figure 1), had a
recognizable 628 binding site. Therefore, it seems that the
specific mechanisms of regulation for most of the Geo-
bacter che clusters will be different from E. coli (and Salmo-
nella).

The G. sulfurreducens genome was searched for o>4 recog-
nition sites to determine the number of che gene-related
sites relative to all the sites that may exhibit 64 regulation.
Of the 110 sites identified genome-wide, nine were
located in noncoding regions upstream of che, mcp or flag-
ellar operons (Figure S7 lists positions and sequences of
the chemotaxis-related promoter sites [Additional file 1])
- one of these was the Dif-like cluster (cluster 6, Figure 1).
Focused searches upstream of the major che clusters in the
other two species identified possible o54-regulated pro-
moter sites before cluster 3 in G. uraniireducens, and clus-
ters 1 and 6 in G. metallireducens (Figure 4B). No
correlation was apparent between the identity of these
clusters and their mode of regulation, i.e. G. metalliredu-
cens cluster 3 is classified as an E. coli-like cluster, and the
other two do not belong to any identified class. Conse-
quently, little specific insight can be gleaned from these

A

G. sul che cluster 1

gsu3038

gmet0442

gura4096

G28 consensus

B

G. met che cluster 1 CTGGCATTCCGGCTGCA
G. ura che cluster 3 GTGGCATGCTCCATGCT
G. met che cluster 6 CCGGAACGGTTCTTGCT
G. sul che cluster 6 ACGGAACACTTCTTGCT

654 consensus

Figure 4

CTGGCAC-4N-TTTGCA/T
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early findings. Nonetheless, the results may presage a
diversity of mechanisms for regulating expression.
Indeed, we can expect that once the che-gene-specific reg-
ulatory elements are known (which is significant in itself),
it will be a challenge to determine how these systems map
onto the global patterns of gene expression; this pattern
should reflect how Geobacter adapts to the complex envi-
ronment it inhabits.

Conclusion

The comparative analysis of che gene clusters and regula-
tory sequences among Geobacter sp. and to other bacteria
has provided valuable insight into the functions of the
various Geobacter chemotaxis-like pathways. The genomes
of Geobacter sp. have multiple copies of chemotaxis genes
- more than 60 per genome. Their arrangement in six to
seven major clusters reflects both greater complexity and
diversity in comparison to the single cluster on the E. coli
chromosome. This diversity is also reflected in the pres-
ence of both o and o28-dependent regulatory
sequences. The presence of multiple chemotaxis-like clus-
ters and mechanisms of regulation both suggest that the
pathways in Geobacter are not redundant, but instead each
fills a specific cellular need.

Geobacter species have several clusters in addition to a che
cluster that is similar in organization to the chemotaxis
operons of E. coli and S. enterica. These clusters are similar
to known clusters in other bacteria that regulate functions
other than flagellar-dependent motility. From our analy-
sis, it seems probable that Geobacter sp. use chemotaxis-

AGGGGTACAAAAAAAATACTAAAATTATGGACTCTTGCGCCGATGAGAATACTGCACCCG

GACGCAGCGATTTTTTTTCTAAAGCTTTTCCGGCTGCCGCCGATACGTGAACTAAAAGGC

GTAAATGTAATTTTTTTTCTAAAGTTTTTTTTGCCCCTGCCGATAACGTTACCAAGAGCA

ATTTTTTGACATTTTTTTCTAAAGTTTCTGCCGGCGCCTCCGATAAATGAACTAACGGTC
TAAA--———--— 15N--———- GCCGATAA

Putative 628 and %4 promoter elements. (A) Putative 628 promoter regulation sites found upstream of G. sulfurreducens
che cluster | and the fliC genes of G. sulfurreducens (gsu3038), G. metallireducens (gsu0442), and G. uraniireducens (gsu4096) [97].
125, 160, 127, and 152 nucleotide bases separate the predicted transcription start sites from the start codons, respectively. (B)
Putative 654 promoter elements upstream of the Geobacter major che gene clusters [51]. For G. metallireducens clusters | and 6,
G. uraniireducens cluster 3, and G. sulfurreducens cluster 6, the predicted transcription start sites are 50, 33, 24 and 16 nucle-
otide bases upstream of predicted operon ATG start codons, respectively.
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like signaling pathways for a variety of functions, which
probably include type IV pili-based motility, regulation of
motility apparatus expression (flagellar, pili, and extracel-
lular matrix), and biofilm formation. Interestingly, the
Geobacter sp. have che clusters that - at the present time -
appear to be unique, which may plausibly mean these
pathways regulate physiological functions that are unique
to the Geobacters. Sensory inputs to the chemotaxis-like
pathways are likely to be diverse, because the Geobacter
genomes contain a large number of chemoreceptor (mcp)
genes, which display a diversity of sensing domain archi-
tecture. The presence of this large number of proteins -
receptors and Che proteins - undoubtedly reflects a
greater need for the Geobacters to respond to a variety of
environmental conditions, which allows them to thrive in
subsurface environments. The presence of MCPs that
belong to different MA domain classes in one genome -
i.e. express MCPs in the same cell membrane with MA
domains of different lengths, may contribute to the segre-
gation of receptors into class-specific clusters with their
cognate Che signaling proteins. We postulate that this
mechanism will generate pathway specificity and dimin-
ish unwanted cross-talk. Such a mechanism can be general
for bacteria with multiple chemotaxis-like pathways.

Abbreviations
MA: Methyl-accepting; MCP: Methyl-accepting chemo-
taxis protein.
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