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Abstract

Background: The Silver coat color, also called Silver dapple, in the horse is characterized by
dilution of the black pigment in the hair. This phenotype shows an autosomal dominant inheritance.
The effect of the mutation is most visible in the long hairs of the mane and tail, which are diluted
to a mixture of white and gray hairs. Herein we describe the identification of the responsible gene
and a missense mutation associated with the Silver phenotype.

Results: Segregation data on the Silver locus (Z) were obtained within one half-sib family that
consisted of a heterozygous Silver colored stallion with 34 offspring and their 29 non-Silver dams.
We typed 4] genetic markers well spread over the horse genome, including one single
microsatellite marker (TKY284) close to the candidate gene PMELI7 on horse chromosome 6
(ECA6q23). Significant linkage was found between the Silver phenotype and TKY284 (6 = 0,z =
9.0). DNA sequencing of PMELI7 in Silver and non-Silver horses revealed a missense mutation in
exon |1 changing the second amino acid in the cytoplasmic region from arginine to cysteine
(Arg618Cys). This mutation showed complete association with the Silver phenotype across
multiple horse breeds, and was not found among non-Silver horses with one clear exception; a
chestnut colored individual that had several Silver offspring when mated to different non-Silver
stallions also carried the exon || mutation. In total, 64 Silver horses from six breeds and 85 non-
Silver horses from 14 breeds were tested for the exon || mutation. One additional mutation
located in intron 9, only 759 bases from the missense mutation, also showed complete association
with the Silver phenotype. However, as one could expect to find several non-causative mutations
completely associated with the Silver mutation, we argue that the missense mutation is more likely
to be causative.

Conclusion: The present study shows that PMEL/7 causes the Silver coat color in the horse and
enable genetic testing for this trait.
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Background

Hair color clearly plays a critical role in camouflage, social
communication, sexual and artificial selection, and as
protection against solar radiation [1]. Mammalian hair
shafts exhibit a wide range of shades. The shades reflect
variation in the production of eumelanin (black) and
pheomelanin (red) pigments and give rise to colors that
humans perceive as black, red, yellow, gray, or white hair
fibers. The Silver (Z) coat color in horses shows an auto-
somal dominant inheritance and is characterized by dilu-
tion of the eumelanin, but with little or no effect on
pheomelanin. Interestingly, the effect of the Silver muta-
tion is most visible in the long hairs of the mane and tail
[2]. A black Silver horse exhibits a phenotype consisting of
a slightly diluted body, often with dapples, and a shiny
white or flaxen mane and tail (Figure 1A, B). In contrast,
the red body color of a bay Silver horse is believed to stay
unchanged apart from the legs that change from black to
dark grayish, whereas again the long black hairs in the
mane and tail are diluted to a mixture of white and gray
hairs (Figure 1C, D). Silver colored foals are very pale on
the body with white mane and tail (Figure 2A) and often
display characteristic features like striped hooves and
white eyelashes (Figure 2B, C). Horses that are
homozygous (ZZ) for Silver seem to exhibit a more
diluted coat color compared to the heterozygous (Zz)
horses, but this indication needs to be verified. A chestnut
or sorrel horse that only express pheomelanin, will not
show any obvious phenotypic effects of the Silver muta-
tion (Figure 3), however it is possible that there exist sub-
tle effects of dilution on pheomelanin.

Two of the most important proteins in melanogenesis are
the melanocyte-stimulating hormone receptor (MC1R)
and the agouti protein [3]. Chestnuts carry a missense
mutation (Ser83Phe) in MC1R and only express red phe-
omelanin [4]. As the Silver coat color can be difficult to
identify in young horses, many of these are classified as
dark chestnuts or flaxen. One characteristic feature of a Sil-
ver horse is that they are often born with striped hooves
(Figure 2B, T. Kvick, pers. comm.). These stripes usually
disappear after about one year. However, it is still
unknown how strong this association is both within and
across breeds. Silver is a highly desirable, but not frequent,
coat color in certain horse breeds. It is relatively common
in the Icelandic horse population, the American Miniature
Horse, and the Rocky Mountain Horse. Silver is also
present in the Ardenne, the Morgan Horse, the American
Paint Horse, the Quarter Horse, the American Saddlebred,
the Shetland pony and the Norwegian Nordland, as well
as sporadically observed in Welsh ponies, Arabians and
Swedish Warmbloods. The Silver phenotype can also be
found in other breeds closely related to the above breeds.
The Silver mutation was possibly present within the Nor-
dic horse breeds before the colonization of Iceland during
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the 9th century as it is present in the Icelandic horse pop-
ulation on Iceland and import of horses to Iceland was
prohibited already during the 10th century.

Mutations in PMEL17/SILV have previously been shown
to regulate hypopigmented phenotypes in mouse,
chicken, zebrafish, and dog [5-9]. PMEL17 encodes a
transmembrane protein called pre-melanosomal protein
17 or PMEL17 (Figure 4). PMEL17 is involved in the pro-
duction of eumelanin and is present in the melanosome,
but its precise function remains controversial [10]. It
might even be so that this protein has an additional role
separate from that in melanosome biogenesis. One inter-
esting characteristic feature of PMEL17 that seems neces-
sary for normal melanin production is that it forms non-
pathological amyloid fibrils [11,12]. Furthermore, it has
been shown that the PMEL17 gene is expressed in early
cranial melanoblasts in the mouse [13], suggesting an
important role during development. The PMELI7-
mutants identified in different species provide an oppor-
tunity to study PMEL17 protein function and its role in
the pigmentation process.

The silver (si) mutation in mice consists of a point muta-
tion that leads to a premature stop codon and a truncated
protein missing the last 25 amino acids [6], although it
was first reported that the silver mutation in mice consists
of a single base insertion that leads to a frameshift and an
elongation of 12 residues of the protein [5]. The effect of
the mutation results in premature graying of the hair due
to loss of follicular melanocytes [14]. In frame insertion/
deletions in the same gene are associated with the Domi-
nant white, Dun and Smoky coat colors in the chicken [7].
The zebrafish mutant fading vision (fdv) exhibit defects in
vision and hypopigmentation and has a point mutation
in PMEL17 leading to a truncated protein [8]. The merle
patterning of the domestic dog is characterized by patches
of diluted pigment and is caused by a retrotransposon
insertion in the border of intron 10 and exon 11 of
PMEL17 [9]. Dogs that carry the merle mutation suffer
from both auditory and ophthalmologic abnormalities.
These defects are similar to those of the human auditory-
pigmentation disorder Waardenburg syndrome [9]. Both
the dog and the zebrafish mutants show pigmentation
defects in both the coat and in retinal pigment epithelium
(RPE). No eye defects have been reported for the mouse
and chicken mutations. No mutations in human PMEL17
associated with variation in pigmentation have yet been
described, but they are likely to exist. The predicted phe-
notype for such mutants could perhaps be red or blond
hair color, fair skin and lightly colored eyes. This study
describes complete linkage between the Silver locus and
the PMEL17 gene, and a missense mutation completely
associated with the Silver coat color.
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Figure |

Phenotypic description of Silver colored horses. A. A Black Silver Icelandic horse. A genetically black horse that
exhibits the typical silver phenotype with a dark body with dapples and a shiny white mane and tail. Photo: Tim Kvick. B. Two
Black Silver Rocky Mountain Horses. Photo: Bob Langrish. C. A Brown Silver Morgan horse. A genetically brown
horse that shows the silver phenotype with the mane and tail diluted from black to white and the lower legs diluted from black
to dark greyish. Photo: Laura Behning. D. The legs of a Brown Silver horse. The lower legs are diluted from black to grey-
ish. Photo: Laura Behning.

Results lion was heterozygous for 41 out of the total 78 microsat-
Genotyping and linkage analysis ellite markers, protein- and blood group polymorphisms
Markers from a genome scanning panel known to be  that were tested. The informative markers represented 25
evenly spread throughout the horse genome were used for ~ out of the 32 different horse chromosomes. Genotyping
linkage mapping of the Silver phenotype [15]. The stal-  was performed within a half-sib family consisting of one
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Figure 2

Phenotypic description of Silver colored foals. A. A Silver colored Icelandic horse foal. Silver foals are generally
very pale on the body with white mane and tail. Photo: Elsa Storgirds. B. A striped hoof of a Silver colored Icelandic
horse foal. Photo: Tim Kvick. C. White eyelashes of a Silver colored Rocky Mountain Horse colt. Photo: Unknown.

stallion with 34 offspring and their 29 non-Silver dams.
The markers were analyzed for pair-wise linkage using the
TWOPOINT option of the program CRI-MAP [16]. Signif-
icant linkage was found between the Silver phenotype and
the marker TKY284 (6 = 0, z = 9.0) at ECA6. These data
revealed PMEL17 as an outstanding candidate gene for the
Silver dapple phenotype in horses as PMEL17 previously
had been mapped by fluorescence in situ hybridization
(FISH) to the same chromosomal region (ECA6q23) as
TKY284 [17]. Further, mutations in PMEL17 in other spe-
cies seem to show specific dilution or inhibition of the

Figure 3

A chestnut Morgan horse that carry the Silver muta-
tion. This particular individual (Amanda's Suzie Q) indicate
that the Silver mutation in horses has little or no effect on
pheomelanin (as mane does not seem to be diluted). Photo:
Anthony Domire JR.

black pigment [10], as seen in the Silver phenotype in
horses. Blasting the non-repetitive flanking sequence of
the microsatellite marker TKY284 against the human
genome sequence did not reveal any hit to the corre-
sponding region on human chromosome 12, hence we
could not get a rough idea of its distance from PMEL17.

DNA sequencing of PMELI7

The entire PMEL17 gene, except parts of the long introns
1 and 3 as well as a repetitive region within intron 6, was
sequenced in Silver and non-Silver horses for mutation
detection (Accession number: DQ855465). As there was
no DNA sequence publicly available from exon 1 to exon
5 of PMEL17, this part was obtained by 5' RACE experi-
ments (Accession number: DQ855466). We sequenced
139 bases of intron 1, 128 bases of intron 3 and approxi-
mately 1000 bases of intron 6 of which the sequence was
disrupted by a repetitive element (mainly a repetition of
T) that we were not able to sequence through completely.
When the obtained (not complete) sequence of intron 6
was run through RepeatMasker [18] two short inter-
spersed elements (SINEs) were identified. In total, 5.3 kb
of PMEL17 was sequenced. For almost the entire gene
three Silver colored individuals (one homozygote and
two heterozygotes) and three non-Silver horses (bay or
black) of the Icelandic breed were sequenced. The
sequence comparisons revealed two polymorphisms asso-
ciated with the Silver coat color within the six individuals
selected for sequencing. One polymorphism consists of a
C (wild type) to T (Silver) transition at the fifth base
within exon 11. This is a missense mutation that changes
the second amino acid in the cytoplasmic region from an
arginine to a cysteine (Arg618Cys). An amino acid align-
ment of the end of the transmembrane region and begin-
ning of the cytoplasmic region of the PMEL17 that include
the missense mutation is shown in Figure 5. See Figure 4
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A schematic picture of the PMELI17 protein with domains and known mutations. The transmembrane (TM) protein
PMEL 17 has previously been shown to regulate hypopigmented phenotypes in mouse, chicken, dog, and zebrafish. The location
of known mutations associated with hypopigmentation in these species are indicated. R740C in chicken (Dun) is at the same

location as the R618C in the horse (Silver).

for location of the missense mutation in the PMEL17 pro-
tein. The other SNP consists of an A (wild type) to T (Sil-
ver) transversion and was identified at nucleotide
position 48 in intron 9. The distance between the two
SNPs is 759 bases. The two SINEs were present in both Sil-
ver and non-Silver horses. For one of the SINEs (143 bases
long) we obtained the complete sequence, which did not
reveal any variation between Silver and non-Silver horses.
However, as the other SINE was not completely
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Figure 5

sequenced (235 invariant bases was obtained) we could
not fully evaluate any potential role in the Silver coat
color.

Association of DNA polymorphisms and the Silver allele

There was a complete association with allele 177 of mic-
rosatellite marker TKY284 and the Silver phenotype
within all tested horse breeds, except for the Rocky Moun-
tain Horse. Two Rocky Mountain horses were

Cytoplasmic region

Y R R RLMEKAQG
- - C - - - - -
N D)
H - H - - - - K - - -
o
- - H- - - - - - K- -D
- - - VKYSP-LPTA
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Amino acid alignment of the end of the transmembrane region and beginning of the cytoplasmic region of the
PMELI17. Amino acid alignment of the end of the transmembrane region and beginning of the cytoplasmic region of the
PMELI17. The site of the silver horse mutation is highlighted. Sequence identities are indicated by dashes and insertion/deletion

differences are indicated by dots.
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homozygous for the exon 11 missense mutation (T/T) but
heterozygous 175/177 at TKY284. One additional Rocky
Mountain Horse was heterozygous for the missense muta-
tion (T/C) and heterozygous for TKY284 (169/175).

In order to test if the two identified SNPs were associated
with the Silver coat color we genotyped the polymor-
phisms using pyrosequencing in 14 different horse breeds
of which six contained Silver horses (Table 1). Both muta-
tions showed complete association with the Silver pheno-
type across multiple horse breeds, and also were absent in
non-Silver horses from the same breeds with one clear
exception; a chestnut colored individual (Figure 3) that
had several confirmed Silver offspring when mated to dif-
ferent non-Silver stallions. Hence, these results cannot
exclude the intronic mutation from being causative.

Discussion

The results of the present study strongly indicate that the
Silver coat color in horses is caused by a mutation in
PMEL17. This conclusion is based on the observation of
no recombinants between PMEL17 and Silver in a pedi-
gree material and the identification of a haplotype, com-
posed of sequence variants in intron 9 and exon 11,
showing complete concordance with the presence of Silver
across six different breeds. Furthermore, the specific inhi-
bition of the production of black eumelanin but with no
visible effects on red pheomelanin is in perfect agreement
with the observed phenotypic effects of previously
described PMEL17 mutations in mouse and chicken [5-7].
We also describe a candidate causative missense mutation
Arg618Cys that is a non-conservative substitution at a
conserved site and mutations in the near vicinity cause a
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similar phenotype in chickens [7]. The second mutation
showing a complete concordance with Silver, located at
position 48 bp in intron 9, cannot be excluded at the
present time but it appears less likely as causative since it
occurs in an intronic region not well conserved among
mammalian species [19]. We find it more likely that this
intronic mutation was present on the ancestral haplotype
in which the Silver mutation occurred and has not yet
been separated by recombination events; it is located only
759 bases from the Arg618Cys missense mutation.

The PMEL17 mutations identified in other species have a
more dramatic effect on the amino acid sequence (Figure
4). A short interspersed element (SINE) insertion at the
boundary of intron 10 and exon 11 within the PMEL17
gene in dogs is associated with the merle coat color pat-
terning [9]. It was also discovered that deletions within
the oligo (dA)-rich tail of the SINE restored normal pig-
mentation in the dogs. In the mouse two different silver
mutations have been described, of which the most widely
referenced one leads to a premature stop codon and trun-
cation of the protein so that the last 25 amino acids are
missing [6]. This mutation also affects the cytoplasmic
domain of the Pmell7 protein so that endoplasmatic
reticulum (ER) export and endocytic signals are lost [20].
In the zebrafish mutant the hypopigmentation is seen in
both the retinal pigment epithelium (RPE) and body
melanocytes [8]. Also in this species the mutation leads to
a truncation of the PMEL17 protein. This mutation results
in a premature stop codon that is located within exon 8.
Several different PMEL17 mutations associated with inhi-
bition of black pigment have also been documented in the
domestic chicken. In this species both insertion and dele-

Table I: Numbers of individuals from different breeds tested for PMELI7 mutations associated with the Silver phenotype in horses.

Exon |1 Intron 9

Silver Non Silver Silver Non Silver
Breed TT CT CcC TT AT AA
Icelandic horse | 49 40 | 30 22
American miniature | 5 8 | 4 6
Rocky mountain horse 2 3 3 2 3 4
Morgan horse 4 3 3 2
Swedish warmblood 2 3 | 3
Ardenne | 3 | 3
Connemara pony 4 2
Shetland pony 4 4
Haflinger 4 3
Thoroughbred 3 3
Welsh pony 3 3
North Swedish horse 3 2
Norwegian fjordhorse 2 2
New forest pony 2 2
Total 4 64 85 4 42 61

Page 6 of 10

(page number not for citation purposes)



BMC Genetics 2006, 7:46

tion polymorphisms were associated with hypopigmenta-
tion [7]. However the exact role and importance of each
mutation in diluting the pigment is not clear. Interest-
ingly, the Dun allele in chicken carries both a 12 base pairs
insertion and the same missense mutation as the horse.
This supports our hypothesis that the identified missense
mutation may be the causative mutation in horses. It is
possible that the introduced cystein residue is enough to
disrupt the protein domain in the beginning of the cyto-
plasmic region, however this remains to be investigated.
This region of the PMEL17 protein is a rather well con-
served region between species. Of the mammals, the
majority has at least two arginines in the beginning of the
cytoplasmic region. Also the chicken and other vertebrates
have arginines in these positions (Figure 5). Clearly, the
missense mutation found in Silver colored horses occurs
in a region of the PMEL17 protein that appears critical for
proper eumelanin formation. Future studies could, for
example, involve analysis of the consequences of the mis-
sense mutation for PMEL17 localization and function in
cell culture models. Although the identified missense
mutation resides in the same region of PMEL17 as the
mutations in several other species (Figure 4), it was per-
haps a bit surprising that we did not find any additional
causative mutations, as the impact on the aminoacid
sequence is less drastic in the horse. In line with this future
experiments will attempt to completely sequence the
longest SINE in intron 6 to fully evaluate any potential
role in the Silver phenotype.

The occurrence of PMEL17 gene mutations is rare. Consid-
ering how well the laboratory mouse is studied it is sur-
prising that only two PMEL17 mutations has been
identified in this species [5,6]. Several other coat color
genes in the mouse carry many more mutations, like for
example the transcription factor MITF that carry over 20
different mutations several of which are loss-of-function
mutations [21]. There could be several explanations for
this rare occurrence of PMEL17 gene mutations in differ-
ent species, of which the most likely seems to be 1) That
there actually are existing mutations but they do not have
an effect on pigmentation and are therefore missed, 2)
That the mutations are lethal. The fact that all of the muta-
tions within the PMEL17 gene identified in different spe-
cies so far - except the zebrafish - are located within or
near the last exons implies that mutations in the "earlier"
exons could lead to total loss of PMEL17 function and
that this perhaps is lethal. This in turn implies that
PMEL17 has a function outside melanosome biogenesis
as pigmentation is not critical for survival.

One still unanswered question is what the phenotype of a
complete loss-of-function is in mammals? As the muta-
tion in the zebrafish creates the most truncated version of
the PMEL17 protein identified today, it can possibly shed
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some light on this question. This mutant is called fading
vision and lacks the terminal 355 amino acid residues that
encodes for one domain and two motives important for
localization and function of PMEL17. These include the
transmembrane domain, the proteolytic cleavage site and
the AP3 binding motif [8]. The mutation seems to result
in a total loss of function of the PMEL17 protein in
zebrafish as it is shown that the mutation not only has an
effect on melanosome biosynthesis, but also is important
for normal vision development [8].

Ocular abnormalities caused by a syndrome called Ante-
rior Segment Dysgenesis (ASD) are segregating in the
Rocky Mountain Horse breed [22,23]. An unexpected
high fraction of the diseased animals in a study of 514
Rocky Mountain horses had the Silver coat color [22]. The
clinical and histological signs vary from minimal to quite
severe defects in the frontal part of the eye. Interestingly,
many of the eye defects observed in the Silver horses are
similar to those associated with congenital aniridia or
malformation of the anterior segment in humans [23].
The ASD syndrome also has a relatively close resemblance
to the defects observed in Small eye mice and rats [23].
Microphthalmia is well described in homozygous blue
merle Australian Shepherd dogs [24]. It is hypothesized
that horses homozygous for the Silver mutation have
more severe symptoms of the ASD syndrome than hetero-
zygotes [25]. The ASD syndrome is also present in the
Kentucky Saddle horse and Mountain Pleasure horse
breeds [26], both closely related to the Rocky Mountain
Horse. However, in ASD it is the morphology of the eye
that is affected and not the pigmentation. Further, in sev-
eral horse breeds no eye defects have been detected
among silver individuals. The ocular defects could there-
fore be a founder effect. This is in line with the fact that
part of the horses examined for ASD could be traced back
to one founder animal [23].

The majority - if not all - of the Silver horses in the Ice-
landic horse breed have striped hooves during the first
year of their lives (T. Kvick, pers. comm.). These observa-
tions are based on about 100 Silver colored foals and even
more non-Silver foals of the Icelandic horse breed. The
stripes are vertical and broader at the base, i.e. "triangular”
(Figure 2B). It is tempting to speculate that the striped pat-
tern could be associated with a particular color or pattern
of the hair on the leg just above the striped hoof in these
silver horses. In fact these horses are dappled on the legs
right above the hoof (visible when shaving the hair) and
this might be related to the stripes. The molecular mecha-
nism for how different types of spatial pattern are formed
in animals is largely unknown. However, several studies
of the striped pigment pattern in the zebrafish provide
basic knowledge to investigate this further [27-31]. The
striped pattern in the zebrafish is caused by a specific dis-
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tribution of three types of pigment cells and recent find-
ings suggest that cell-cell interactions among the pigment
cells play a key role for striped pattern formation [28]. It
was also found that pigment cells form ordered and lay-
ered structures in both striped and interstriped regions
that are not seen in non-striped animals [28,29].

Conclusion

The present study strongly suggests that PMEL17 causes
the Silver coat color in the horse. Moreover, our results
indicate that a missense mutation (Arg618Cys) in
PMEL17 is likely to be the causative mutation.

The result of this study enables the use of genetic testing
to identify horses that carry the Silver mutation. A genetic
test could be used to distinguish this coat color from other
very similar colors. Silver colored horses are likely to be
missed and the frequency of Silver horses to be underesti-
mated due to inaccurate identification. As this is a quite
popular coat color in certain horse breeds, like for exam-
ple the Icelandic horse, there is an interest for a genetic test
from the horse breeding industry, as breeders would like
to know if the animal is homozygous or heterozygous for
the mutation or if the horse is a hidden carrier of the
mutation, as for example could be the case if the horse is
Chestnut or Gray.

Methods

Animals

A pedigree consisting of one half-sib family with a Silver
heterozygous Icelandic horse stallion, 34 of his offspring
and 29 of their non-Silver colored dams were used for
linkage mapping (some offspring were full-siblings). Sev-
enteen of the offspring had the Silver coat color. For DNA
sequencing of the PMEL17 gene and polymorphism
detection six Icelandic horses were used; one homozygous
for Silver, two heterozygous for Silver and three non-Silver
horses. The identified mutation were tested in the follow-
ing horse breeds; Icelandic horse (including the individu-
als within the half-sib family), Rocky Mountain Horse,
American Miniature Horse, Morgan horse, Ardenne,
Swedish Warmblood, Norwegian Fjord, Connemara
pony, Thoroughbred, Welsh pony, Shetland pony, New
Forest pony, North Swedish horse, and Haflinger (Table
1). All non-Silver horses tested in Table 1 are either black
or bay to avoid hidden carriers, or from breeds known not
to comprise Silver horses (i.e. Haflinger and Norwegian
Fjord; in these two breeds all horses are fixed for coat
colors known to be regulated by other loci). DNA and
RNA preparations were performed from hair and whole
blood according to standard procedures.

Genetic markers, genotyping and linkage analysis
Microsatellite markers distributed over the horse chromo-
somes were selected for genotyping from a genome scan-
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ning panel [15]. In total, we have typed 41 markers in the
half-sib family of which 34 were mirosatellite markers,
five were protein polymorphisms (TF, ES, ALB, PGM and
A1BG), and two were blood group polymorphisms (A and
D system). The microsatellite markers were genotyped
essentially as described in [15]. Briefly, PCR reactions
were performed as described in [32]. Pairwise linkage
between all markers was performed using the TWOPOINT
option within the program CRI-MAP [16]. Two-point
analysis was used for testing pair wise linkage between all
markers.

Sequencing of PMELI7

Primers for sequencing PMEL17 were designed from the
published cDNA sequence that contained exon 5 to exon
11 (Accession number: AF076780) [33] and when
sequence from introns was achieved new primer pairs
were designed. The lacking 5' UTR to exon 5 region of
PMEL17 gene was sequenced using primers designed from
the cDNA sequence obtained in RACE experiments, as
well as one horse specific primer in the 5' UTR region
designed from a horse specific sequence obtained from
the NCBI trace archive database [34]. There was also lack-
ing sequence in the end of exon 11 that was obtained
using one conserved primer in the 3' UTR. Long-range
PCRs were performed over intron 1 and intron 3 by using
the Expand Long PCR kit (Hoffmann-La Roche Ltd, Basel,
Switzerland). All primer sequences that were used are
listed in Table 2. The primers were designed with Oligo
5.0 (Molecular Biology Insights, Cascade, CO) or Primer
3 (Whitehead Institute for Biomedical Research, Cam-
bridge, MA). PCR was used for amplification of the gene.
The amplification was performed in a total volume of 25
pl including 7.5 pmol of each primer, ~30-50 ng of DNA
template, 0.2 mM dNTP, 1.9 units AmpliTag Gold
polymerase, 1.5 mM MgCl, and 1 x PCR buffer. The PCR
profile consisted of 10 min at 95°C, 5 cycles of 40 s at
94°C, 40 s at 61/57°C and 2 min at 72°C, 35 cycles with
40sat94°C, 40 sat 57/55°C and 2 min at 72°C, ending
with an extension step for 15 min at 72°C. All PCR prod-
ucts were checked by agarose gel electrophoresis and visu-
alized by EtBr staining before DNA sequencing. The PCR-
products were sequenced using MegaBace sequencing kit
(Amersham Biosciences, Uppsala, Sweden) and loaded
onto a MegaBace 1000 capillary instrument (Amersham
Biosciences, Uppsala, Sweden). The sequences were ana-
lysed using the Sequencher 3.1.1 software (Gene Codes,
Ann Arbor, MI).

5' Rapid amplification of cDNA ends (RACE)

The 5' end ¢cDNA sequence of the PMEL17 gene was
obtained by performing a 5' RACE from 1 ng total RNA
from skin and melanoma samples using the GeneRacer
Advanced RACE Kit (Invitrogen Corporation, Carlsbad,
CA) according to the instructions. The 5' end of the gene
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Table 2: Primer sequences for the sequencing of horse PMELI7

http://www.biomedcentral.com/1471-2156/7/46

Primer sequence Forward primer (5'-3")

Reverse primer (5'-3")

5'UTR-Intronl GGATCCCTTGTCAGTTTTGC AGGAGAGGAAAAACCAGAGC
Exon |-Exon 2 (LR) GATGGATCCAGTGTCAGAGATG ACTCTGGATACAGCTGCCTGTT
Intron |-Exon 2 CGTGGGATGACGTTATCTTCT AGTCAGGCCCCTGAATTTCT
Exon 2-3 GTCTCAAGGCAGCTCAGGAA CATTGATGATGGTGTTGTTGG
Exon 3—4 (LR) CTACACTGGTTGGGGCAAAT TCTGAGACAGAGGGCCAGAT
Exon 3-Intron 3 GGTGGCCCTGAAGATCAGTA AGGGAATTGGAGCCCTTAGA
Intron 3-Exon 4 CTCTCTGGGAGCCGTGTTAG CCCAGGTCTTCCAGACGTAA
Exon 4-Intron 4 TCCCCAGGAACCTGATGATA CTTCAGAGGTGGGACCAGAG
Exon 4-5 TCCCCAGGAACCTGATGATA GCGGTGGTAGACAGTCACTT
Exon 5-6 AGTGTCGGGGCTGAGCAT CAGGCCACAGCTTGTCTTTT
Exon 5-6(2) TGCCCCTCGCTCACTCCCGCTCAGCCT CATGAATGGGCTGGCATCTGGA
Exon 6-7 GGTAACGGTACAGAGTTGGTGGAA GGACGATGTCCAGAGTGAGGGA
Exon 6-7(2) AGGTGCCAACTGCAGAGC GGACGATGTCCAGAGTGAGG
Exon 7-Intron 8 ATGGCACAGCCACCTTATTC GAAAGGTGTCAGTTTAGGTCAGG
Exon 7-10 CCAGAGCCCCCTGCTGGATGG TATATCAGAGATGCAAGCACCATA

Exon 9-Intron 10 AATGTGTCTTTGGCTGATGC
Intron 10-Exon |1

Exon 10-11

Exon 11-3'UTR

Pyroseq. PCR primers, Ex | |
Pyroseq. Seq primer, Ex | | -
Pyroseq. PCR primers, Int.9
Pyroseq. Seq primer, Int 9. GGGGAGTGGGCAGAGGCT

RACE primer -

AGAGGCAGGCCTTGGGCAG
CAGGCGCAGACTTATGAAGC

GCAGGGAAGCTTGTAGAGTGA

Biotin-TCCATTGCTTACCAGTTTCCTT

CATGCCTGGTAGGTACTTGGA

TCTGCCCCTCTTACAGGTGA
CTCTCACCAAAGGGGGAAG
TGCTCTCACCAAAGGGGGAAG
AGGGAAGWCTGSRGRAAABA
CTCACCAAAGGGGGAAGAG
GCCCTGCTTCATAAGTCTG
Biotin-CCTCTTGACCTGTGAGCAGA

CCGGAGGGCAAAGGTCAGAGGTTG

was amplified using PCR with one gene specific primer in
exon 6 (Table 2) and one RACE-primer. The amplification
was performed in a total volume of 25 pl containing 50 ng
of cDNA, 0.2 mM of dNTP, 1 units of AmpliTaq Gold
polymerase, 2.0 mM MgCl, and 1 x PCR buffer. The
amplification included 10 min at 95°C, 5 cycles with 40 s
at 94°C, 40 s at 57°C and 2 min at 72°C, followed by 35
cycles with 40 s at 94°C, 40 s at 55°C and 2 min at 72°C,
ending with 15 min at 72°C. The PCR products were
direct sequenced using MegaBace sequencing kit and elec-
trophoresed with MegaBace 1000 capillary instrument.
The sequences were analysed using the Sequencher 3.1.1
software.

SNP analysis using pyrosequencing

The SNPs were analysed using pyrosequencing and per-
formed essentially as described in [35]. Three primers
were designed for each SNP, one biotinylated PCR primer,
one un-biotinylated PCR-primer and one sequencing
primer flanking the SNP of interest. For primer sequences
used see Table 2.
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