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Abstract

Background: Large-scale identification of the interrelationships between different components of
the cell, such as the interactions between proteins, has recently gained great interest. However,
unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover,
assessing the reliability of the interactions can be cumbersome.

Results: In this study, we have developed a computational method that exploits the existing
knowledge on protein-protein interactions in diverse species through orthologous relations on the
one hand, and functional association data on the other hand to predict and filter protein-protein
interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted
through this integrative approach making use of existing protein-protein interaction data from
yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression
data are used as powerful indicators for protein-protein interactions. The functional repertoire of
the identified interactome reveals interactions between proteins functioning in well-conserved as
well as plant-specific biological processes. We observe that although common mechanisms (e.g.
actin polymerization) and components (e.g. ARPs, actin-related proteins) exist between different
lineages, they are active in specific processes such as growth, cancer metastasis and trichome
development in yeast, human and Arabidopsis, respectively.

Conclusion: We conclude that the integration of orthology with functional association data is
adequate to predict protein-protein interactions. Through this approach, a high number of novel
protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted
a reliable set of protein-protein interactions suitable for further computational as well as
experimental analyses.

Background interactions between different components in the cell.
The complex regulation of diverse biological processes  Proteins, for instance, can be part of extensive complexes,
acting in eukaryotic organisms is only possible through  such as transcription factor complexes for the combinato-
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rial control of their target genes or proteasome complexes
for protein degradation. It is the specific timing and loca-
tion of the activity of these protein complexes that defines
their role in the cell. Several attempts have been made to
infer protein-protein interaction maps in diverse model
organisms through large-scale experimental methods
[1,2]. In yeast [3-8], human [9,10], Drosophila [11] and
C. elegans [12], genome-wide Y2H screens and large-scale
affinity purification/mass spectrometry studies have been
performed. Nevertheless, the reliability of the results of
these studies is thought to be relatively poor because in
general quite a small overlap between datasets of experi-
mentally identified interactions is observed. However,
there is growing evidence that this observation is due to
the complementarity of different methods (e.g. sensitivity
of Y2H versus TAP, or different experimental conditions)
rather than to a high number of false interactions [8]. Yu
et al. (2008) conclude that both Y2H and affinity-purifi-
cation followed by mass spectrometry (AP/MS) data are of
equally high quality but of a fundamentally different and
complementary nature. These authors show that, com-
pared to interaction maps based on complex purification
and identification, the binary interaction map of yeast
proteins is enriched for transient signaling interactions
and inter-complex connections [8]. In any case, assess-
ment of the data quality is necessary, not only to design
future experiments but also to construct high confidence
datasets (or gold standard datasets) used for the training
and evaluation of computational methods [13-16]. Sev-
eral efforts have been made to centralize protein-protein
interaction data through the construction of databases
such as DIP [17], MINT [18], BioGRID [19] and IntAct
[20].

To make full use of the currently available interaction
data, computational methods are being developed to
assess the quality of experimentally generated protein-
protein interactions and to predict new interactions
[2,21,22]. Whereas earlier analyses focused on the rela-
tion between gene expression and protein-protein interac-
tion only [12,23-26], the integration of several lines of
evidence (further referred to as genomic features) in the
prediction or validation of protein-protein interactions is
highly valued in recent studies, as it increases the perform-
ance as well as the coverage of the method [15,27-29].
Typically used genomic features encompass (1) functional
features such as Gene Ontology (GO) annotation of the
proteins, co-expression of the encoding genes, coordi-
nated protein abundance and co-essentiality, (2) struc-
tural features such as co-occurrence of protein domains
and overrepresented sequence motifs, (3) comparative
genomics-based features such as orthology and, primarily
exploited in prokaryotes, phylogenetic profiles, gene
neighborhood, co-evolution, and Rosetta Stone (gene
split or fusion), and (4) network topology-based features,
such as connectivity [30,31,21,27]. In principle, two
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approaches can be discerned in the prediction of protein-
protein interactions. The first approach starts from protein
pairs that are identified to be orthologous to known inter-
acting proteins in other species (interolog detection). The
interolog detection strategy was initially developed to
transfer information on protein-protein interactions from
yeast to higher organisms [32-34]. This method assumes
that protein-protein interactions are conserved between
organisms and that pairs of proteins whose orthologs are
known to interact in other species probably interact in the
species of interest as well. Although some shortcomings
can be identified, protein complexes do show evolution-
ary conservation [35,36]. Numerous studies have been
published in which, mainly human protein-protein inter-
actions are predicted based on interolog detection
[37,38]. Furthermore, predictions are made through inte-
grative approaches in a probabilistic framework [39-41].
Other studies start from all possible protein pairs, often
incorporating interolog detection as a genomic feature or
do not include interolog detection at all [27,42]. The latter
approach has the advantage that interactions do not need
to be conserved over long evolutionary distances, but
often identify associations between genes rather than pro-
tein-protein interactions [28,29,43,44].

For the model plant Arabidopsis thaliana, attempts to con-
struct large-scale protein-protein interaction maps as well
as the application and critical assessment of computa-
tional methods have been rather limited [45,46]. In this
study, we aim to predict a reliable set of protein-protein
interactions suitable for experimental validation as well as
further computational analyses. First of all, we investigate
whether the necessary assumptions taken in our approach
are valid in the model plant Arabidopsis thaliana: namely,
(1) (some) protein-protein interactions in yeast and ani-
mals (source organisms) are conserved in Arabidopsis thal-
iana (target organism), (2) interacting proteins co-
localize, (3) interacting proteins function in the same bio-
logical process, and (4) genes encoding interacting pro-
teins show similar expression patterns. Hereby, the
relative contribution of these features to the prediction of
protein-protein interactions in Arabidopsis thaliana is
assessed. The prediction of Arabidopsis protein-protein
interactions is performed, exploiting the conservation of
these interactions between species on the one hand, and
utilizing functional association data on the other hand.
Finally, protein complexes are delineated from the pre-
dicted protein-protein interaction network and the func-
tion and evolutionary conservation of these protein
complexes is studied.

Results

Integration of orthology, GO annotation and gene
expression

The basis of the prediction of protein-protein interactions
in Arabidopsis thaliana performed in this study resides in
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the detection of interologs. Interologs are defined as pro-
tein-protein interactions that are conserved between two
species and that can be detected through the identification
of the orthologs in the target organism of the proteins
known to interact in the source organism (see Fig. 1).
Applying this approach, we assume that protein-protein
interactions occurring in yeast, C. elegans, Drosophila
and/or human, are conserved and consequently occur in
Arabidopsis as well.

When identifying interologs, we need to deal with the
high number of duplicated genes in the target organism
Arabidopsis thaliana (see Methods; Fig. 1). Inferring all

Orthologs
OrthoMCL

Orthologs
OrthoMCL

Interacting proteins
source organism

= Filtered interactions (e.g. GO cellular component)
---= Predicted interactions (extended)

Figure |

Interolog detection and filtering. Proteins in similar
color belong to the same orthologous group as identified by
OrthoMCL. Connecting lines indicate predicted interactions
between proteins. First, all possible combinations between
proteins in the two orthologous groups are predicted. Sec-
ond, some connections between proteins do not hold true
when considering the genomic features e.g. GO cellular com-
ponent. The result is the filtered interactome (solid lines),
which extended to the predicted interactome using the inter-
actions that did not pass the filters (dashed lines).
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combinations of co-orthologous proteins can cause a high
number of false positive predictions. To augment the con-
fidence in the predicted interactions, we integrate data
from several so-called genomic features, namely the GO
biological process similarity, the GO cellular component
similarity and the Pearson correlation coefficient (see
Methods). Accordingly, three main conditions are set up,
namely the co-localization of interacting proteins, a simi-
lar biological role for interacting proteins and the co-
expression of genes encoding interacting proteins. These
conditions were verified by comparing these different
properties in positive and negative protein pairs (see Fig.
2). As positives, protein-protein interactions experimen-
tally shown to interact are considered, while a negative set
of protein pairs was built by making random combina-
tions between all proteins, which is an approximation of
true negative protein pairs (see Methods for details). One
has to take into account that the size of the positive data-
set can be relatively low and as a consequence, caution in
the assessment of false positive rates needs to be taken
(see Table 1; Additional file 1). For each genomic feature,
the frequency distributions of positive (experimentally
identified interactions) and negative (random gene pairs)
datasets were compared (see Fig. 2) to choose a threshold
value for the genomic features (see methods).

To decide if two proteins co-localize and/or function in
the same biological process, both the GO cellular compo-
nent (CC) and the GO biological process (BP) annotation
of the interacting proteins were evaluated. To measure the
similarity between the GO annotations of two proteins,
we calculated the maximum depth of the common ances-
tor of all pairs of GO terms assigned to both proteins (see
Methods; Additional file 2; Fig. 2). Similarly, the co-
expression in positive and negative datasets was investi-
gated by calculating the Pearson correlation coefficient,
describing the global similarity between expression pro-
files for interacting and non-interacting proteins (see Fig.
2). When inspecting the distributions, a smaller difference
between positive and negative datasets can be observed
for expression correlation than for GO annotations.
Therefore, it is impossible to define a threshold in Pearson
correlation coefficient that identifies a considerable
number of true positives while having few false positives
(Fig. 2). Different genomic features need to be combined
to maximize the coverage of the prediction (see Addi-
tional file 3). Through this combination of genomic fea-
tures, thresholds may be decreased while maintaining an
acceptable number of false positives (see Additional file 1
for an estimation of the false positive rates). The use of a
threshold of 5 for the GO biological process similarity
score in combination with a threshold of 0.3 for the Pear-
son correlation coefficient is acceptable (see Additional
file 3; Additional file 1). Through this combination a
lower threshold can be chosen for both genomic features.
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Assessment of genomic features. Frequency distributions of A) GO Cellular Component similarity scores, B) GO Biologi-
cal Process similarity scores and C) Pearson Correlation Coefficients for real and random protein-protein interactions.

Nevertheless, one should keep in mind that the co-expres-
sion measure takes into account expression data from 86
microarray experiments. It can be expected that the
number and type of experiments influences the overall
Pearson correlation coefficients for all pairs of genes. Net-
works of experimentally identified protein-protein inter-
actions in yeast and human, although containing false
positive interactions as well, show an average Pearson cor-
relation coefficient of 0.3 and 0.241 respectively, support-
ing our choice of the Pearson correlation coefficient
threshold [36]. In addition, the GO biological process
similarity score (threshold score of 8) and GO cellular
component similarity score (threshold score of 5) were
also used independently. These relatively high thresholds
result in inferences based on very detailed GO annota-
tions, mostly not inferred based on computational analy-
ses (ISS)). The depth of GO terms such as ubiquitin-
dependent protein catabolic process (BP > 8) or peroxi-
some (CC > 5) is high, pointing to specific processes or
localizations that are mostly assigned based on experi-
mental evidence (e.g. inferred from direct assay). System-
atic assessment of the evidence codes of the GO terms
used for the interaction filtering (BP8 and CC5) shows
that a minority of terms are inferred from sequence or
structural similarity (ISS) (see Additional file 4). GO
terms used in the BP5+PCCO0.3 filter are more often
inferred from sequence or structural similarity. However,
as in this case the BP score is combined with the PCC, we
believe that these ISS terms do not affect the quality of our
predictions considerably. Therefore, we decided to
include ISS-based GO annotations throughout our analy-
sis and only removed IPI, ND, NR, NAS and IEA-based
annotations (see methods). Finally, we added up the dif-
ferent sets of predicted protein-protein interactions result-
ing from the application of different thresholds and
different source organisms. We opted to add up the differ-
ent sets rather than to take the intersection. On the one
hand, our randomization studies show that the individual

filters result in acceptable numbers of false positives. On
the other hand, we encompass the relative high amount of
missing functional data in cases where, for instance, BP
annotation but no CC annotation is available. However,
using this approach it is possible that a protein-protein
interaction passed the BP8 filter, while it does not pass the
CC5 filter (contradictory CC information - annotation for
BP and CC available). Our systematic assessment shows
that this possibility occurs for only a minority of interac-
tions for BP8, while more often for BP5 which is used in
combination with PCC0.03 (see Additional file 5). More-
over, only half of these contradictory CC annotations is
inferred from experimental evidence (see Additional file
5).

In summary, 52.6% of the experimentally identified pro-
tein-protein interactions (767 out of the 1457 interac-
tions) meet the conditions of the genomic features (GO
biological process, GO cellular component, co-expres-
sion) (see Table 1 and Figs. 2 and Additional file 3), with-
out taking into account orthology (see next paragraph).

Prediction of protein-protein interactions in Arabidopsis
thaliana

Starting from the protein-protein interactions in the
source organisms yeast, C. elegans, Drosophila and
human, protein-protein interactions were predicted in
Arabidopsis using the above-mentioned genomic fea-
tures. We downloaded the OrthoMCL database contain-
ing orthologous groups (OG) of 87 species. From this
dataset, we extracted the evolutionary relationships
between Arabidopsis, yeast, C. elegans, Drosophila and
human genes. The approach taken to build this database
has the advantage that in-paralogs (duplicates arisen after
speciation) and thus orthologous groups rather than one-
to-one orthologs can be identified. Employing these
orthologous relationships between yeast, C. elegans, Dro-
sophila and human genes on the one hand, and Arabi-
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Table I: Experimentally identified proteins and protein-protein interactions

Number of proteins 1722
Number of proteins with OG 1626
Number of proteins with a BP GO annotation (depth = 5) 1026
Number of proteins with a CC GO annotation (depth = 5) 688
Number of proteins with gene expression data 1821
Number of interactions 3035
Number of interactions with OG 3032
Number of interactions between proteins with sufficient information on different genomic features 1457
Number of interactions with a BP GO annotation (depth = 5, depth = 8) 1457,157
Number of interactions with BP score >=5,>=8 913, 123
Number of interactions with a CC GO annotation (depth = 5) 757
Number of interactions with CC score > =5 565
Number of interactions with gene expression data 2482
Number of interactions with PCC> = 0.3 837
Number of interactions with a BP GO annotation (depth = 5) and expression data 1276
Number of interactions with BP score > =5 and PCC > = 0.3) 317
Total number of filtered interactions with CC score > =5 or BP score > =5 and PCC > = 0.3 or BP score > = 8) 767

Number of proteins and interactions with genomic feature information for Arabidopsis protein-protein interactions from public databases (OG =
orthologous group, BP = biological process, CC = cellular component, GO = gene ontology, PCC = Pearson Correlation Coefficient)

dopsis genes on the other hand, interologs were detected
(see Methods and Fig. 1 for details). The original numbers
of interologs are drastically reduced when applying the
genomic feature filters (see Table 2). The set of protein-
protein interactions that remains after applying the
genomic feature filters will further be referred to as the
"filtered interactome" and accounts for 18,674 protein-
protein interactions among 2233 proteins (see methods
on the reliability of the predictions). However, we do not
discard all interologs that do not meet the requirements of
the genomic features. As we would like to study the iden-
fied interologs in an evolutionary context, we choose to
extend the filtered interactome. For every combination of
orthologous groups present in the filtered interactome, we
take all other (non-filtered) interactions to build the "pre-
dicted interactome" (see Fig. 1). This predicted interac-
tome accounts for 51,885 protein-protein interactions
among 3014 proteins (see Table 2). The filtered (see Addi-
tional file 6) and predicted interactome (see Additional

file 7) are provided as supplementary material at http://

bioinformatics.psb.ugent.be/supplementary data/stbod/
athPPI/.

The protein-protein interactions detected in the filtered
and predicted interactome were compared to experimen-
tally shown and previously predicted protein-protein
interactions. Fig. 3 and Additional file 8 depict the overlap
between the different datasets. Overall, a small overlap is
found between our filtered interactome and the experi-
mentally shown interactions reported by the TAIR, MINT
and IntAct databases (see Fig. 3; Additional file 8, panel
Al). Similarly, a small overlap of the experimentally iden-
tified interactions with the previously predicted interac-
tions of Geisler-Lee et al. [45] and Cui et al. [46] is
observed (see Fig. 3; Additional file 8, panel A2). Similar
to our approach, Geisler-Lee et al. [45] identified inter-
ologs using worm, fly, human and yeast as source organ-
isms. In this study, a confidence value is calculated taking
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Table 2: Predicted protein-protein interactions

http://www.biomedcentral.com/1471-2164/10/288

#proteins #interactions
Yeast 4662 175322
Yeast CC5 1182 9384
Yeast BP5+PCC 0.3 1249 8986
Yeast BP8 290 1336
Yeast total filtered 1919 16145
Human 3346 28397
Human CC5 694 1821
Human BP5+PCC 0.3 632 1082
Human BP8 185 421
Human total filtered 1089 2795
C. elegans 1549 4174
C. elegans CC5 149 199
C. elegans BP5+PCC 0.3 234 256
C. elegans BP8 70 100
C. elegans total filtered 330 432
Drosophila 3355 19315
Drosophila CC5 430 924
Drosophila BP5+PCCO0.3 368 438
Drosophila BP8 87 140
Drosophila total filtered 646 1282
All species — Interologs with CC annotation (CC > = 5) 2123 (1431) 43698 (11891)
All species — Interologs with BP annotation (BP > =5, BP > = 8) 3087 (2111, 416) 79475 (25037, 1890)

All species — Interologs with gene expression data (PCC > = 0.3)

5369 (4688)

161928 (62178)

All species — Filtered 2233 18674
All species — Predicted 3014 51885
All species — interologs (without filtering) 6206 216972

Number of Arabidopsis proteins and protein-protein interactions detected using different source organisms and different genomic feature filters
(BP = biological process, CC = cellular component, PCC = Pearson Correlation Coefficient)
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Figure 3

Overlap between datasets of protein-protein interac-
tions. Overlap between experimentally identified protein-
protein interactions available in public databases (see meth-
ods) and predicted sets from this study and the Geisler-Lee
et al. study [45]. Filtered interactions from this study are
compared to interactions with a confidence value of two or
higher from the Geisler-Lee et al. [45] study.

into account the number of times a protein-protein inter-
action is found as interolog and/or supported by genomic
features such as co-expression based on the Pearson corre-
lation coefficient and localization based on the Arabidop-
sis Subcellular Database (SUBA) [47]. The predicted
protein-protein interaction dataset of Cui et al. [46] was
constructed based on a Naive Bayesian Classifier. This
method integrates different predictive data sources such as
ortholog information, GO biological process, co-expres-
sion, gene fusion, gene neighborhood, phylogenetic pro-
files and domain architecture, to build a model to predict
novel protein-protein interactions. A comparison of our
filtered and predicted interactome with these two sets of
previously predicted protein-protein interactions is
shown in Additional file 8 (panel B1 and B2). Although a
similar approach was taken by Geisler-Lee et al. [45], a
considerable number of new interactions (17624) as well
as experimentally identified interactions (75) not recov-
ered by Geisler-Lee et al. [45] is found in our study (see
Fig. 3). Differences between the two approaches that may
cause the relatively small overlap are most probably the
use of different protein-protein interaction databases for
the source organisms (BIND, MIPS, BIOGRID, and DIP
were used in Geisler-Lee et al. [45]) and the use of differ-
ent confidence measures. These observations corroborate
previous reports on the low coverage of current protein-
protein interaction datasets and detection strategies.

Accessibility of the interactome

We have developed an easy-to-use query and visualization
system to represent the inferred interactome. The dis-
cussed protein clusters as well as the complete predicted

http://www.biomedcentral.com/1471-2164/10/288

interactome can be observed through a web-start version
of Cytoscape that can be found at http://bioinformat
ics.psb.ugent.be/supplementary data/stbod/athPPI/. A
node and edge attribute system is employed to represent
the different types of information. The color of the edge
represents the degree of co-expression calculated as the
Pearson correlation coefficient (green: correlation, purple:
anticorrelation), while the line width of the edge repre-
sents the GO biological process similarity score (thick:
similar biological process) and the line style of the edge
represents the GO cellular component similarity score
(solid: similar localization). The color of the nodes corre-
sponds to the protein cluster the protein belongs to (see
further). Proteins belonging to small or no clusters are
colored in grey. TAIR functional descriptions are shown as
node labels. Subsets of the interactome that are of interest
to the researcher can be visualized easily by querying the
interactome for (a) protein(s) or a functional description.

Delineation of protein clusters in the predicted
interactome

In an attempt to reveal the functional repertoire of the pre-
dicted interactome, we have delineated highly intercon-
nected regions in the protein-protein interaction network
(hereafter called protein clusters). In addition, we tried to
assign a function to the identified protein clusters. Finally,
we investigated the evolutionary conservation of the pro-
tein clusters.

Identification of protein clusters is performed using the
CAST clustering algorithm (see Methods). This clustering
procedure employs the connectivity of the proteins. Over-
all, 1802 proteins taking part in 16,498 interactions could
be identified in protein clusters, accounting for the major-
ity of originally identified interactions (see Additional file
9). The biological roles of the identified protein clusters
were studied through identification of overrepresented
GO categories (biological process, molecular function
and cellular component) (see Methods). To judge the
validity of the protein clusters, we inspected clusters
involved in particular biological processes together. Using
this approach of clustering and subsequent GO enrich-
ment analysis, we can elegantly pinpoint protein com-
plexes, the relationships between them and the
encompassing biological processes they are involved in
(see Supplementary Data site and more details below).

As could be expected, well-conserved proteins and func-
tions, such as those involved in transcription, translation,
and proteolysis, are overrepresented. Typically, proteas-
ome and ribosomal proteins are identified as highly con-
nected (CAST clusters 1 and 3; see Supplementary data
site). A number of protein-protein interaction networks
involved in particular processes such as organelle organi-
zation and biogenesis, lipid metabolism, and ATP bind-
ing as well as the biological processes mentioned below
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can be viewed through our Supplementary data site. In
addition, a considerable number of protein-protein inter-
actions with a role in transmembrane transport, mem-
brane receptor activity and vesicle trafficking were
detected as previously reported by Geisler-Lee et al. [45]
(see Supplementary data-Transmembrane activity). For
example, a link was found between protein clusters of
interacting VAMPs (Vesicle associated membrane pro-
teins) and SNAREs (CAST clusters 10 and 70) with vacu-
olar H* pumping ATPases (CAST clusters 9, 34 and 120)
and cation/H+ exchangers (CAST clusters 100, 145 and
185). Although not connected to the above-mentioned
clusters, a protein cluster containing components of the
translocase inner membrane complex (CAST cluster 13)
associated with carrier proteins (CAST cluster 94), was
retrieved as well. Several links between cell cycle control,
protein degradation and related processes are captured in
the protein clusters enriched for GO categories containing
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‘cell cycle' (CAST clusters 3, 12, 18 and 61; see Supple-
mentary data). Whereas ubiquitin-mediated proteolysis
regulates the activity of cyclins during the progression
through the different phases of the cell cycle, B-type cyc-
lins interact with several microtubule-related components
during cytokinesis. Similarly, A-type cyclins, DNA replica-
tion proteins (CDC, MCM and ORC subunits) and RBR/
WEE proteins are associated during the G1/S transition
[48] (see Supplementary data - Cell cycle + DNA repair +
DNA replication). Overall, we observe a high similarity in
expression patterns for the genes encoding proteins in the
'cell cycle' clusters most probably due to the tight regula-
tion of proteins involved in DNA replication (green edges,
see Fig. 4, Supplementary data). Moreover, the interac-
tions in these clusters are often supported by the GO bio-
logical process measure (solid edges, see Supplementary
data). These two properties occur mainly within protein
clusters. In contrast, genes encoding interacting proteins

o
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Protein-protein interactions involved in 'DNA replication'. Green edges represent PCC values > 0.3 (see Figure 5 for
more details). For grey edges, no co-expression information is available.
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involved in transmembrane activity, described above,
show an overall lower similarity in expression patterns,
even within protein clusters (yellow edges, see Supple-
mentary data). This difference in the degree of co-expres-
sion is probably due to the more specific expression
patterns of transmembrane activity genes resulting in tran-
sient interactions that cannot be identified using a global
co-expression measure. However, most of the interactions
in the transmembrane activity network are supported
through the GO biological process and/or GO cellular
component feature and thereby were identified through
our approach (solid and thick edges, see Supplementary
data). Reasonably, localization is very important in trans-
membrane activity-related processes such as ion trans-
membrane transport and protein excretion through
vesicular exocytosis.

More detailed analysis of the 'response to' interaction net-
work identified many proteins functioning in, for
instance, response to DNA damage or response to oxida-
tive stress caused by the accumulation of reactive oxygen
species (see Supplementary data site). Proteins active in
these stress responses are DNAJ heat shock proteins, cal-
cium-dependent and MAP kinases (CAST cluster 1), DNA
repair proteins (RAD1, RAD5, RAD50, RAD51, RAD54 -
CAST 18), superoxide dismutases (CAST 49), glutathione
peroxidases (CAST 74) and glutathione S-transferases
(CAST 15). These proteins are involved in very diverse
biological processes, such as response to heat, response to
toxins and response to chemical stimulus, which is
reflected in the dashed edges in the network (see Supple-
mentary data). In order to verify that these predicted inter-
actions also reflect actual conserved biological stress
responses, we compared the expression patterns of all 500
Arabidopsis genes in these 'response to' protein clusters
using a recently compiled comparative stress response
matrix [49]. Whereas 11% of all stress-induced Arabidop-
sis gene families shows a conserved stress response in
human or yeast (44/390 families in the complete matrix),
the 'response to' set (representing 137 gene families)
shows a more than five-fold enrichment for conserved
stress response (16/25 gene families with responsive Ara-
bidopsis genes are also responsive in human or yeast).
These findings confirm that several components as well as
protein-protein interactions in Arabidopsis indeed func-
tion in diverse responses and that this response is evolu-
tionary conserved in eukaryotes.

Besides interactions functioning in well-conserved biolog-
ical processes, we could also identify the recruitment of
well-conserved proteins and protein-protein interactions
in plant-specific processes. In the following examples, the
regulatory mechanisms such as chromatin remodeling
and actin polymerization are common to different line-
ages. However, these mechanisms are put into play in
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highly lineage-specific biological processes, such as seed
and trichome development.

In a first example, we predict that the proteins FERTILIZA-
TION INDEPENDENT ENDOSPERM (FIE), CURLY LEAF
(CLF), SWINGER (SWN), MULTICOPY SUPPRESSOR OF
IRA1 (MSI1), and MEDEA (MEA) interact and that this
protein complex functions in flowering and embryonic
development (see Fig. 5A and Supplementary data). These
proteins are homologous to the Polycomb (PcG), ESC,
E(Z), p55, and Su(Z)12 genes in animals and take part in
the Polycomb Repressive Complex 2 (PRC2) [50]. This
PRC2 complex mediates the epigenetic control of devel-
opmental patterning through chromatin modification.
Genetic evidence suggests that there are different PcG
complexes in plants, regulating different developmental
pathways. In Arabidopsis, the FERTILIZATION INDE-
PENDENT SEED 2 (FIS2) repression complex is described
to be involved in seed and flower development and
includes FIE, MEA, MSI1, and FIS2. The
VERNALIZATION2 (VRN2) complex consisting of VRN2,
FIE, CLF, and SWN is involved in vernalization response.
Except for VRN2, we have predicted interactions between
all these components. In addition, we have uncovered
additional, to our knowledge new interactors such as
PHOTOPERIOD-INDEPENDENT EARLY FLOWERING 1
(PIE1), BUSHY (BSH) and SPLAYED (SYD), probable
subunits of SWI/SNF chromatin remodeling complexes
[51-53]. Moreover, we detect interactions with associated
proteins such as histone deacytelases and putative home-
otic regulators. Interesting to note is that we could also
identify the interaction of MSI1 with RETINOBLASTOMA
RELATED 1 (RBR1), just recently confirmed by biomo-
lecular fluorescence complementation [54] (see Fig. 5A).
This complex is overall very well supported by the
genomic features used in this study (green, solid and thick
edges in Fig. 5A). Moreover, several of the identified inter-
actions were already shown experimentally (black edges
in Fig. 5A).

In a second example, we have predicted interactions
between different actin-related proteins (ARPs), constitut-
ing the ARP2/3 complex involved in leaf development
(see Fig. 5B and Supplementary data). ARP2 or WURM,
ARP3 or DISTORTED TRICHOMES 1, ARPC1, ARPCI1A,
ARPC2A or DISTORTED TRICHOMES 2, ARPC3 and
ARPC5 or CROOKED, as well as a number of other non-
actin-related proteins, were predicted to interact. The
Arp2/3 complex has been shown to be composed of two
actin-related proteins (Arps), a seven-bladed beta propel-
ler (ARPC1), and four other subunits (ARPC2-5). Only
ARPC4 is missing from our predictions, which is due to
the fact that ARPC4 is not present in the input dataset of
orthologous relationships. In addition to the ARP2/3
complex, we could identify a complex of three proteins
(KLUNKER, GNARLED and ARAC4), involved in leaf
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development as well. At least two of these proteins of the
SCAR complex are thought to regulate the ARP2/3 com-
plex. The ARP2/3 complex functions as a central player in
the precise regulation of both the initiation of actin
polymerization and the organization of the resulting fila-
ments, common to all organisms used in this study. How-
ever, disruption of the ARP2/3 complex has distinct effects
in different organisms, going from growth defects in yeast,
defects in eye and axon development in worm and fly,
migration of cancer cells in human, and epidermal cell
shape determination in Arabidopsis (Goley and Welch
2006). For the ARP2/3 protein complex, the power of the
co-expression measure was limited. Nevertheless, similar-
ity in localization and biological process showed to be
very valuable. This observation points to the complemen-
tarity of the different genomic features employed in this
study.

Discussion

In this study, we have predicted protein-protein interac-
tions in the model plant Arabidopsis thaliana through
interolog detection with yeast, worm, fly and human as
source organisms and using genomic features (expression
correlation, localization and biological process) as filters
to increase the confidence in our predictions. As such, a
set of highly reliable interactions could be delineated that

can be further employed in both computational and
experimental studies. In contrast to previous efforts to pre-
dict protein-protein interactions in Arabidopsis thaliana,
we do not only provide a list of all interologs and their
associated genomic feature values, but rather focus on the
subset of protein-protein interactions that is supported by
the different genomic features (or the so-called filtered
interactome). The extensive study of the behavior of the
genomic features for experimentally identified protein-
protein interactions compared to random protein pairs
allowed us to validate the protein-protein interactions
adequately.

The setup of this study allowed us to rigorously investigate
the functional repertoire and evolutionary conservation
of the identified protein-protein interactions. We con-
clude that although this type of protein-protein interac-
tion prediction is highly dependent on the degree of
conservation of protein-protein interactions between Ara-
bidopsis and yeasts or animals, we were able to predict
interactions with roles in diverse biological processes.
Interestingly, these cover both interactions in evolution-
ary conserved and plant-specific processes.

Future improvements to the prediction of protein-protein
interactions are manifold. For instance, it has been shown
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that not all protein-protein interactions are equally stable.
Some interactions are permanent while others are tran-
sient, meaning that proteins only come together at certain
time points or locations possibly resulting in different
expression profiles of the encoding genes (just-in-time
assembly) [55]. Although we could identify at least some
transient interactions (e.g. interactions with transmem-
brane activity), the use of global expression correlation
measures such as the Pearson correlation coefficient
might be replaced by a measure of "partial" expression
similarity that is able to capture even less stable protein-
protein interactions. Recent proteomics profiling (e.g.
[56]) will allow the consideration of protein activity
rather than transcript activity. On the other hand, with the
large-scale experimental identification of protein-protein
interactions in many species, a gold standard positive set
of interactions can be built more rigorously. This gold
standard positive set will increase the strength of machine
learning methods in protein-protein interaction detec-
tion. Nevertheless, a gold standard negative set of interac-
tions remains problematic.

Conclusion

In conclusion, this study showed that the integration of
orthology with functional association data, such as local-
ization, biological process and co-expression, is adequate
to predict protein-protein interactions. In particular, for
organisms with limited existing knowledge on protein-
protein interactions, such as Arabidopsis, our approach is
very valuable. On the contrary, sophisticated machine
learning approaches perform poorly because of the lack of
gold standard sets of interactions. We could predict a high
number of new protein-protein interactions, and analysis
of the functional repertoire of identified protein clusters
supports the significance of these putative interactions.
The approach described here can easily be adapted for
estimating the reliability of experimentally identified
interactions. Finally, with the growing availability of
expression and gene ontology information, this approach
can be applied to the detection of protein-protein interac-
tions in agronomically and economically interesting
plants, such as rice, corn and poplar.

Methods

Interaction data

Although numerous efforts have been made to obtain
uniformity in interaction databases, interaction datasets
for yeast, animals and Arabidopsis are not readily availa-
ble. Protein interaction data sets were compiled from DIP
[17], BioGRID [19], MINT [18] and IntAct [20] for the
source organisms Saccharomyces cerevisiae, Caenorhabditis
elegans, Drosophila melanogaster and Homo sapiens and the
target organism Arabidopsis thaliana (for Arabidopsis, see
Table 1), containing most of the large-scale interaction
studies. Binary interaction data was extracted. For each
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interaction, the method of detection, PMID number and
the bait/prey information were downloaded. As such,
identical entries in the different databases were identified.
In addition to the combined interaction datasets from
DIP, BioGRID, MINT and IntAct, two manually curated
datasets of literature-derived interactions were employed.
For yeast, a set of 15,456 interactions involving 4554 pro-
teins available at MIPS (Munich Information Center for
Protein Sequences) was used. Although this curated set is
half as large as the interaction dataset downloaded from
the four databases, a considerable number of proteins is
covered and the quality of the data is believed to be con-
siderably higher [57]. For human, a set of 37,072 interac-
tions involving 9565 proteins is provided by the HPRD
(Human Protein Reference Database) [58]. For Arabidop-
sis, the experimentally identified protein-protein interac-
tions available at TAIR http://www.arabidopsis.org were
included. Altogether, 89,537 interactions among 6515
proteins could be found in public databases of Saccharo-
myces cerevisiae, 8167 interactions among 4126 proteins of
Caenorhabditis elegans, 56,088 interactions among 14,112
proteins of Drosophila melanogaster, 60,775 interactions
among 15,126 proteins of Homo sapiens, and 3587 inter-
actions among 1722 proteins of Arabidopsis thaliana (see
Table 1).

Negative datasets were built by randomizing protein
pairs. To analyze equal sample sizes and to take into
account the availability of genomic feature data, the neg-
ative as well as the positive datasets contained 1000 pro-
tein pairs for the assessment of individual genomic
features and 500 protein pairs for the combined genomic
features. This approach has the disadvantage that some
positive pairs may be included in the dataset. However,
the number of positive pairs will be extremely low taking
into account the number of possible combinations
between all Arabidopsis proteins and the estimated size of
interactomes of higher organisms. An alternative
approach would be to consider pairs that consist of pro-
teins that are not present in the same cellular compart-
ment. However, this method can be biased as not all
proteins that localize in the same cellular compartment
interact. Moreover, in this study, we use the cellular com-
ponent annotation to identify positive interactions. Con-
sequently, we opted for the randomization approach
throughout our study.

Positive and negative datasets were compared to choose
appropriate thresholds for the genomic features (similar-
ity in expression, biological process and cellular localiza-
tion, see further). We have compared balanced datasets
(equal number of positive and negative interactions) to
estimate the reliability of our genomic feature filtering.
The thresholds chosen in this study would correspond to
a positive predictive value (number of true positives/
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(number of true positives + number of false positives)) of
95% in a one to one ratio. However, in reality, although
difficult to estimate, the positive and negative protein
pairs do not occur in a one to one ratio. Therefore, the
positive predictive value is actually smaller. In a one to ten
or one to 100 ratio, the PPV drops to ~50% or ~30%,
respectively. However, these positive predicted values are
probably not robust and should be considered with cau-
tion due to the small sample size (sparse distributions of
genomic features of the positive dataset compared to the
negative dataset). The number of positive interactions for
which the genomic features pass the thresholds is
extremely low, probably due to the fact that so few pro-
tein-protein interactions have been experimentally identi-
fied and/or possess sufficient gene ontology information.
Even more importantly, the calculation of these positive
predictive values does not take into account the fact that,
through the interolog detection, our initial predictions
(before application of genomic feature thresholds) are
already enriched for true interactions. Through this step,
the PPV increases to 88% and only the most likely interac-
tions remain.

Identification of interologs

Whereas earlier methods used BLAST to identify ortholo-
gous genes, nowadays more dedicated tools such as
OrthoMCL and INPARANOID, which take into account
in-paralogs (duplicates arisen after speciation), are
applied [59-61]. In this study, orthologous relationships
were identified based on the OrthoMCL database contain-
ing orthologous groups for 87 species [61]. Like INPARA-
NOID [59], the OrthoMCL software takes into account in-
paralogs (genes duplicated in one species after speciation
with another species) [62]. We extracted data from five
organisms, namely the source organisms Saccharomyces
cerevisiae, Caenorabditis elegans, Drosophila melanogaster
and Homo sapiens, and the target organism Arabidopsis thal-
iana. For a certain pair of interacting proteins in the source
organism, all combinations between the (co-)ortholo-
gous proteins in the target organism were made (see Fig.
1). From all combinations only reliable interactions are
identified using the genomic feature filters described
below. As the genomic feature filters can not be used to
assess the reliability of self-interactions (homodimers),
these interactions are excluded from the filtered interac-
tome.

Gene ontology information

The Gene Ontology (GO) consortium provides a struc-
tured standard vocabulary for describing the function of
gene products [63]. It is divided into three ontologies: bio-
logical process, molecular function and cellular compo-
nent, represented by directed acyclic graphs in which
nodes correspond to GO terms and edges to their relation-
ships. For each protein, GO terms (GO cellular compo-
nent and biological process annotation) were extracted
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from the Gene Ontology database [64] and annotations
for Arabidopsis proteins were downloaded from TAIR
[65]. These GO terms were used to assess the relatedness
of interacting proteins by calculating a GO similarity score
(see Additional file 2). We test if interacting proteins are
localized in the same cellular compartment and if inter-
acting proteins function in the same biological process.
For each protein pair, all GO terms of both proteins are
compared to each other. For each pair of GO terms, the
depth of the common ancestor of the terms, which is the
shortest path of the common ancestor to the root
(GO:0003673), is calculated. Subsequently, the maxi-
mum value of the calculated depths is taken as the GO
similarity score for a certain protein pair. Although this
disregards how far away the GO terms are from their com-
mon ancestor, this approach has proven valuable for the
aims put forward in this study, namely distinguishing
between actual protein-protein interactions and random
protein-protein pairs (see Results).

For both cellular component and biological process anno-
tation, GO term assignments based on physical interac-
tions (P71, see http://www.geneontology.org/
GO.evidence.shtml for details on evidence codes) or elec-
tronically assigned and less reliably assigned GO terms
(with evidence codes ND, NR, NAS and IEA) are removed.
Although the number of proteins with a GO annotation
decreases considerably, the reliability of the GO similarity
scores increases through this procedure (data not shown).
Nevertheless, 1SS-based annotations were included. We
rigorously assessed the possibility of including annota-
tions based on ISS as this accounts for a considerably
number of annotations and could conclude that the low
reliability of these annotations does not pose a problem
to our approach (see Additional file 4; Additional file 5;
see Results).

Gene expression data

A heterogenic set of microarray expression data contain-
ing amongst others growth, stress, and mutation experi-
ments (86) was compiled from NASC (Nottingham
Arabidopsis Stock Centre) to detect co-expression
between Arabidopsis genes [66]. Microarray experiments
with at least 2 replicates were taken. Expression values
were processed using RMA (robust multichip average)
[67,68]. Co-expression was identified through the calcula-
tion of Pearson correlation coefficients (PCC) between
the expression profiles of genes possibly encoding inter-
acting proteins.

Clustering of protein-protein interactions

The predicted interactome can be represented as a graph
of nodes, corresponding to the proteins, and connecting
edges, corresponding to the interactions. Protein com-
plexes were delineated from this graph making use of the
Cluster Affinity Search Technique (CAST) algorithm [69].
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This algorithm was originally designed to identify clusters
of co-expressed genes. For this purpose, a measure for co-
expression of two genes, e.g. the Pearson correlation coef-
ficient, is used as the weight of an edge. However, in this
study, all edges were treated equally, avoiding a bias
towards protein-protein interactions for which the encod-
ing genes have highly similar expression profiles. A cluster
is initiated by choosing the protein with the maximum
number of neighbors using a heuristic independent from
the CAST algorithm. Subsequently, neighbors of that pro-
tein are added to the protein cluster if the neighbor is con-
nected to more than 25% of the proteins already present
in the cluster. Although the connectivity of the protein
clusters depends on the functional role of the cluster, we
could conclude that a connectivity of 25% (compared to
0%, 50%, 75% and 100%) yielded the most robust and
functionally relevant protein clusters (data not shown).

GO overrepresentation analysis

The identified protein complexes are subjected to func-
tional analysis. The assignments of genes to the original
GO categories were extended to include parental terms
(that is, a gene assigned to a given category was automat-
ically assigned to all the parent categories as well). All GO
categories containing less than 20 genes were discarded
for further analysis. Enrichment values were calculated as
the ratio of the relative occurrence in a set of genes to the
relative occurrence in the genome. Overrepresentation of
GO categories (biological process, molecular function
and cellular component) was tested using the Fisher exact
test. P values were adjusted using the Bonferroni correc-
tion for multiple hypotheses testing. GO categories are
assumed to be significantly overrepresented when the cor-
rected P value is smaller than 0.01.

Authors' contributions

SB and PR conceived the study. SB and KV designed the
study. SP was responsible for data retrieval and predic-
tions. SB performed the assessment of genomic features,
predictions and biological interpretation. KV performed
clustering and GO overrepresentation analysis of the pre-
dictions. SB and KV drafted the manuscript. YVDP and PR
critically revised the manuscript. All authors read and
approved the final manuscript.

Additional material

Additional file 1

False positive rates of different combinations of genomic features. BP
= biological process, CC = cellular component, PCC = Pearson correlation
coefficient.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-288-S1.doc]

http://www.biomedcentral.com/1471-2164/10/288

Additional file 2

Calculation of GO similarity score. All possible GO terms of two pro-
teins are compared in a pairwise manner. For each pair of GO terms (in
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