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Abstract
Background: Marine allopatric speciation is an enigma because pelagic larval dispersal can
potentially connect disjunct populations thereby preventing reproductive and morphological
divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC)
that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation
involves fragmentation of a large widespread ancestral species range that was previously connected
by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral
archipelagos emerge from sweepstakes colonizations from central source regions. The HABC
approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair
inferences about biogeographic processes while explicitly allowing for uncertainty in the
demographic differences within each taxon-pair. Our method uses comparative phylogeographic
data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing
pairs of central and peripheral populations. We use the method on two comparative
phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian
(11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs).

Results: Given the Marquesan data, we find strong evidence of simultaneous colonization across
all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample
sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates.
Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian
taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion.
Both results are not inconsistent with what is known about the geologic history of the archipelagos.
Simulations verify that our method can successfully distinguish these two histories across a wide
range of conditions given sufficient sampling.

Conclusion: Although soft vicariance and colonization are likely to produce similar genetic
patterns when a single taxon-pair is used, our hierarchical Bayesian model can potentially detect if
either history is a dominant process across co-distributed taxon-pairs. As comparative
phylogeographic datasets grow to include > 100 co-distributed taxon-pairs, the HABC approach
will be well suited to dissect temporal patterns in community assembly and evolution, thereby
providing a bridge linking comparative phylogeography with community ecology.
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Background
Allopatric speciation is an enigma in many marine organ-
isms because larval dispersal can potentially connect dis-
joint populations and thereby prevent the reproductive
and morphological divergence that arises from prolonged
isolation [1-7]. This is especially enigmatic in the Indo-
Pacific region where many species range freely across this
expanse without evidence for barriers to genetic exchange.
This marine region harbors the planet's highest species
diversity and endemism of marine fauna, and with the
absence of explicit barriers, some have pushed controver-
sial models of sympatric speciation to explain this ele-
vated diversity [8,9]. Even the proposed competing
models of geographic speciation in the Indo-Pacific
remain contentious and generally involve different facets
of the classic dispersal or vicariance models for speciation.
Under the one model (the "soft vicariance" model), speci-
ations in peripheral archipelagoes result from a large
widespread patchy ancestral species range connected by
long distance gene flow that is eventually interrupted by
oceanographic changes in temperature, sea level and/or
currents [10-12] which leads to peripheral isolation and
endemism. Under a second model (the "colonization"
model), speciations in peripheral (i.e peripatric) archipel-
agoes emerge from sweepstakes centrifugal colonizations
from high-diversity central areas followed by prolonged
periods of isolation with potential inward range shifts
towards the central region [8,9,13,14]. As in the case of
terrestrial systems, using genetic data to distinguish these
two scenarios is difficult because their expected genetic
signatures are often similar, a situation that is exacerbated
if demographic changes such as expansions and bottle-
necks occur after an isolating event [10,15-17].

Likewise, discerning the modes of isolation and specia-
tion using phylogenetic and phylogeographic data is often
fraught with uncertainty because species can potentially
shift their ranges [18] or loose the population genetic pat-
terns associated with colonization >> 2N generations sub-
sequent to isolation. Traditionally, vicariance and
dispersal histories have been tested using phylogenetic
approaches that use area cladograms [19,20], consensus
methods [21], or parsimony [22] in combination with
some method of ancestral character state reconstruction.
Although many of these classic methods were biased to
find vicariance, recent methods incorporate more com-
plex biogeography histories [23,24] such as maximum
likelihood [25,26] and Bayesian methods that use both
distributional and phylogenetic data [27]. Likewise,
empirical studies have increasingly found dispersal/colo-
nization to be a more common force behind allopatric
speciation [15,16,28-31]. Regardless, such analyses are
often circular or ambiguous [32], and ancestral character
reconstruction methods are always going to be hindered
when elevated homoplasy in biogeographic patterns

obscures the inferences in the older parts of a phylogeny
[18,31,33].

Here we present an entirely different approach to testing
for vicariance and dispersal histories. Instead of using
phylogenetic comparative methods, we use coalescent
population genetics to estimate ancestral demographic
patterns across co-distributed taxa within a community.
While this is in the spirit of previous suggested approaches
that blend systematics and population genetics [34], the
hierarchical Bayesian approach presented here tests vicar-
iance and dispersal across taxon-pairs instead of doing so
one at a time. Specifically we extend a hierarchical approx-
imate Bayesian model (HABC) [35,36] in order to quan-
tify the strength of these two alternative models of
allopatric isolation across marine endemic taxa that are
co-distributed in peripheral archipelagoes.

Using HABC allows sidestepping the requirement of an
explicit likelihood function. Instead, it uses a probabilistic
simulation model to generate data sets to compare with
the empirical data. By using summary statistics, one can
easily compare the simulated and empirical data in order
to estimate parameters of the simulation model via an
approximate sample of the posterior distribution. In
HABC we use hyper-parameters that describe processes
across co-distributed taxon-pairs as well as sub-parame-
ters that describe the demographic history of each taxon-
pair.

First we describe the population genetic models whose
hyper-parameters we want to estimate, and then we
describe HABC. After detailing the HABC model, the sum-
mary statistics and the HABC implementation, we test
these two biogeographic hypotheses given two compara-
tive phylogeographic datasets: mtDNA CO1 data col-
lected from multiple cowrie gastropod species that are
endemic to the Hawaiian and Marquesan archipelagos.
Specifically we use HABC to test whether marine vicari-
ance ("soft vicariance") (H1) or colonization (H2) is the
dominant isolating mechanism in either of these two
marine communities. After using HABC to choose the best
model of community isolation, we then use HABC to esti-
mate temporal congruence in soft vicariance and/or colo-
nization. We specifically use mtDNA sequence data
collected from each co-distributed peripheral endemic
taxon as well as each of the respective sister species which
are usually more geographically widespread (Additional
file 1).

Although this method specifically addresses questions rel-
evant to the species diversity and patterns of endemism in
the Indo-Pacific, it will be broadly applicable to many
comparative phylogeographic datasets and biogeographic
settings.
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Methods description
Soft vicariance and colonization
Rather than classical terrestrial vicariance where a large
ancestral population is broken up into two isolated sister
populations (Figure 1A), our "soft vicariance" scenario
(H1; Figure 1B) has two ancestral populations with effec-
tive sizes (θτ)1 and (θτ)2 that are connected by high to
moderate gene flow (M1 = 1.0 to 100.0 migrants per gen-
eration) until τV, when M1 decreases to 0.0 – 1.0 migrants
per generation (M2). If this second period is prolonged,
then effective isolation and divergence can occur [37]. At
τV, the sizes of the two sister populations ((θτ)1 and (θτ)2)
remain the same size or begin to grow exponentially until
they reach their present sizes (θ1 and θ2) at τ = 0 depend-
ing on the draw from the prior (Figure 1B). As in [16,17],
time of vicariance, population sizes and migration rates
are all free to vary across taxon-pairs according to their
prior distributions.

Under the colonization scenario (H2; Figure 1C), one of
the sister populations is founded by a very small number
of individuals (θτ)2 that come from a larger source popu-
lation (θτ)1 at the time of colonization, τC with subsequent
isolation. The small colonizing population (θτ)2, then
grows exponentially until it reaches its present effective
size of θ2 at τ = 0. The primary parametric expectation that
distinguishes marine vicariance (H1) from colonization
(H2) is the relatively small effective population size of the
colonized population ((θτ)2) at the putative time of colo-
nization (τC). Secondarily, the possibility of gene flow
subsequent to the vicariance event τV further distinguishes
H1 and H2, although this assumption can potentially be
relaxed. With regards to different patterns in the molecu-
lar genetic data under H1 and H2, under colonization (H2)
samples from peripheral populations will likely accumu-
late a surplus of rare alleles due to having a current effec-
tive population size that greatly expanded from a small
size after the colonization time τC. In addition, there is
likely to be generally more genetic diversity under soft
vicariance (H1) due to there being two ancestral popula-
tions rather than just one.

To statistically quantify the relative support of these two
hypotheses (H1 and H2) across Y co-distributed peripheral
endemics and their sister taxa given DNA sequence data,
we extend and modify the hierarchical approximate Baye-
sian computation (HABC) framework of [35,36]. We also
use this framework to estimate the temporal congruence
of both vicariance and colonization across the Y phyloge-
ographic data sets.

Although one could independently estimate (θτ)2 in each
of the Y data sets and use all of the independent posterior
densities of (θτ)2 to measure the support of H1 and H2
across the Y pairs, implementation of a hierarchical model

accomplishes this from a single analysis and uses more
information from the data via "borrowing strength" [38-
40].

Hierarchical approximate Bayesian computation
Our implementation of HABC is based on the framework
presented in [35,36,41], and we review the important fea-
tures here. In HABC, sub-parameters (Φ; within taxon-
pair parameters) are conditional on "hyper-parameters"
(φ) that quantify the variability of Φ among the Y taxon-
pairs. Instead of explicitly calculating the likelihood
expression P(Data|φ, Φ) to get a posterior distribution, we
sample from the posterior distribution P((φ, Φ)|Data) by
simulating the data K times under a coalescent model
using candidate parameters randomly drawn from the
joint hyper-prior and sub-prior distribution P(φ, Φ). A
summary statistic vector Di for each simulated dataset is
then compared to the observed summary statistic vector
D* in order to generate random observations from the
joint posterior distribution f(φi, Φi|Di) by way of a rejec-
tion/acceptance algorithm followed by a weighted local
linear regression step [42].

The rejection/acceptance algorithm involves calculating a
summary statistic vector from the observed data and each
of the K simulated data sets. Each simulated data set is
generated using parameters that are randomly drawn from
the joint prior. Following [35,42], K Euclidian distances
between the normalized observed summary statistic vec-
tor D* and each of the K normalized summary statistic
vectors are then calculated (||Di - D*|| = d). An arbitrary
proportion (tolerance) of the K simulations with the low-
est d values are then used to obtain an approximate sam-
ple from the joint posterior after weighting and
transforming the accepted parameter values using local
linear regression [35,42]. After the local linear regression
step, accepted and transformed parameter values that fall
outside their respective prior bounds are subsequently
transformed to have the values of their respective prior
boundaries. For example, if an accepted parameter value
with a uniform prior of [0.0,1.0] is transformed by local
linear regression to a negative number, it is subsequently
transformed to 0.0.

Hierarchical Model of Community Colonization and 
Vicariance

Model hyper-parameters and sub-parameters are listed
and described in Additional file 2. Three hyper-parame-
ters are drawn from their respective hyper-prior distribu-
tions (Additional file 2A), and these include: 1.) Z, the
number of descendent populations per Y taxon-pairs that

arise by colonization at times ; 2.) the

number of different vicariance times 

TC C C
Z= { ,..., }τ τ1

Ψ Ψ
V V Vt t V= { ,..., }1
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Three models of allopatric isolationFigure 1
Three models of allopatric isolation. (A) Classic vicariance where a large ancestral population is broken up into two iso-
lated sister populations. (B) Marine vicariance or "soft vicariance" where two ancestral populations with effective sizes (θτ)1 and 
(θτ)2 are connected by high to moderate gene flow (M1 = 1.0 to 100.0 migrants per generation) until τV, when M1 decreases to 
0.0 – 1.0 migrants per generation (M2). (C) Isolation by colonization, where one of the sister populations is founded by a very 
small number of individuals (θτ)2 that come from a larger source population (θτ)1 at the time of colonization, τC.
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across (Y-Z) actual vicariance times 

and 3.) ΨC, the number of different colonization times

 across Z actual colonization times

.

The Z colonized populations (H2) and remaining (Y-Z)

population-pairs that arise via vicariance (H1) then draw

their population mutation sub-parameters (  = {θ1,...,

θY}, , and ) from their

respective sub-priors (Additional file 2C). Each taxon-

pair's population mutation parameter θi is equal to the

sum of  and , the population mutation parameters

of the descendent taxon-pairs at τ = 0 (present time). In

this case θ = 2Nμ (2N is the sum of the two haploid effec-
tive female population sizes of each pair of descendent

populations and μ is the per gene per generation mutation
rate).

Subsequently, each of the Y taxon-pairs draw their
remaining sub-parameters from two different sets of sub-
priors (Additional file 2D) that differentially characterize
the two different histories (H1 and H2). Importantly, the

uniform sub-prior for (θτ)2 is [0.0, 0.05] for each of the Z

species-pairs that arose via colonization (H2), but (θτ)2 is

drawn from the uniform sub-prior [0.0, 1.0] for each of
the other (Y - Z) taxon-pairs that arose through vicariance
(H1). Additionally, two sets of migration sub-parameters

(  and ) are

drawn from their respective sub-priors for the (Y - Z)
taxon-pairs that arose through vicariance (H1), whereas

there is no migration under the colonization model (Fig-
ure 1C; Additional file 2D). In both vicariance and colo-
nization models, the relative effective size of the ancestral

central populations (  and

) are also drawn from their

respective sub-priors [0.5, 1.0]. If (Y - Z) ≥ 1, the ΨV differ-

ent vicariance times ( ) are drawn from

the uniform prior [0.0, 5.0]. Likewise, if Z ≥ 1, the ΨC dif-

ferent colonization times ( ) are drawn

from the uniform prior [0.0, 5.0]. After the different

viciarance times are drawn, they are randomly assigned to
the (Y - Z) taxon-pairs that arose through vicariance, such

that the (Y - Z) actual vicariance times are

. Specifically, the ΨV different vicari-

ance times ( ) are sequentially assigned to the

first ΨV actual times . The remaining actual

times ( ) are assigned by randomly draw-

ing with replacement from the  matrix of different

times { }. Likewise, the actual colonization

times ( ) are drawn using the same

method (Additional file 2D). Both sets of actual vicariance
and actual colonization times (TV and TC) are in units of

θi/μ generations, where θi is each taxon-pair's population

mutation parameter and μ is the per gene per generation
mutation rate.

In addition to hyper-parameter estimation, we also use
the HABC algorithm to sample from the posterior distri-
butions of sub-parameter summaries (Additional file 2E)
in order to quantify the support for H1 and H2 and second-

arily estimate levels of temporal congruence in coloniza-
tion and/or soft vicariance. Namely, we obtain estimates
of the arithmetic means of three sub-parameters

(E((θτ)2), E(τC), E(τV)), as well as the dispersion indexes

of τC and τV (ΩC and ΩV respectively). The sub-parameter

summary E((θτ)2) is expected to be < 0.05 if H2 is domi-

nate across the Y taxon-pairs (Z = Y). The dispersion

indexes ΩC and ΩV of the Z colonization times ( )

and the (Y - Z) vicariance times ( ) measure

the ratio of the variance to the mean of these two sets of

times and are therefore expected to be ≈ 0.0 when if there
is temporal congruence in colonization or soft vicariance.

Two Stage Model Implementation
We implement the hierarchical analysis in two stages. In
stage 1, an unconstrained general model is used to quan-
tify the support for H1 and H2 across the Y taxon pairs. This
first stage is accomplished by simulating K random draws
from a general hyper-prior and using the HABC algorithm
to sample from the posteriors of? Z and E((θτ)2). Under
our hierarchical model, H1 and H2 are equally probable
because Z is a hyper-parameter drawn from the discrete
uniform hyper-prior distribution [0, Y].

In the stage 2 analysis, K random draws are taken from a
constrained hyper-prior where Z is fixed to be the mode of
its posterior distribution obtained in stage 1. There are
equal numbers of hyper-prior draws (K) obtained in both

TV V V
Y Z= −{ ,..., }( )τ τ1

Ψ Ψ
C C Ct t C= { ,..., }1

TC C C
Z= { ,..., }τ τ1

θ

θ θ θ1 1
1

1= { ,..., }Y θ θ θ2 2
1

2= { ,..., }Y

θ1
i θ2

i

M M M Y Z
1 1

1
1= −{ ,..., }( ) M M M Y Z

2 2
1

2= −{ ,..., }( )

( ) {( ) ,...,( ) }( )θ θ θτ τ τ1 1
1

1= −Y Z

( ) {( ) ,...,( ) }θ θ θτ τ τ1 1
1

1= Z

Ψ Ψ
V V Vt t V= { ,..., }1
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C C Ct t C= { ,..., }1
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TV V V
Y Z= −{ ,..., }( )τ τ1

t tV V
V1 ,..., Ψ

τ τV V
V1 ,..., Ψ

τ τV V
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stages. The stage 2 analysis allows obtaining posterior
samples of hyper-parameters and sub-parameter summa-
ries (Additional file 2B &2E) that quantify and summarize
the levels of temporal concordance in colonization

( ) and/or vicariance

( ). These include: 1.) ΨC, the number

of different colonization times per Z colonization events;

2.) ΨV, the number of different vicariance times per (Y - Z)

vicariance events; 3.) ΩC, the dispersion index of τC (the

ratio of the variance to the mean in the Z actual coloniza-

tion times, TC); and 4.) ΩV, the dispersion index of τV (the

ratio of the variance to the mean in (Y - Z) actual vicari-
ance times, TV).

Summary Statistic Vector for HABC Acceptance/Rejection 
Algorithm

In order to implement the HABC procedure, we use two
modified versions of the summary statistic vector D used
in [35]. For the Marquesas summary statistic vector (DMar-

quesas), we calculate eight summary statistics collected from

each taxon-pair (56 total). This includes πb (average pair-

wise differences between each central and peripheral Mar-

quasan taxon-pair), π (average pairwise differences

among all individuals within each taxon-pair), πw (aver-

age pairwise differences within descendent populations of

each taxon-pair), θW (Watterson's estimator of θ of each

taxon-pair), and Var(π - θW). For π, θW and Var(π - θW),

each of the Y taxon-pairs are treated as a single population

sample ( ). The Marquesas summary statistic vec-

tor, DMarquesas also includes calculating π, θW, and Var(π -

θW) in each of the Y peripheral Marquasan samples ( )

that are putatively colonized and we denote these as π2,

(θW)2, and Var(π - θW)2. Under this scheme, the vector

DMarquesas is

where each of the Y rows correspond to the Y taxon-pairs
(Y = 7) and the eight columns correspond to the eight
summary statistic classes. After these 8 × Y summary sta-
tistics are calculated, we must choose a way to consistently
order the Y rows within DMarquesas. Instead of consistently

ordering the rows by each taxon-pair's sample size, we

increase the efficiency of our HABC estimator by ordering
the rows based on the taxon-pair's Tajima's D [43] calcu-
lated from the taxon-pair's peripheral population sample

( ). For example, row 1 would contain the eight sum-

mary statistics collected from the taxon-pair with the low-
est Tajima's D, and the Yth row would contain the eight
summary statistics collected from the taxon-pair with the
highest Tajima's D.

The motive for this ordering procedure is to extract more
information from the data with respect to the estimated
hyper-parameters than would be accomplished by order-
ing consistently by sample size [35]. For an efficient
HABC estimator, there should be a strong correlation
between pair-wise differences in hyper-parameter values
(i.e. E(θτ)2 or Z) and Euclidian distances between corre-
sponding pairs of summary statistic vectors from corre-
sponding pairs of simulated data sets. If ordering by
sample size rather than ranked values of an informative
summary statistic, pair-wise values of Z or E(θτ)2 are not
predicted to correlate with Euclidian distances of D calcu-
lated from corresponding pairwise simulated data sets.
This is because sample size has no bearing on how each of
the Y taxon-pairs are assigned to histories H1 and H2 when
drawing values of Z from the hyper-prior. On the other
hand, ordering by an informative summary statistic will
minimize Euclidian distances among data sets with equal
or similar values of Z regardless of which of the Y taxon
pairs were assigned histories H1 and H2. The consequent
improved accuracy in HABC estimation that results from
this ordering procedure is based on the exchangeability of
the Y rows within DMarquesa (D1,...,DY). If Φi and Di are
invariant to the permutations of the indexes (1 ,..., Y) and
the ith taxon-pair's sample size is unrelated to the expecta-
tion of its Φ i or Di, there is exchangeability in the model
[44]. We order by the peripheral Tajima's D because it is a
summary statistic that is predicted to be informative with
respect to demographic parameter differences between
histories H1 and H2 (i.e. the ratio of each taxon-pair's (θτ)2
and θ2).

For the analysis of the 11 Hawaiian taxon-pairs, we use a
reduced summary statistic vector DHawaii to avoid null val-
ues that would arise in population samples that only
included one individual (Additional file 1B). The vector
DHawaii in this case is

TC C C
Z= { ,..., }τ τ1

TV V V
Y Z= −{ ,..., }( )τ τ1

n n1 2+

n2
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Y Y
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and the rows were likewise sorted by Tajima's D calculated
from the peripheral populations.

Application on real data sets
Two Comparative Phylogeographic Implementations
We use this HABC method on two comparative phyloge-
ographic data sets of Pacific cowrie gastropods (Cypraei-
dae). The first dataset consists of seven sister taxon-pairs
of cowries that each consist of a descendent endemic spe-
cies or sub-species that is distributed within the peripher-
ally located Marquesas archipelago as well each sister
taxon that is more geographically widespread (Additional
file 1A). The second dataset consists of eleven sister taxon-
pairs of cowries co-distributed within the peripherally
located Hawaiian archipelago. Like in the former data set,
each pair consists of a Hawaiian endemic and a more
widespread sister (Additional file 1B). Both data sets con-
sisted of 614 base pairs of the CO1 mtDNA locus collected
from 2–93 individuals per taxon-pair (Additional file 1).
The HABC procedure was implemented using a modified
version of the MSBAYES comparative phylogeographic
software pipeline [35,36] consisting of several C and R
programs that are run with a Perl "front-end" and utilizes
a finite sites version of Hudson's classic coalescent simu-
lator [45]. For both analyses, 2,000,000 random draws
were sampled from the hyper-prior and 1,000 – 2,000
accepted draws were used to construct hyper-posterior
samples (tolerance of 0.0005 and 0.001 respectively)
using the HABC acceptance/rejection algorithm.

The prior bounds for hyper-parameters and sub-parame-
ters are given in Additional file 2. To explore the sensitiv-
ity of using different prior assumptions, we used two
different upper bounds of θ (θMAX = 25.0 and 50.0 for the
Marquesas data; θMAX = 50.0 and 100.0 for the Hawaiian
data). These values correspond to 2× to 4× the range of
within species θ estimates, where the average number of
pairwise differences was used as an estimator of each spe-
cies specific θ [46]. To further explore how sensitive results
are to model assumptions, we alternatively ran the stage 1
analysis with the post-colonization migration prior
allowed to be [0.0, 1.0] instead of zero under the coloni-
zation model (H2), as well as allowing post-isolation
migration (M2) to be zero under the soft vicariance model
(H1).

We calculate Bayes factors to compare the relative hyper-
posterior support of either history (soft vicariance and col-
onization) being dominate across all Y taxon pairs (e.g Z
= 0 or Z = Y) against all other scenarios including mixed
scenarios. We accomplish this by comparing relative
hyper-posterior support of these two scenarios while
accounting for the relative hyper-prior support for these
two scenarios [47]. To calculate this Bayes factor, we use
an arbitrary partition of hyper-parameter space to deline-

ate where H1 or H2 is dominate across all Y taxon-pairs.
For example, to evaluate the evidence of colonization
being dominate across all Y taxon pairs (Z = Y) against all
other scenarios (Z <Y), the approximate Bayes factor B(Z
= Y, Z <Y) is the ratio of the two approximate hyper-pos-
teriors of these two scenarios divided by the ratio of the
two hyper-priors of these two scenarios,

B(Z = Y, Z <Y) = (P(Z = Y|D = D*)/P(Z <Y|D = D*))/
(P(Z = Y)/P(Z <Y))

Alternately, we examine these two scenarios by using an
arbitrary partition of E((θτ)2) such that E((θτ)2) = 0.05
represents a scenario where colonization is dominant
across all Y taxon pairs, and E((θτ)2) > 0.05 represents all
other scenarios. In this case, the approximate Bayes factor
is

Evaluating the evidence of soft vicariance being dominant
across all Y taxon-pairs (Z = 0) against all other scenarios
(Z > 0) is identically accomplished by calculating the two
corresponding Bayes factors B(Z = 0, Z > 0) and B(E((θτ)2)
> 0.05, E((θτ)2) ≤ 0.05). To calculate each Bayes factor, we
use the accepted hyper-parameter values from the hyper-
posterior sample and the random draws from the hyper-
prior.

Marquesas Results
The HABC analysis yielded a hyper-posterior that strongly
supports H2, where colonization histories (Figures 2A
&2B) are inferred across all seven Marquesan endemics.
Irrespective of tolerance (0.0005 or 0.001), prior assump-
tions on the upper bound of θ, (θMAX), the hyper-parame-
ter mode estimates of Z and E((θτ)2) were 7.00 and 0.00 –
0.07 respectively (Figures 2A &2B; Additional file 3A
&3B). Furthermore, when using the raw untransformed
accepted values to obtain our posterior sample of Z, a his-
tory of community colonization is also inferred (mode
estimate of Z is 7.0) albeit the 95% credibility intervals
were wider. This suggests that the dominant mode of spe-
ciation has generally been from colonization by a small
number of individuals followed by at least a 20-fold
demographic expansion to current population levels.
Both Bayes factors evaluating the evidence for coloniza-
tion across all Y = 7 taxon-pairs against all other histories
(Z < 7) indicate moderate support for the former scenario
(B(Z = Y, Z <Y) = 6.23; B(E((θτ)2) > 0.05, E((θτ)2) ≤ 0.05)
= 6.79).

In stage 2, where we constrained the hyper-parameter Z to
be 7, the hyper-posterior best supported temporal con-
cordance in colonization across all seven Marquesas
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endemics. In this case, estimates of ΨC and ΩC were 1.00
(95% quantiles: 1.00 – 2.14) and 0.00 (95% quantiles:
0.00 – 0.17) respectively (Additional file 3A; Figure 2).
The mean time of colonization E(τC) was 1.58 My ago if
we assume a 1% divergence rate per My (Figure 2D). The

Bayes factor evaluating the evidence for simultaneous col-
onization (ΩC < 0.05) against non-simultaneous coloni-
zation (ΩC = 0.05) yielded strong support for
simultaneous colonization (B(ΩC < 0.05, ΩC = 0.05) =
36.73). In this case the Bayes factor is calculated from an

Hyper-posterior and Hyper-prior samples given Marquesas DNA sequence data (seven taxon-pairs)Figure 2
Hyper-posterior and Hyper-prior samples given Marquesas DNA sequence data (seven taxon-pairs). Dashed 
lines depict hyper-prior distributions and solid lines depict hyper-posterior distributions. Stage 1 hyper-parameter esti-
mates: (A) Average effective population size E((θτ)2) of the putatively colonized endemic populations at the seven isolation 
times (TC and TV). (B) The number of descendent populations per seven (Y) taxon-pairs that arise by colonization at times 

. Stage 2 hyper-parameter estimates where hyper-prior is conditional given constant value of Z 

= 7: (C) ΩC,dispersion index of Z = 7 colonization times; ΩC = Var(τC)/E(τC) where τC is colonization time. (D) E(τC), average 
colonization time across Z = 7 colonization times. For each estimate, tolerance was 0.001 (2,000 accepted draws) using the 
local regression algorithm.
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arbitrary partition of hyper-posterior space conditional on
Z = 7. In this case the arbitrary threshold of simultaneous
colonization is ΩC < 0.05 such that the Bayes factor is

B(ΩC < 0.05, ΩC ≥ 0.05) = (P(ΩC < 0.05|D = D*)/
P(ΩC ≥ 0.05|D = D*))/(P(ΩC < 0.05)/P(ΩC ≥ 0.05)).

Furthermore, the hyper-posterior estimates were not sen-
sitive to assumptions about post-isolation migration.
Under the stage 1 analysis, estimates of Z and E((θτ)2)
were 6.99 and 0.02 (95% credibility intervals of 3.34 –
7.00 and 0.00 – 0.32) when the post-colonization migra-
tion prior was [0.0, 1.0] instead of 0.0 under the coloniza-
tion model (H2).

Hawaii Results
In contrast to the Marquesas analysis, the hyper-posteriors
were much more similar to the hyper-priors (Figure 3).
The less informative posteriors are consistent with the
lower Hawaiian sample sizes (Additional file 1B) and
consequence of using of a reduced number of summary
statistics (DHawaii) for the HABC acceptance/rejection algo-
rithm. Although the hyper-posterior of Z given the Hawai-
ian data suggests a mixed history of both colonization and
soft vicariance (Figure 3), larger sample sizes will be
required to verify this. This weak inference is demon-
strated by Bayes factors giving weak support for vicariance
or colonization across all 11 Hawaiian endemics. Specifi-
cally, the calculated Bayes factors B(Z = 0, Z > 0), B(Z = 11,
Z < 11), B(E((θτ)2) < 0.05, (E((θτ)2) = 0.05) < 1.0) and
B(E((θτ)2) = 0.05, E((θτ)2) < 0.05) < 1.0) where all weak
(< 1.0). Although the Hawaiian data yielded weak infer-
ence, the credibility intervals for Z ranged from 0.00 to
9.22 (Additional file 3C and 3D), suggesting that the his-
tory of isolation likely involved both soft vicariance and
colonization. Likewise, estimates of ΩC and ΩV did not
suggest simultaneous vicariance or colonization, and like-
wise yielded less informative posteriors than obtained in
the Marquesas analysis (Figures 3C &3D). As was the case
of the Marquesas analysis, hyper-posterior estimates were
not sensitive to tolerance, prior assumptions on the upper
bound of θ, (Additional file 3C &3D), and prior assump-
tions of post-isolation migration. Under the stage 1 anal-
ysis using the alternative model assumptions where post-
vicariance migration (M2) was 0.0 under the soft vicari-
ance model, estimates of Z and E((θτ)2) were respectively
3.64 and 0.66 (95% credibility intervals 0.00 – 9.74 and
0.35 – 0.97).

Simulation testing
Simulated Data Sets
One of the chief advantages of HABC and ABC methods is
the ease at which one can evaluate the performance, bias,

and precision of the estimator via simulations. Specifi-
cally, we can simulate pseudo-observed data sets with
known hyper-parameter values and compare estimates
with their true values. Even though the most time-con-
suming task is to simulate a large enough prior and/or
hyper-prior in ABC and HABC, once it is produced for the
analysis of the real observed data set, it can subsequently
be used to quantify bias and precision on the pseudo-
observed data sets.

To this end, we simulate pseudo-observed data sets with
known values of Z and E((θτ)2) under the general model
(stage 1), and ΨC, ΨV, E(τC), E(τV), ΩC, and ΩV under the
constrained model (stage 2). We repeat this for both sam-
ple sizes used in the empirical implementation (DMarquesas
and DHawaii). To simulate a data set (pseudo-observed
data), all hyper-parameters and sub-parameters were ran-
domly drawn from the prior and a corresponding DMarque-

sas or DHawaii was subsequently calculated. For each
corresponding pseudo-observed DMarquesas and DHawaii, a
hyper-posterior sample was obtained from the HABC
rejection-sampling algorithm given 2,000,000 random
draws from the hyper-prior. For every pseudo-observed
(simulated) data set, an estimate is obtained from the pos-
terior mode. We report estimates using a tolerance of
0.001 corresponding to 2,000 accepted draws from the
hyper-prior. For both DMarquesas and DHawaii and stage 1 and
two, 250 estimates were made from 250 simulated
pseudo-observed datasets.

In addition to these evaluations, we assess the ability to
distinguish H1 and H2 when the true history is a special
asymmetrical case of soft vicariance (H1). To this end, we
obtain HABC estimates of Z and E((θτ)2) on 250 pseudo-
observed datasets of size DMarquesas simulated under H1
where true values of Z and E((θτ)2) are 0 and 0.0 – 0.05
respectively. Estimates for Z and E((θτ)2) were obtained
using a general prior (stage 1).

Another factor we explored was three other methods of
post-acceptance transformation other than local linear
regression (LLR) for obtaining a sample of the hyper-pos-
terior distribution of the Z hyper-parameter. Because Z is
a discrete integer (ranging from 0 to Y), it might be most
appropriate to preserve Z as a discrete integer when using
an ABC regression technique that implements polychoto-
mous logit regression (PLR) [48-50]. We therefore used
simulations to compare the effectiveness of LLR with: 1.
PLR; 2. using the raw accepted values (RAW); and 3. a
cumulative logit regression model (CLR). To compare the
estimator bias and precision of these four methods, we
calculated the root mean square error (RMSE) from 1000
estimates using each of these four methods on 1000 sim-
ulated pseudo-observed data sets with parameters ran-
domly drawn from the priors. The methods for CLR and
Page 9 of 18
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Hyper-posterior and Hyper-prior samples given Hawaiian DNA sequence data (11 taxon-pairs)Figure 3
Hyper-posterior and Hyper-prior samples given Hawaiian DNA sequence data (11 taxon-pairs). Dashed lines 
depict hyper-prior distributions and solid lines depict hyper-posterior distributions. Stage 1 hyper-parameter estimates: 
(A) Average effective population size E((θτ)2) of the putatively colonized endemic populations at times the 11 isolation times 
(TC and TV) across the seven (Y) taxon-pairs. (B) The number of descendent populations per seven (Y) taxon-pairs that arise by 

colonization at times . Stage 2 hyper-parameter estimates where hyper-prior is conditional given 

constant value of Z = 4: (C) ΩC,dispersion index of Z = 4 colonization times; ΩC = Var(τC)/E(τC) where τC is colonization 

time. (D) ΩV,dispersion index of Z = 7 soft vicariance times; ΩV = Var(τV)/E(τV) where τV is soft vicariance time time. (E) E(τC), 

average colonization time across Z = 4 colonization times. (F) E(τV), average soft vicariance time across 7 soft vicariance times. 
For each estimate, tolerance was 0.001 (2,000 accepted draws) using the local regression algorithm.
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PLR are implemented in the VGAM package distributed by
T. Yee under R http://www.stat.aukland.ac.nz/~yee. The
LLR method is implemented from R functions made avail-
able by M. Beaumont.

Results of Simulation Testing
Our simulations identified conditions under which the
HABC estimator is reliable as well as conditions under
which it is less reliable. At stage 1 of the HABC analysis,
the estimates of E((θτ)2) were consistently close to the cor-

responding true values of E((θτ)2), although the larger
sample sizes matching the Marquesas data set (DMarquesas)
yielded more accurate estimates of E((θτ)2) than using
sample sizes matching the smaller Hawaii data set (DHa-

waii; Figures 4A &4B). On the other hand, estimates of Z
were less accurate, yet using DMarquesas resulted in more
accurate estimates of Z than when using DHawaii (Figures
4C &4D). Additionally, estimates of Z representing colo-
nization across all Y taxon-pairs never resulted in false
positives given DMarquesas (Figure 4C). Specifically, when

Estimator Performance: 250 true hyper-parameter values plotted against their posterior mode estimates (stage 1 model)Figure 4
Estimator Performance: 250 true hyper-parameter values plotted against their posterior mode estimates 
(stage 1 model). Panels (A) and (C) are given samples sizes that are identical to the Marquesas sample sizes. Panels (B) and 
(D) are given samples sizes that are identical to the Hawaiian sample sizes. For each estimate, tolerance was 0.001 (2,000 
accepted draws) using the local linear regression algorithm.
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estimates of Z were 6 or 7, true Z values were always 6 or
7. Conversely, lower true values of Z yielded less accurate
estimates of Z (Figures 4C &4D). For example, when esti-
mates of Z were 0, true values ranged from 0 – 4 given
DMarquesas (Figure 4C). In general, the simulation analysis
verified the statistical confidence in the empirical infer-
ence of colonization across all seven Marquesas endemics,
yet demonstrated there to be more uncertainty in the
inferred history of the 11 Hawaiian endemics.

Under the constrained stage 2 model, the simulations
revealed a strategy for estimating the variability in the Z
colonization times. Specifically, the best strategy would be
to use estimates of ΩC rather than ΨC (Figure 5). However,
there was less accuracy and precision in the ΩC estimates
given DHawaii (Figure 5E). Unlike estimates of ΩC, esti-
mates of ΩV or E(τV) were not as reliable (Figure 5H), per-
haps due to the very small amount of migration (0 to 1.0
migrants per generation) after each "soft vicariance" event
(τV) under H1.

Estimator Performance: 250 true hyper-parameter values plotted against their posterior mode estimates (stage 2 model)Figure 5
Estimator Performance: 250 true hyper-parameter values plotted against their posterior mode estimates 
(stage 2 model). Panels (A), (B) and (C) are given samples sizes that are identical to the Marquesas sample sizes and are 
obtained with the hyper-prior of Z fixed at 7 (stage 2 model). Panels (D) through (I) are given samples sizes that are identical to 
the Hawaiian sample sizes and are obtained with the hyper-prior of Z fixed at 4 (stage 2 model). For each estimate, tolerance 
was 0.001 (2,000 accepted draws) using the local linear regression algorithm.
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Estimator performance under constrained history of asymmetrical soft vicariance (True Z = 0; True E((θτ)2) < 0.05; stage 1 model)Figure 6
Estimator performance under constrained history of asymmetrical soft vicariance (True Z = 0; True E((θτ)2) < 
0.05; stage 1 model). Each panel depicts a frequency histogram of 250 mode estimates of Z (A and B) and E((θτ)2) (C and D) 
under a constrained history of asymmetrical soft vicariance where Z = 0 and E((θτ)2) < 0.05. For all mode estimates, tolerance 
was 0.001 (2,000 accepted draws). Mode estimates for panels (A) and (C) are obtained using the local linear regression algo-
rithm, whereas the mode estimates for panels (B) and (D) are obtained using the raw 2,000 accepted values.
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The simulations also revealed that we have the ability to
distinguish H1 and H2 when the true history is a special
asymmetrical case of vicariance (H1) where Z = 0 and each
(θτ)2 ranges from 0.0 to 0.05 under the DMarquesas sample
size configuration (Figure 6). In this case, 63% of the Z
estimates were ≤ 1 (Figure 6A &6B). Likewise, estimates of
E((θτ)2) were a reliable indicator of detecting H1 under
this special asymmetrical case of vicariance (H1). Even
though true values of E((θτ)2) ranged from 0.0 to 0.05,
estimates of E((θτ)2) in this case were upwardly bias, with
90% of the E((θτ)2) estimates ranging from 0.21 to 0.48
(Figure 6C). Even though the E((θτ)2) estimator is
upwardly biased given this special case, it is upwardly
biased in the direction of correct inference of H1 if one
uses the criterion of E((θτ)2) >> 0.05 to distinguish H1
from H2. In this case, our empirical estimates of Z and
E((θτ)2) given the Marquesas data were not likely the
result of extreme asymmetrical soft vicariance.

The root mean square error (RMSE) from the simulation
study also revealed local linear regression (LLR) to outper-
form the three other methods that all keep the accepted
values of Z as discrete integers (LLR RMSE = 1.32; RAW
RMSE = 1.90; CLR RMSE = 1.95; MPR RMSE = 2.15).
However, we use all four methods for the empirical data
sets to check for consistency.

Discussion
Model Assumptions and Robustness
While previous studies have used multi-locus population
genetic data to reconstruct the demography and geogra-
phy of speciation [51-55], here we use single locus
mtDNA data to look at patterns across multiple co-distrib-
uted taxa. Although single locus inference can be hazard-
ous in the face of coalescent variance and the possibility
of selection, our approach offers the possibility to look at
patterns of community assembly when the community
consists of many non-model organisms where only "bar-
code" DNA sequence data can be feasibly collected. Not
only does our model incorporate the stochasticity of sin-
gle-locus coalescent variance across taxa, by combining
datasets into a hierarchical Bayesian analysis we gain sta-
tistical "borrowing strength" [38]. The "borrowing
strength" of HABC is achieved by making inferences
across groups (i.e. co-distributed taxa) by pooling infor-
mation across the groups without assuming the groups are
from the same population [39,40]. This allows estimating
congruence across groups in sub-parameters while bor-
rowing strength from the full comparative phylogeo-
graphic sample. This "borrowing strength" translates into
higher sample size depending on the magnitude of the
"pooling factor" which represents the degree to which
sub-parameter estimates (Φ) are pooled together from
hyper-parameter estimates of φ, rather than estimated
independently from each phylogeographic dataset [56].

The possibility of selection at the tightly linked mtDNA
genome could bias results of our analytical method [57],
especially if balancing selection occurred in the mtDNA
genome in ancestral or descendent taxa such that coales-
cent events were much older than neutral expectations.
Likewise, if positive selective sweeps occurred on the
mtDNA genome after colonization or vicariance, esti-
mates of Z and E((θτ)2) could be biased to reflect coloni-
zation [58,59]. However, if positive selection only
occurred at the mtDNA genome before colonization or
vicariance, then the timing of these isolation events could
be better estimated due to reduction of ancestral polymor-
phism. Furthermore, because selection and demography
are ultimately confounding, our method will be less relia-
ble if mitochondrial positive selection is prevalent in the
comparative phylogeographic sample. This could be espe-
cially troublesome if peripatric speciation by colonization
or vicariance involves positive selection at mtDNA genes
that allow adaptive divergence in novel peripheral habi-
tats [60-62]. Nonetheless, results from our HABC method
can be considered conservative with respect to inferring
the geographic and demographic history of isolation
across a peripheral community. For example, a strong
inference of colonization across an entire data set could
result from both strong positive selection and/or small
effective colonizing population sizes, but it would be
extraordinary if strong positive selection occurred at the
mtDNA genome of all Y co-distributed taxon-pairs.

A strong result of temporal concordance in isolation is
also conservative with respect to violations from a uni-
form molecular clock model. If rate variation occurred
across the Y taxa, then we would expect an inference in
temporal discordance unless rates were inversely propor-
tional with actual isolation times. Nevertheless, this
HABC method will be most useful when applied to co-dis-
tributed taxon-pairs that are closely related. Our empirical
application was restricted to cowrie gastropods (Cypraei-
dae) and the COI loci we used only marginally rejected
rate constancy [63].

Although Bayesian methods are less robust if results are
heavily dependent on prior bounds, results from the
empirical data were not sensitive to our exploration of dif-
ferent prior assumptions. The overall inferences and
hyper-posterior estimates from the empirical data were
not sensitive to model assumptions regarding the priors of
θ (Additional file 3) or post-isolation migration. Addi-
tionally, all four methods of post-acceptance transforma-
tion (LLR, PLR, CLR and RAW) yielded identical mode
estimates of Z given the Marquesas data and similar mode
estimates of Z given the Hawaii data (ranging from 4 – 5).

Another consideration is how deviations from a panmic-
tic Wright-Fisher model could have affected our HABC
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estimates. Although the sampling scale is large in some of
the source species (Additional file 1), the cowrie gastro-
pod taxa we included have high dispersal capabilities and
are therefore not likely to have elevated within species
subdivision [63]. This is confirmed by the relatively low
levels of within species average pair-wise differences (π1
and π2) in both data sets (Additional file 1). If intra-spe-
cies migration rates are > 1, our idealized coalescent
model assuming intra-species panmixia is somewhat
appropriate (Slatkin 1985). Even with some population
some structure, a standard coalescent model can suffice if
a species consists of many small demes with at least mod-
erate migration such that number of demes is approxi-
mated by a scaled effective population size [64-67]. If
ancestral population structure is approximately scaled by
ancestral effective population size, then our chosen priors
are conservative because we allow for ancestral popula-
tion sizes that are two to four times as large as the
observed pair-wise distances of extant population sizes
(π1 and π2; Additional file 1). However, our method
should not be applied to populations that are heavily
structured over large geographic scales.

Vicariance and Dispersal in Marine Communities
Vicariance and dispersal speciation could be hugely rele-
vant in the marine realm, especially within the highly
diverse Indo-Pacific region that is dominated by islands
rather than long continuous coastlines. Explanations for
elevated Indo-Pacific diversity in the centrally located
"coral triangle" portion of this Indo-Pacific region (Philip-
pines, Malay Peninsula, and New Guinea) usually revolve
around sympatric speciation followed by outward range
shifts [68] or peripatric speciation followed by inward
range shifts [69,70]. However, the plausibility of the first
hypothesis of sympatric speciation is very controversial on
theoretical grounds [71,72] as well as being very difficult
to test empirically [18]. On the other hand, the second
hypothesis of peripatric speciation is a much more likely
force behind Indo-Pacific diversification if long distance
oceanic dispersal to peripheral populations is sufficiently
low for isolation and subsequent reproductive or ecologi-
cal divergence to emerge between central and peripheral
archipelagoes [1-7].

Instead of the classic vicariance model, under our marine
vicariance model (or "soft vicariance") an ancestral range
is inter-connected by long distance gene flow that is inter-
rupted by oceanographic changes in temperature, sea level
and/or currents [10-12]. In this case we might predict that
co-distributed peripheral endemics became isolated
simultaneously in taxa with lower dispersal capability. On
the other hand, our marine colonization model is more
similar to the classic dispersal or peripatric model. Here,
allopatric isolation arises via sweepstakes colonization
where the timing of colonization could be predicted to

occur randomly across the co-distributed endemics after
an archipelago emerges from geological processes.

Hawaiian vs Marquesas Dynamics
Both Hawaii and the Marquesas have some of the highest
levels of endemism in all of Oceania [73-75], but HABC
analyses support different histories for their endemic spe-
cies. The Hawaiian archipelago is the most isolated island
chain in the Indo-West Pacific and has existed for > 70 My
with coral reefs since at least 35 My [76]. It is now well
established that terrestrial endemics can be older than the
oldest emergent island in the archipelago, a pattern result-
ing from initial colonization of older, now subsided
islands, followed by dispersal to new islands after emer-
gence [77]. Thus, there has been ample opportunity for
isolation and speciation, perhaps even more so for marine
taxa. Although the lower sample sizes lead to greater
uncertainty associated with the Hawaiian estimates (Fig-
ure 3), the hyper-parameter 95% credibility intervals sug-
gest a strong inference of isolation via soft vicariance in at
least a subset of the Hawaiian taxon-pairs (Z = 0.0 – 9.22;
E((θτ)2) = 0.30–0.95). If this is the case, then occupation
of the Hawaiian archipelago was much older than the
Marquesas archipelago, consistent with geologic evidence.
Moreover, the inference of soft vicariance in a number of
the taxon pairs suggests that there was greater potential for
migrants between this archipelago and the central Pacific
and Indo-Pacific triangle regions during older periods.
Such connectivity of the Hawaiian chain to the remaining
Indo-West Pacific via Johnston Atoll has been suggested in
other studies [78-80].

In contrast, we find strong inference of isolation via colo-
nization across all seven cowrie gastropod endemics co-
distributed in the Marquesas, as well as a strong inference
of temporal concordance in this colonization. Unlike
other island chains in the Pacific Ocean that have older
seamounts and atolls trending away from most recent
island (e.g. Hawaii), the Marquesan hotspot is unusual in
being quite young. The ages of Marquesan islands range
from 1.3 My (Fatu Hiva) to 6.0 My (Eiao) [81]. If we apply
a molecular clock of 1% divergence per My [63], the
inferred timing of simultaneous colonization of the Mar-
quesas archipelago is from 0.84 – 1.90 My (Additional file
3A), and is consistent with the young origins of the
islands. If we accept our strong inference of temporal con-
cordance, it could be argued that this assemblage of cow-
ries colonized via an episodic oceanographic event that
caused a surge in gene flow from the central Pacific region.
Given that the Marquesas has one of the highest levels of
marine endemism in Oceania [73,74], it will be interest-
ing to see if HABC analyses on other taxon-pairs show
similarly young divergences and temporal congruence.
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Conclusion
Although soft vicariance and colonization are likely to
produce relatively similar genetic patterns when only a
single taxon-pair is considered, our simulation analysis
shows that our hierarchical Bayesian model can poten-
tially detect if either history is a dominant process across
a marine community. The empirical implementation of
our method yields a strong inference of isolation via
simultaneous colonization across all seven cowrie gastro-
pod endemics co-distributed in the Marquesas. In con-
trast, our method shows a strong inference of isolation via
soft vicariance in at least a subset of the 11 Hawaiian
taxon-pairs, although the smaller sample size resulted in
less certainty in our estimates.

Our HABC method exemplifies the utility in "statistical
phylogeographic" approaches [82,83] rather then qualita-
tive and descriptive approaches that make large inferences
from the small details observed from gene trees [84]. The
HABC approach accomplishes this by analyzing all the
phylogeographic datasets at once in order to make across
taxon-pair inferences about biogeographic processes
while explicitly allowing for uncertainty in the demo-
graphic differences within each taxon-pair.

Although the approach described here uses HABC to test
for two particular biogeographic explanations of allopat-
ric diversification across co-distributed taxa, the HABC
framework is flexible and therefore can provide a skeleton
for testing other biogeographic models from comparative
phylogeographic data. Indeed, one of the original objec-
tives of phylogeography comparative was to resolve deep-
seated questions about how climate change drives com-
munity assembly and evolution of whole biotas [85].
However, this goal has so far been unrealized [86-88]
because comparative phylogeographic studies rarely
involve more than a handful of co-distributed species.
Comparative phylogeographic datasets are bound to have
explosive growth as collecting DNA sequence data across
a wide diversity of co-distributed taxa scales up to the level
of comprehensive ecosystem sampling. Such "commu-
nity-scale" comparative phylogeographic data sets could
potentially test classic biogeographic hypotheses (e.g.
vicariance versus dispersal) at the community level
[89,90], as well as test controversial and fundamental
hypotheses in community ecology such as Hubbell's Neu-
tral theory [91], Tillman's stochastic competitive assembly
model [92], and Diamond's niche assembly rules [93,94].
As comparative phylogeographic datasets grow to include
> 100 co-distributed taxon-pairs, the HABC approach will
be well suited to dissect temporal patterns in community
assembly and thereby provide a bridge linking compara-
tive phylogeography with community ecology.
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