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Abstract

Background: Understanding interactions between mutations and how they affect fitness is a
central problem in evolutionary biology that bears on such fundamental issues as the structure of
fitness landscapes and the evolution of sex. To date, analyses of fitness landscapes have focused
either on the overall directional curvature of the fitness landscape or on the distribution of pairwise
interactions. In this paper, we propose and employ a new mathematical approach that allows a
more complete description of multi-way interactions and provides new insights into the structure
of fitness landscapes.

Results: We apply the mathematical theory of gene interactions developed by Beerenwinkel et al.
to a fitness landscape for Escherichia coli obtained by Elena and Lenski. The genotypes were
constructed by introducing nine mutations into a wild-type strain and constructing a restricted set
of 27 double mutants. Despite the absence of mutants higher than second order, our analysis of
this genotypic space points to previously unappreciated gene interactions, in addition to the
standard pairwise epistasis. Our analysis confirms Elena and Lenski's inference that the fitness
landscape is complex, so that an overall measure of curvature obscures a diversity of interaction
types. We also demonstrate that some mutations contribute disproportionately to this complexity.
In particular, some mutations are systematically better than others at mixing with other mutations.
We also find a strong correlation between epistasis and the average fitness loss caused by
deleterious mutations. In particular, the epistatic deviations from multiplicative expectations tend
toward more positive values in the context of more deleterious mutations, emphasizing that
pairwise epistasis is a local property of the fitness landscape. Finally, we determine the geometry
of the fitness landscape, which reflects many of these biologically interesting features.

Conclusion: A full description of complex fitness landscapes requires more information than the
average curvature or the distribution of independent pairwise interactions. We have proposed a
mathematical approach that, in principle, allows a complete description and, in practice, can suggest
new insights into the structure of real fitness landscapes. Our analysis emphasizes the value of non-
independent genotypes for these inferences.
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Background

Understanding the structures of fitness landscapes is cen-
tral to evolutionary biology. The image of populations
evolving on fitness landscapes traces to Sewall Wright's
seminal work in the thirties [3]. Since then, several types
of fitness landscapes have been discussed in the literature
[3-8], resulting in some confusion. The surface of a land-
scape may represent the relative fitness of individual
types, or the average fitness of a population. In the former
case, the underlying coordinates describe either the geno-
typic or phenotypic state of an individual; in the latter
case, the coordinates describe either gene frequencies or
average phenotypes in a population. Our paper concerns
the mathematical analysis and interpretation of fitness
landscapes where the height of the surface represents the
relative fitness of individuals and the coordinates are dif-
ferent genotypes. In this evolutionary context, fitness
measures the expected reproductive success of an individ-
ual having a specific genotype in some particular environ-
ment. Thus, a fitness landscape is given by assigning to
each genotype g its fitness w,.
If all mutations were strictly additive or multiplicative in
their effects on fitness, then it would be rather easy to
describe the structure of fitness landscapes and under-
stand the resulting dynamics of adaptation by natural
selection. However, many mutations interact with one
another in complex ways. For example, two or more
mutations may interact such that their combined effect on
fitness is much greater or much less than predicted from
their individual effects; their combined effect may even be
opposite in sign to the expectation based on their individ-
ual effects. These deviations from simple expectations are
called epistasis [8,9], and they determine the shape of fit-
ness landscapes, including curvature and ruggedness.
Understanding the prevalence and mathematical forms of
these epistatic interactions is important for many issues in
evolutionary biology including the dynamics of adapta-
tion and divergence [3,8,10-12], reproductive isolation
and speciation [8,12-16], the evolution of sexual repro-

Table I: Genotype space.
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duction [17-20], the robustness of organisms to develop-
mental, environmental, and mutational perturbations
[21-24], the persistence of drug-resistant pathogens
[25,26], and more.

Over the last decade, several studies have sought to exam-
ine the form and prevalence of epistatic interactions by
measuring the fitness effects of numerous mutations
alone and in combination in viruses, bacteria, fungi, and
animals [2,27-31]. To date, these analyses have focused
on the overall directional curvature of fitness as a function
of the number of mutations, on the distribution of pair-
wise interactions, or on both. In this paper, we introduce
a new mathematical approach that allows a more com-
plete description of multi-locus interactions in a fitness
landscape. The benefits of this approach become evident
from our analysis of a fitness landscape of E. coli that was
obtained and first analyzed by Elena and Lenski [2]. They
measured relative fitness values for 37 genotypes at 9 loci
including the non-mutated parental strain or "wild-type",
9 single mutants, and 27 double mutants that each had a
different pair of mutations. Although there are 36 (=9 -8/
2) possible double mutants, only 27 were constructed due
to limitations of the markers used for strain construction.
No triple mutants or higher-order combinations were
constructed in this experiment.

We organized the 37 genotypes in the symmetric 10-by-10
matrix with missing values as shown in Table 1. For clar-
ity, we renamed the 9 mutations in the original study as
(a, b, ¢), (r, s, t), and (x, y, z), where all genotypes in each
of the three groups share the same antibiotic-resistance
markers. Notice that double mutants, each denoted by a
pair of letters, were produced except for those consisting
of pairs from the same set of three adjacent letters. For
example, a was paired with 1, s, ¢, x, y, and z, but not with
either b or c. Table 2 reports, for each genotype in the cor-
responding cell of Table 1, the median fitness value
obtained from ten replicate assays by Elena and Lenski

[2].

w a b 4 r
a ar
b br
c cr
r ar br cr

s as bs cs

t at bt ct

X ax bx X rx
y ay by 9% ry
z az bz cz rz

s t X y z
as at ax ay az
bs bt bx by bz
cs ct o ¢y cz

rx ry rz

sx sy sz

tx ty tz
sx tx

sy ty
sz tz

All 37 E. coli genotypes used in this study are listed in the matrix. The wild-type strain is denoted w, the single mutants are denoted by the letters a,
b, ¢, r, s, t, X, ¥, z, and the double mutants by pairs of these letters. Owing to the symmetry of the matrix, all genotypes different from the wild-type
are shown twice. Genotypes along the diagonal do not exist. The other empty cells, such as ab, correspond to double mutants that are missing
owing to the specific experimental design; no triple mutants were constructed in this experiment.
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Table 2: Fitness data.
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1.000 0.976 0.708 0.975 0.981
0.976 0.990
0.708 0.964
0.975 0.983
0.981 0.990 0.964 0.983

0.984 0.973 0.684 0.975

0.995 0.990 0.694 0.974

0.978 0.982 0.782 0.977 0.718
0.564 0.718 0.664 0.650 0.988
0.593 0.500 0.510 0.482 0.524

0.984 0.995 0.978 0.564 0.593

0.973 0.990 0.982 0.718 0.500

0.684 0.694 0.782 0.664 0.510

0.975 0.974 0.977 0.650 0.482
0.718 0.988 0.524
0.724 0.986 0.490
0.982 0.679 0.508

0.724 0.982

0.986 0.679

0.490 0.508

Each entry shows the fitness value of the corresponding genotype in Table |. Fitness is reported as the median of ten replicate assays performed to
estimate the growth-rate advantage of the respective mutant genotype relative to the wild-type strain [2]. Values above and below the diagonal are
the same. Genotypes along the diagonal do not exist; other empty cells correspond to genotypes that are missing owing to the specific

experimental design.

The experimental design is illustrated geometrically in Fig-
ure 1, which shows the genotopes of all three-locus subsys-
tems of the nine-locus system. A genotope is the set of all
possible allele frequencies for a collection of genotypes.
As a reference point, Figure 1a shows the regular cube rep-
resenting all possible allele frequencies for the complete
bi-allelic three-locus system. The absence of triple
mutants and some of the double mutants from the
present dataset gives rise to genotopes that are subsets of
the cube. Each three-locus subsystem is determined by
choosing three of the nine mutations, and there are three
distinct types. First, choosing all three mutations from dif-
ferent groups, for example 4, r, and x, induces the gen-
otope in Figure 1b, which is obtained by slicing off the
missing triple mutant from the cube. Second, choosing
exactly two mutations from the same group, for example
a, b, and r, further prunes the cube to a triangular prism as
in Figure 1c. Finally, choosing all three mutations from
the same group, for example 4, b, and ¢, results in a tetra-
hedron such as the one shown in Figure 1d.

rx
011 111 ™
ar

010 110 r

S001 T 101 x

000 100 W a
(a) (b)

Figure |

2 ax

The goal of our analysis is to describe the geometry of the
E. coli fitness landscape obtained by Elena and Lenski [2].
The fitness of a genotype was measured as the rate of pop-
ulation growth, expressed relative to the growth rate for
the wild-type. These authors calculated pairwise interac-
tions by considering the 27 equations of the following
sort: w-ar - a-r, where w is the fitness of the wild-type, ar
is the fitness of a double mutant, and a and r are fitness
values for each associated single mutant. They found
many significant deviations from zero, including several
cases of both positive and negative epistasis. The key mes-
sages of our paper are that additional types of gene inter-
actions exist even within this fitness landscape, and that
geometric methods can be used to describe and analyze
the system more exhaustively.

Our analysis of this landscape is based on the approach
developed by Beerenwinkel et al. [1]. We identify a com-
prehensive set of 243 gene interactions that includes the
27 standard pairwise tests used by Elena and Lenski. We

br
b b
L &
w a w

(c) (d)

Three-dimensional genotopes. The genotope of the complete bi-allelic three-locus system with eight genotypes is the reg-
ular cube, depicted in (a). The three-locus systems that arise from data structured as in Table | are displayed in (b), (c), and (d).
The genotope (b) lacks the triple mutant, genotope (c) lacks the triple and one double mutant, and genotope (d) contains only
the wild-type and the single mutants.
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then compare the epistatic deviations calculated using the
new tests to those obtained from the standard tests, and
we use the new tests to extract previously unnoticed fea-
tures of the fitness landscape. Specifically, we investigate
how epistasis depends on the fitness loss associated with
deleterious mutations. We also consider tests that provide
a new perspective on the relative "mixing ability" of differ-
ent mutations. Here, the mixing ability of any given muta-
tion specifies whether its epistatic interactions with a set
of other mutations tend to be positive or negative. Finally,
we describe the geometry of the overall fitness landscape
by focusing on the three-locus subsystems whose shapes
correspond to the triangulations of the four genotopes
shown in Figure 1, panels b-d. We also discuss how this
geometric formulation reflects the underlying set of gene
interactions.

Results

Markov basis of the interaction space

Our first point is that the genotype space in Table 1 allows
many more tests of epistasis than the 27 standard tests
performed by Elena and Lenski [2]. Notice that the stand-
ard test w-ar - a-r compares two genotypes having zero
and two mutations with two others each having one
mutation. The minimal Markov basis (see Methods for a
mathematical definition) of the space of tables of the type
displayed in Table 1 reveals an additional 216 non-stand-
ard tests of the following two sorts. First, there are 108
"double-double" tests that compare two double mutants
with two other double mutants, holding the distribution
of the mutant alleles constant, for example, ar-bs - as- br.
Second, there are another 108 orthogonal "single-double”
tests that compare one single mutant and one double
mutant with another single mutant and another double
mutant, again holding constant the allele frequencies, for
example, a-br - b- ar. For both types of non-standard tests,
the two genotypes on the right-hand side can be regarded
as the products of recombination between the two geno-
types on the left-hand side. Notice that the same relation-
ship also holds true for the standard tests.

Experimental biologists (including two authors of this
paper) are likely to raise three concerns about these non-
standard tests. What biological insights can non-standard
tests provide beyond those obtained using standard tests?
Are these additional tests independent of the standard
tests? What computational tools are available to perform
such tests on other datasets?

As we show in the sections that follow, the non-standard
tests are potentially useful in at least three respects. First,
they allow one to focus attention on features of epistasis
that are not quantifiable by the standard tests. For exam-
ple, we perform non-standard tests of the "single-double"
type to explore whether some mutations are better overall
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mixers than others. Second, non-standard tests span
greater genetic distances than do pairwise tests, allowing
more powerful analyses of the structure of fitness land-
scapes. For example, we use the "double-double" tests to
test curvature at genetic distances of four, whereas stand-
ard tests allow curvature to be examined only at distances
of two. Third, non-standard tests are an integral part of
the complete geometric description of a fitness landscape.
While this high-dimensional geometry is abstract and
even foreign, we describe how biological features of gene
interactions, such as mixing ability, are embedded in the
geometric shape of the landscape.

The non-standard tests are not independent, in a statisti-
cal sense, of the pairwise tests or of one another because
all the tests are calculated from the same underlying data.
Nonetheless, this complication can be addressed by
employing appropriate statistical methods (Tukey's jack-
knife, Bonferroni correction, etc.) to ensure that signifi-
cance levels reflect the data structure. Regarding the
availability of computational tools, we provide references
to programs that automate the calculations of the Markov
basis and perform the triangulations necessary to describe
the geometry of landscapes, and these tools can be
applied to other datasets. In supplementary material, we
illustrate the use of these computational tools and show
their output (see Additional files 1-5).

Comparing standard and non-standard epistasis terms
overall

An important feature of the standard tests is that the sign
of epistasis, either positive or negative, is always expressed
in reference to the same wild-type strain. The key result
reported by Elena and Lenski, based on the standard tests,
was that there were many significant epistatic deviations
in both directions, in contrast to one hypothesis that pre-
dicted negative epistasis should be the general rule [17].
At first glance, the non-standard tests described above
would not seem to allow this prediction to be tested,
because the sign of the difference is arbitrary; that is, the
labels that put one pair of mutants on one side of the
equation, and not on the other side, are arbitrary. How-
ever, the biological interest in epistasis is often framed in
terms of deleterious mutations, and Elena and Lenski
ensured that they had a high-fitness wild-type strain by
using one that had evolved for 10,000 generations in the
exact same environment employed for measuring the rel-
ative fitness of all the genotypes in their study. In the same
vein, we can anchor all 216 non-standard equations sim-
ply by ensuring that the genotype with the highest fitness
(of the four used in any given calculation) appears on the
left-hand side of the equation with positive sign.

Figure 2 shows the distribution of epistatic deviations for

all 216 of the non-standard equations (dashed curve) as
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well as the 27 standard equations (solid curve). The non-
standard tests support the inference of Elena and Lenski,
based on the standard tests, that many epistatic deviations
are positive and many others negative. In other words,
one directional form does not predominate to the exclu-
sion of the others. To the eye, it would appear that the
non-standard form is more skewed toward positive epista-
sis. If so, that difference would be interesting because the
non-standard tests include genotype sets in which the
maximal fitness is usually below the high-fitness wild-
type strain. Previous research has shown that compensa-
tory mutations, in which some mutations are condition-
ally beneficial only in the presence of certain otherwise
deleterious mutations, are biologically important [32-34].
Compensatory mutations contribute to positive epistasis
and, moreover, they become more important farther away
from a local fitness peak [33-36]. In the context of the E.
coli data that we are analyzing, we predict that epistatic
deviations tend to more positive values when the compo-
nent mutations have more deleterious effects (thus corre-
sponding to greater distances from the local peak).

To test this prediction for the fitness peak at the wild-type,
we calculated for each standard test of epistasis (such as
w-ar - a-r) the average fitness decrement A = 1 - (a + r)/2

— std. tests
- = non-std. tests
o -
2 o
‘@
c
[
a
o - 1L ol L [T I I
I T T T T 1
-0.4 -0.2 0.0 0.2 0.4 0.6
Epistasis
Figure 2

Standard and non-standard gene interactions. Dis-
played are density estimates of gene interactions as meas-
ured by the 27 standard tests (solid curve), for example w-ar
- a'r, and by the 216 non-standard tests (dashed curve), for
example arbs - as-br. The raw data are shown below the
density curves.
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of the two single mutants relative to the wild-type. We
then plot the epistasis values as a function of A for all 27
equations. In this way, we can test the hypothesis that epi-
static deviations tend more toward positive values when
mutations in the wild-type background are more deleteri-
ous (large A) than when mutations are less deleterious
(small A). The scope of this analysis can be extended sub-
stantially by also including the non-standard "double-
double" epistatic equations (such as ar-bs - as-br). We
anchored each double-double test with the fittest geno-
type (say ar) on the left-hand side, and calculated the aver-
age fitness decrement, A = ar - (as + br)/2, of the two
genotypes that appear on the right-hand side of the equa-
tion. These tests ask more generally for the relationship
between epistasis and the average fitness loss relative to
any local fitness peak rather than only the one centred on
the wild-type. Moreover, these non-standard tests may
have greater power because their "reach" extends over
mutational distances of four, rather than the two allowed
by standard tests. (We have excluded the non-standard
single-double tests from this analysis, because in those
equations each genotype has different Hamming dis-
tances to the two genotypes on the opposite side of the
difference equation. This heterogeneity prohibits direct
comparisons with the other tests).

Figure 3 shows the resulting relationship between the
average fitness decrement associated with component
mutations and the value of the epistatic deviation. For
both standard and non-standard tests, there is a strong
relationship in the predicted direction, such that epistatic
interactions tend to be more positive when the compo-
nent genotypes are less fit, and more negative when those
genotypes are fitter. This trend is marginally significant for
the 27 standard tests (r = 0.433, 25 d.f.,, p = 0.012), but
highly significant for the larger set of 108 double-double
tests (r=0.597, 106 d.f., p <10-11), if each of the deviations
is viewed as independent. However, these values all rest
on 37 genotypes, whose fitness values were estimated
with error (albeit with replication), and hence the errors
are not independent for those epistatic terms that share a
genotype. To take this complication into account, we per-
formed Tukey's jackknife test [37]. Even so, the associa-
tion remains strongly significant for both the standard
(mean r = 0.440, t,= 3.761, 26 d.f,, one-tailed p = 0.0004)
and non-standard tests (mean r = 0.578, t,=3.672, 26 d.f,,
one-tailed p = 0.0005). It is important to understand that
this inference concerns the relationship between average
fitness decrements and the form of epistasis around any
local peak within the particular landscape represented by
these 37 genotypes. In other words, it is an inference
about a restricted region of the complete E. coli genotypic
space.
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Epistasis correlates with relative fitness loss. For each
standard test (filled black circles), for example w-ar - a'r, and
each double-double test (open red circles), for example ar-bs
- as*br, anchored with the fittest type on the left-hand side of
the equation, the value of the test (epistasis) is plotted versus
the average fitness decrement (A) associated with the two
deleterious two-point mutations that define the genotypes
on the right hand side of the equation. Epistasis tends toward
more positive values in the context of more deleterious
mutations. The significance of this correlation was robust to
different assumptions about the independence of the data, as
described in the text.

If we want to make the same type of inference about the
complete genotype space, rather than the specific subset
sampled by Elena and Lenski, we can apply a similar, but
not identical, test. More precisely, we want to investigate
the correlation between average fitness decrease and
epistasis among any single and double mutants of the E.
coli genome. In that case, the unit of independent obser-
vation becomes the nine single mutations, and the result-
ing inference concerns the landscape of all possible
double mutations derived from the same parental strain.
We again applied Tukey's jackknife, this time eliminating
in turn all tests containing a particular mutation in any of
the four double mutants, rather than eliminating a partic-
ular genotype as before. In this case, the association is
only marginally significant (mean r = 0.572, t,= 1.363, 8
d.f., one-tailed p = 0.105 for the standard tests, and mean
r=0.457,t,= 1.780, 8 d.f,, one-tailed p = 0.056 for the
non-standard tests), but still supports the trend for
increasingly positive epistasis with increasing average fit-
ness loss. Given that these tests aim to infer a complex
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genome-wide relationship between average mutational
effects and the form of epistasis from a small sample of
mutations, it is encouraging to find such a strong trend.

We present these alternative analyses to emphasize the
subtly different hypotheses that can be addressed by using
our mathematical approach. Comparing the last two anal-
yses suggests that individual mutations might have perva-
sive effects on the shape of the local landscape. While
pervasive effects of certain mutations can make it more
difficult to test broader generalizations, the precise nature
of these pervasive effects is of biological interest. In the
next section, we follow the same general approach, but
focusing on a different set of epistatic interactions, to
examine differences between individual mutations in
greater detail.

Some non-standard tests reveal differences in mixing
ability

In this section, we use non-standard tests of the "single-
double" type to explore a particular aspect of the fitness
landscape, specifically whether certain mutations are bet-
ter mixers than others. The mixing ability of any particular
mutation indicates whether its epistatic interactions with
other mutations tend to be positive or negative. We can
then measure the relative mixing ability of two mutations
by holding constant the identity of other mutations with
which the two of interest are mixed. Consider the polyno-
mial a-br - b- ar. This test asks, in effect, whether mutation
a or b mixes better with a third mutation r. An individual
test of this form might be interesting when one has spe-
cific knowledge about the identity of the three mutated
genes and the position of their products in a metabolic
pathway, for example. By contrast, Elena and Lenski
emphasized the statistical properties of epistatic interac-
tions. In this context, we can examine related sets of these
single-double equations to ask whether one mutation is a
better mixer than another in the context of the sample of
mutations with which they were each tested.

Any pair of mutations belonging to the same set of three
({a, b, ¢}, {r, s, t}, or {x, y, z}) was tested with the exact
same set of six mutations belonging to the other two sets.
For example, the following six equations examine the rel-
ative mixing ability of "focal mutations" a and b with
respect to "tester mutations" 1, s, t, x, y, and z: a- br - b-ar;
a-bs-b-as;a-bt-b-at,a-bx-b-ax;a-by-b-ay;and a-bz -
b-az. All in all, there are nine groups of six equations each
that compare the general mixing abilities of two focal
mutations from the same set: a versus b, a versus ¢, b versus
¢, T Versus s, 7 versus t, s versus f, X versus y, x versus z, and
y versus z. There are another 18 groups of three equations
each that compare the mixing abilities of two focal muta-
tions from different sets. (Nine more groups of this type
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are redundant, in the sense that their values are deter-
mined by the first 18 groups.)

In our analysis, we focus on the nine comparisons of mix-
ing ability that each involves six tester mutations, because
these provide more statistical power that might reveal dif-
ferences between focal mutations. Figure 4 summarizes
these nine comparisons. Six points are plotted above each
pair of focal mutations, corresponding to the six different
tester mutations with which each one was combined. A
value above zero indicates that the first-listed mutation in
the focal pair was the better mixer. For example, for the
first pair (a, b) of focal mutations, a was the better mixer
with two tester mutations whereas b mixed better with
four others. For each focal pair, we performed a t-test to
ask whether the average epistatic deviation was signifi-
cantly different from zero. The focal pairs (x, y) and (y, z)
were both significant (p < 0.027), with y being the better
mixer in both cases. Two other focal pairs, (a, b) and (b, ¢),
were marginally non-significant with p = 0.083 and p =
0.068, respectively, and b was the better mixer in both of
these cases. The (y, z) comparison survives even a stringent
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Figure 4

Mixing ability of mutations. For each focal pair of muta-
tions (a, b), ..., (y, z), six tests of the sort a-br - b-ar were per-
formed in order to test the relative mixing ability of
component mutations a and b relative to a tester mutation r.
A small amount of jitter has been added to the vertical coor-
dinate of each point in order to facilitate visualization. Mixing
abilities vary considerably between mutations, with the (y, z)
comparison (last column) revealing the most significant dif-
ference in favour of y as the superior mixer to z.
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Bonferroni correction that accounts for the multiplicity of
related tests (p = 0.0054 -9 < 0.05). Therefore, we can con-
clude that mutations are variable in their general mixing
ability. The molecular identities of mutations were not
identified by Elena and Lenski [2], and so we cannot say
anything about the potential physiological bases for the
observed differences in mixing ability. However, future
studies of epistatic interactions might systematically com-
pare mixing ability between different classes of mutations,
such as those affecting protein structures and regulatory
domains.

Geometry of the fitness landscape

Our final set of results is concerned with the geometric
shape of the fitness landscape. Since fitness landscapes are
high-dimensional and complicated objects, it is desirable
to classify them into a finite set of distinct shapes; with the
general idea that fitness landscapes with the same shape
are likely to share biological properties. This approach
generalizes the classification of bi-allelic two-locus land-
scapes into those with positive epistasis versus those with
negative epistasis. This appealing binary classification has
been linked, for example, to the advantage of sex, but it
does not extend to higher-dimensional genotype spaces.
We present here a notion of the shape of a fitness land-
scapes for any genotypic space. This concept is intimately
related to the interaction tests discussed so far, because the
shape is determined by a certain subset of the gene inter-
actions that includes the Markov basis. Thus, the pro-
posed classification of landscapes into shapes can be
regarded as a formal summary of all the various standard
and non-standard tests.

The fitness landscape studied in this paper consists of the
37 E. coli genotypes and their fitness values as shown in
Table 2. The genotope is the set of all possible allele fre-
quencies that can be realized by any population on these
genotypes. It is a nine-dimensional figure with 37 verti-
ces, and it contains all the three-dimensional genotopes
shown in Figure 1. By the shape of the fitness landscape
we mean the triangulation of the genotope that is induced
by the fitness values (see Methods for details). Since most
of us have trouble visualizing and interpreting nine-
dimensional objects, we therefore study the shape by ana-
lyzing its restrictions to genotypes on two and three of the
nine loci. In so doing, we aim to illustrate how certain fea-
tures of the fitness landscape - in particular, differences in
mixing ability revealed by the non-standard tests - are
reflected in the geometry of the fitness landscape.

Consider the bi-allelic two-locus system with genotypes w,
a, 1, and ar. Its genotope is the unit square in (a, r)-space,
and a generic fitness landscape has exactly one of two pos-
sible shapes corresponding to either negative or positive
epistasis, i.e., tow ar - a r being either negative or positive.
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Negative epistasis induces the triangulation of the square
consisting of the two triangles {w, 4, r} and {a, r, ar},
whereas positive epistasis results in the other possible tri-
angulation with {w, a, ar} and {w, r, ar}.

For larger genetic systems, the role of the triangles is
played by simplices. The shape of the present fitness land-
scape on 37 genotypes is a triangulation of the genotope
into 362 nine-dimensional simplices (see Additional file
5). The following analysis of the geometry of this space is
based on the general framework developed elsewhere [1],
as applied to the specific experimental design that gener-
ated the E. coli fitness landscape investigated in this paper.
The general idea is to investigate and describe the interac-
tion space. This space has finite dimension, but infinitely
many elements, and each element of this space represents
one interaction. There are many different ways of extract-
ing potentially interesting subsets of the interaction space.
We suggest looking at the circuits, which generate the
space but are not linearly independent. The signs of the
circuits determine the triangulation of the genotope and
thus the shape of the fitness landscape. However, the
number of circuits grows fast with the size of the fitness
landscape; the present E. coli landscape has 772,731 cir-
cuits. Therefore, we restrict our attention to the much
smaller subset provided by the Markov basis. The circuits
and the Markov basis provide a natural generalization of
the concept of pairwise epistasis.

The three-locus subsystems that occur in this dataset are
represented in Figure 1b-d by their genotopes. Notice that
type (d) cannot be further subdivided. By contrast, type
(c) has six triangulations and type (b) has 16 triangula-
tions. We focus on type (b) in order to show how the dif-
ferent shapes are related. The signs of a total of nine
circuits (or tests) determine the geometry, including three
standard tests like w-ar - a-r, three non-standard single-
double tests, and three cubic tests that are not part of the
minimal Markov basis. In Figure 5, each of the 16 shapes
is represented by a vertex in the graph and labelled by an
integer. The labels refer to the 74 shapes of the 3-cube (see
Table 5.1 in [1] for the complete list), 16 of which occur
here as the shapes of the type (b) genotype space. Two
shapes in the graph are connected by an edge if they differ
only by the sign of a single test. For example, shapes 36
and 37 differ by the sign of r-ax - x-ar. Thus, the graph
represents the 16 possible shapes of a fitness landscape
over the three-locus genotype space consisting of seven
genotypes (all but the triple mutant). This graph provides
the basis for statistical inference about the three-way inter-
actions in the given fitness landscape. We find the follow-
ing shapes among all 27 of the three-dimensional
genotopes of type (b) that appear as subsets of the com-
plete dataset: shape 56 (frequency: 6), 7 (5), 25 (4), 8 (3),
52 (3), 21 (2), 23 (2), 2 (1), and 20 (1). A closer inspec-
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36

35 37

Figure 5

The 16 shapes of fitness landscapes of genotope (b).
In the graph, each vertex represents one of the 16 possible
geometric shapes of a fitness landscape on the truncated
three-locus system that corresponds to genotope (b) in Fig-
ure |. The shapes are determined by a collection of different
tests for gene interactions. Two shapes are connected by an
edge if they differ only by the sign of a single test. The label-
ling of the vertices follows [I, Table 5.1].

tion of this shape distribution reveals many deviations
from linearity in the fitness landscape, but no single dom-
inating shape. This result therefore confirms and extends
the earlier finding of Elena and Lenski [2] about the com-
monness of deviations from linearity.

The analogous graph of possible shapes for the three-
locus subsystem corresponding to the triangular prism
(Figure 1c) is a hexagon. In fact, that hexagon occurs three
times as a sub-graph in the graph for type (b) illustrated
in Figure 5, because the genotope (c) is contained within
the genotope (b) in three different orientations. Intui-
tively, any three-locus genotype space lacking a double
and the triple mutant can be regarded as a subspace of the
space that only lacks the triple mutant. The six triangula-
tions of genotope (c) are represented in Figure 5 by the
three hexagons with vertices {35, 36, 52, 21, 20, 50}
(upper left), {36, 37, 56, 25, 23, 52} (upper right), and
{37, 35, 50, 22, 24, 56} (bottom), respectively, that are
related by symmetry.

The shape of fitness landscapes on type (c) spaces, such as
{w, a, b, 1, ar, br}, is determined by the signs of the three
testsw-ar-a-r, w-br-b-r,and b-ar - a-br. Therefore, the
shape summarizes the information about the standard
pairwise interactions between mutations a and r and
between b and r, as well as the relative mixing ability of a
and b with respect to r. For example, five of the six subsys-

Page 8 of 12

(page number not for citation purposes)



BMC Evolutionary Biology 2007, 7:60

tems of type (c) involving mutations y and z have shape
21, while the subspace {w, y, z, b, by, bz} has shape 52.
Shape 21 is defined by a negative sign for the second of
the three tests above and a positive sign for the other two,
whereas shape 52 is defined by positive signs for all three
tests. Hence, these shapes reflect positive epistasis involv-
ing y (6/6 tests), positive epistasis involving z (5/6 tests),
and superior mixing ability of y over z (6/6 tests). As such,
the geometric shapes provide more details about the form
of mutational interactions than the average values of the
tests analyzed in the previous section. On the other hand,
these shapes summarize the data by classifying continu-
ous fitness values into discrete shape classes which reflect
the sign pattern of the interaction tests.

Discussion and Conclusion

Epistasis occurs whenever mutations interact non-linearly
with one another, and it represents a major challenge in
describing the mathematical structure of real fitness land-
scapes. With epistatic interactions, the combined effect of
two or more mutations on fitness may be greater than, less
than, or opposite in sign to expectations obtained by com-
bining their separate effects. A growing body of empirical
research indicates that epistasis is very common in nature
[2,11,21,23,26-34], [39,40]. However, a complete mathe-
matical description of epistatic interactions has not been
forthcoming for any system because the forms of epistasis
appear to be diverse, idiosyncratic, and hence complex.

To date, two different aspects of epistasis have served as
summary statistics of these interactions. First, studies have
used the overall directional curvature of mean fitness as a
function of the number of random mutations introduced
into the genome of some wild-type organism [2,27-31].
An older variant of this approach uses the time during
which mutations have accumulated in a population sub-
jected to severe bottlenecks as a proxy for estimating the
number of mutations [41-44]. In any case, the absence of
overall directional curvature does not distinguish between
two biological scenarios: (i) most mutations have inde-
pendent effects such that there is very little epistasis; and
(ii) epistasis is common but interactions between muta-
tions are diverse in their directional effects, thereby
obscuring overall average curvature [2]. These two scenar-
ios make different predictions about the evolution of a
population on a fitness landscape that may confound
efforts to understand, for example, the evolution of sexual
reproduction [18,20]. The second summary of epistasis
considers the statistical distribution of a particular class of
epistatic interactions, typically pairwise [45]. For example,
Elena and Lenski [2] found that average fitness as a func-
tion of mutation number did not deviate significantly
from log-linearity, which might suggest that epistasis is
rare. But in a second experiment, they showed that signif-
icant pairwise interactions were common, although some
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were positive and others negative, such that there was no
clear trend with respect to overall directional curvature.

The objective of this paper is to introduce biologists to a
new mathematical framework for characterizing epistatic
interactions between mutations, which goes beyond both
overall directional curvature and pairwise interactions by
providing a complete geometrical description of the epi-
static interactions that define an empirically determined
fitness landscape. To that end, we have re-analyzed the
dataset from the pairwise experimental design performed
by Elena and Lenski [2] using this new approach. In addi-
tion to providing an overall geometric description, vari-
ous biologically motivated tests about the forms of
epistasis are embedded in this framework. In particular,
the geometric framework allows not only tests of the
standard pairwise interactions but also non-pairwise tests
that gave new insights into (i) the relationship between
the form of epistasis and the individual mutational
effects, and (ii) variation between mutations in their mix-
ing ability with other mutations.

The fitness landscape that we analyzed comprises 37 gen-
otypes of E. coli that were constructed by introducing nine
mutations into a wild-type strain and constructing a
restricted set of 27 double mutants. Despite the absence of
any triple or other higher-order mutants in the dataset,
our analysis reveals complex new epistatic interactions,
beyond the pairwise interactions reported previously.
First, our analysis confirms and extends Elena and Lenski's
inference that the fitness landscape is complex, such that
an overall measure of curvature obscures a complex
admixture of interaction types, some with positive and
others with negative effects on fitness (Figure 2). Second,
we calculated the set of non-standard interactions that
contrast two double mutants with two other double
mutants, while holding all of the component alleles con-
stant. In doing so, we found a strong correlation between
the average fitness decrement associated with mutations
and the resulting form of epistasis, such that epistatic
deviations tend toward more positive fitness effects when
the component mutations are more deleterious (Figure
3). This finding also led us to re-examine interactions
based on the standard pairwise tests for evidence of this
relationship, and the same trend was evident. This corre-
lation is consistent with previous studies showing that
compensatory mutations, which contribute to positive
epistasis, become more important as one moves farther
away from a local fitness peak [33-36]. More generally,
this association emphasizes that any particular epistatic
interaction is a local feature in the fitness landscape, and
this association identifies one source of variation among
local features.
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Third, we show that individual mutations contribute in
different ways to the complex admixture of epistatic inter-
actions. In particular, we found that some mutations are
better mixers than other mutations (Figure 4). That is,
double mutants that include mutations that are relatively
"good mixers" tend to be more fit than double mutants
that harbour "bad mixers", even when the identity of their
partner mutations is held constant. Although our analyses
have not specifically addressed the evolution of sexual
recombination, we suggest that appropriately designed
tests of mixing ability may provide valuable insights into
this area. A key difference between asexual and sexual
reproduction is that the fate of a particular mutation is
tied to its fitness effect in the genetic background where it
arose in the case of asexual reproduction, while a muta-
tion's fate in a sexual population depends on its effects
over many backgrounds [46,47]. Finally, we determine
the overall geometric shape of the fitness landscape,
which summarizes all the biologically interesting features
described above (Figure 5).

In closing, we would like to raise an issue related to exper-
imental design, one that requires attention when plan-
ning studies that might employ these new approaches to
testing epistatic interactions and describing fitness land-
scapes. In their paper, Elena and Lenski [2] viewed it as
problematic that the same mutations were used in multi-
ple genotypes, because this compromised the statistical
independence of some of their observations. They
addressed this problem by applying Bonferroni correc-
tions to their statistical tests, but they could instead have
made 27 double-mutant genotypes with no overlap in the
constituent mutations. Fortunately, they did not do so
because, if they had, it would not have been possible to
apply the mathematical approaches we have used to ana-
lyze the epistatic interactions and the shape of the under-
lying fitness landscape. Thus, minimizing the mutational
overlap between genetic constructs may simplify statisti-
cal analyses, but it also constrains the analysis of more
complex forms of epistasis. In particular, the existence of
shared mutations allowed us to examine genotypes that
spanned mutational distances of 3 (single-double tests)
and 4 (double-double tests), which were essential for
achieving the new inferences outlined in this study. There-
fore, we recommend that future studies of epistatic inter-
actions include many genotypes that share mutations in
order to explore the geometry of the fitness landscape
more fully. Of course, the inclusion of triple mutants and
other higher-order genotypes can extend the reach of our
geometric approach but, even then, the reach will be
greater still if two or more sets of higher-order genotypes
share some mutations.
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Methods

Bacterial experiments

Our analyses use the data obtained from the second of
two experiments reported by Elena and Lenski [2]. Details
of genotype construction and competition assays are pre-
sented there. Briefly, they constructed 9 genotypes, all
from the same initial strain, that each had a single muta-
tion caused by the insertion of one of three Tn10 mini-
transposons carrying different antibiotic-resistance mark-
ers. Other work indicated that the site of an insertion is
largely responsible for a mutation's effect on fitness [48].
They then constructed 27 genotypes each carrying two of
these mutations. Nine of the 36 possible double mutants
were not constructed owing to restrictions based on hav-
ing only three resistance markers, and no triple mutants
were constructed in that experiment. The fitness of each of
these 9 single mutants and 27 double mutants was meas-
ured in competition with the wild-type strain. Fitness
measures the growth rate of a genotype realized during
competition with the wild-type, and it is also expressed
relative to the realized growth rate of the wild-type. Each
pair-wise competition was replicated 10-fold and, in our
analyses, we have used the median of the 10 estimates as
the fitness value for each genotype. The fitness of the wild-
type strain was set to 1.

Mathematical framework
Our analysis is based on the mathematical framework pre-
sented by Beerenwinkel et al. [1]. The dataset analyzed
here induces the genotype space G c {0,1}° of size 37 con-
sisting of the wild-type strain w = 000000000, the nine
single mutants a = 100000000, ..., z = 000000001, and the
subset of 27 double mutants ar = 100100000, ..., tz =
000001001 (Table 1). We denote by A, c R37 the set of all
populations (genotype frequencies) on G. The genotope
I, = R?is the set of all allele frequencies that can be real-
ized by populations on G. The genotope is a nine-dimen-
sional polytope, defined as the convex hull of the 37
genotypes, i.e., as the set of all convex combinations
2 Ag &, with 4,20 and decllg =1). Figure 1 shows
geG
the genotopes of all three-locus subsystems induced by G,
all of which are contained in Il .

There is a natural mapping p : A, — Il that assigns to each
population its allele frequency spectrum. The kernel of
this map defines the interaction space (see Section 3 in
[1]). The elements of the interaction space measure the
gene interactions that underlie the given fitness landscape
on G. They include both the standard and non-standard
tests used in our analyses.
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The specific experimental design that was used to generate
the present fitness dataset allows us to represent the geno-
types in the matrix displayed in Table 1. The entries of this
table are interpreted as variables. If we regard Table 1,
hypothetically, as a contingency table of genotype counts,
then taking row sums (or, equivalently, column sums)
corresponds precisely to evaluating the mapping p. The
kernel of p is the space of integer tables of the same format
with zero margins (row sums). A canonical set of genera-
tors for this kernel is the minimal Markov basis [49],
which consists of polynomials in the unknown variables,
one for each genotype. These polynomials correspond to
the minimal generators of the toric ideal associated with p
(see [51] for an introduction to toric ideals). The Markov
basis represents the fundamental gene interactions that
underlie the given fitness landscape. It consists of the 27
standard tests and the 216 non-standard tests that are
described in the Results section and listed in supplemen-
tary material ( see Additional file 4).

A simplex is an n-dimensional analogue of a triangle. For-
mally, a simplex can be defined as the convex hull of a set
of (n + 1) affinely independent points in R [50]. This
means that the (n + 1) points span an affine space of
dimension n. For example, Figure 1d shows a 3-simplex
(known as a tetrahedron), which is the convex hull of the
points w, a, b, and c. By a triangulation of a polytope we
mean its decomposition into a set of simplices. A fitness
landscape on G gives rise to a triangulation of the gen-
otope I (see Section 4 in [1]). Thus, the shapes of fitness
landscapes on a genotype space G are defined as the
induced triangulations of its genotope. These triangula-
tions are determined by the initial ideal of the toric ideal
associated with p. The derivation of the triangulation from
the initial ideal is explained in [[51], Chapter 8]. The spe-
cific triangulation induced by the data in Table 2 consists
of 362 simplices and is provided as supplementary mate-
rial (see Additional file 5). In Figure 5, all possible shapes
are displayed for the three-locus system that corresponds
to the genotope shown in Figure 1b. In fact, the shapes
correspond to the vertices of the three-dimensional sec-
ondary polytope of this genotope.

Computational methods

The Markov basis can always be derived from the geno-
type space (the set of measured genotypes) by algebraic
computations. However, there is no simple recipe for
writing out the Markov basis. We computed the Markov
basis independently with the computer algebra systems
Macaulay 2 [52] and Singular [53]. The triangulation was
computed independently with Macaulay 2 and 4ti2 [54].
All statistical computations were performed in R [55]. In
our supplementary materials, we illustrate the use of the
Macaulay 2 program for calculating the Markov basis and
triangulation of a dataset [see Additional files 1-3].
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