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Abstract

Background: One important mechanism by which large DNA viruses increase their genome size
is the addition of modules acquired from other viruses, host genomes or gene duplications.
Phylogenetic analysis of large DNA viruses, especially using methods based on alignment, is often
difficult due to the presence of horizontal gene transfer events. The recent composition vector
approach, not sensitive to such events, is applied here to reconstruct the phylogeny of 124 large
DNA viruses.

Results: The results are mostly consistent with the biologist's systematics with only a few outliers
and can also provide some information for those unclassified viruses and cladistic relationships of
several families.

Conclusion: With composition vector approach we obtained the phylogenetic tree of large DNA
viruses, which not only give results comparable to biologist's systematics but also provide a new
way for recovering the phylogeny of viruses.

Background

Viruses are small, infectious, obligate intracellular para-
sites that are capable of replicating themselves within
their host cells. They are even smaller than the smallest
elementary biosystem, yet still possess some properties of
living systems such as having a genome and the ability to
adapt to changing environments. However, viruses cannot
capture and store free energy and they are not functionally
active outside their host cell [1].

Traditionally, viruses were characterized by morphologi-
cal features including capsid size, shape, structure, etc., as
well as physicochemical and antigenic properties. As more
and more viral genomes are being sequenced, the evolu-

tionary relationship of a great many families and genera is
being explored [2,3] by sequence analysis on single gene
or gene families, such as polymerase, capsid and move-
ment genes [4-10]. The virus taxonomy system is
approved and updated by the International Committee
on the Taxonomy of Viruses (ICTV).

However, it is full of ambiguity for phylogenetic analysis
based on single gene when using conserved or similar
genes since horizontal gene transfer (HGT) between
viruses, along with gene duplication, gene capture from
host appears to have been frequent in large DNA viruses
[11-14]. Genetic mosaicism of phages has been known for
a long time. Homologous morons (coding region and
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transcription control sequences) are found in many line-
ages of phages [15], and these kinds of genetic acquire-
ments have also been considered the main sources of
increasing genome size in large DNA viruses [9,16]. The
high substitution rate of viruses also limits the sequence-
based methods from revealing the distant evolutionary
relationships [11,17]. For example, the herpes simplex
virus type 1 mutates 10 times greater than mammalian
genes (nearly 3.5 x 108 substitutions per site per year)
[18,19]. Some attempts have been made to combine viral
structure and function characteristics and genomic infor-
mation of their hosts into sequence information [11,17]
although quantifying such structural similarity has proved
to be extremely challenging.

In the meantime there are several other attempts to infer
viral phylogeny from their whole genomes [12,20-25] to
avoid the problem of gene rearrangement, gene loss, gene
duplication and lateral gene transfer. However, some of
them infer the majority consensus tree of the many trees
of individual genes or use the combined sequences of
many shared genes [12,21,22]. Some of them employ
gene content [12,22,23] and gene order [12,22] method,
but the former has to correct for the genome size effect
[26] and the latter can be hindered by a lack of synteny
conservation or the variation of the evolving rate of syn-
teny between taxa [12,26]. Above methods are partly or
completely based on alignment of conserved or similar
sequences which is hard to infer more distant evolution-
ary relationships. Gao and Stuart [20,25] apply new align-
ment-free methods to resolve virus relationships
respectively, which appear to be sufficiently powerful to
explore the phylogeny of viruses at large evolutionary dis-
tance.

Since viruses have no universal common genes just like
SSU rRNA in cellular life, it is difficult to reconstruct the
phylogenetic tree for distinct type of virus with most of
former methods. We present here a phylogenetic analysis
of large DNA viruses with the Composition Vector (CV)
method [20,27,28] and discuss their relationships at a
deep level. The CV method does not require extended
alignments, predefined operational orthologs, or even
predefined homologs (for details see material and meth-
ods). We show that the results are mostly consistent with
the biologist's systematics with only a few outliers and
also provide some information for those unclassified
viruses and cladistic relationships of several families.

Results and discussion

A phylogenetic tree including 124 dsDNA viruses is
shown in Figure 1. Apparently, despite numerous hori-
zontal gene transfer among large DNA viruses [13], our
analysis is able to divide the 124 dsDNA viruses into 10
families with only 4 outliers, CuniNPV, IIV-6, IcHV-1 and
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OsHV-1 (see Additional file 1: 124 large dsDNA virus
names, abbreviations, and NCBI accession numbers for
viruses names, abbreviations and accession numbers).

Phylogenetic relationships of all 124 dsDNA viruses com-
ing from 33 genera, 10 families are well consistent with
the taxonomy by ICTV [1] and other phylogenetic studies
[9] with few exceptions.

Adenoviridae

Fig. 1 and Fig. 2a supports the division of this family into
four genera. It is notable that the two genera, Atadenovirus
and Siadenovirus, which both comprise viruses from a vari-
ety of hosts locate between another two genera, Mastaden-
ovirus whose hosts are mammals and Aviadenovirus whose
hosts are birds. This variety of host origin supports the
hypothesis that interspecies transmission, i.e. host
switches of adenoviruses, may have occurred [29].

Baculoviridae

According to the classification in ICTV database, one of
the largest families in dsDNA viruses, Baculoviridae, is
composed of two genera, Granulovirus and Nucleopolyhe-
drovirus. However, the 4-subbranch of this family shown
in Fig. 1 and Fig. 2b complies with the classification of
their hosts. Dipteran-infecting baculovirus, CuniNPV,
locates the most deep [30] and stay outside the whole
large clade, followed by the Hymenoptera baculovirus
(NeleNPV and NeseNPV) and Lepidoptera baculovirus (the
rest of them) [12,31]. There are three hypotheses on the
origin of Baculoviruses: originated within Lepidoptera with
subsequent horizontal transmissions to other insect
orders [32]; originated with the cocladogenesis of the
viruses and their hosts [33]; originated from the ancestral
baculoviruses that were probably able to infect the hosts
of different orders, with ancient coevolution between the
hosts and pathogens then leading to the different order
host specialization [12]. Our analysis apparently provides
equal support to the last two hypotheses as postulated by
Herniou [30], without comparing the division time of
viruses and their hosts.

Poxviridae

The division of Poxviridae into two subfamilies Chordopox-
virinae (ChPV) and Entomopoxvirinae (EnPV) shown in Fig.
1 and Fig. 2d, is the same as in the systematics of ICTV.
Within the cluster Orthopoxviruses in ChPV, ECTV and
CPXV are the most divergent, which is similar to
McLysaght's study [34] and is also supported by another
analysis based on multiple genes alignment [3]. Capripox-
virus, Leporipoxvirus, Suipoxvirus and Yatapoxvirus form
another cluster, in which Capripoxvirus and Suipoxvirus are
much closer to each other, and this supports the hypoth-
esis that they might have evolved from a common ances-
tor [3]. In Figure 1, DPV, an unclassified Poxvirus, is
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assigned to ChPV subfamily, which agrees with Afonso's
result [35].

Herpesviridae

Within the Herpesviridae family, Fig. 1 and Fig. 2c also sup-
ports the observations of an early split of the Beta- and
Gammaherpesviruses from the Alphaherpesviruses [36]. It is
worth mentioning that TuHV-1, previously known only to
belong to the Beta-subfamily, now is found to cluster with
Cytomegaloviruses in Fig. 1, which follows Bahr's analysis
[37]. According to the taxonomy system of ICTV, the
Gamma-subfamily consists of two genera, Lymphocryptovi-
rus and Rhadinovirus. MuHV-4, whose position was previ-
ously unresolved and various [36,38] is now assigned to
Rhadinoviruses according to ICTV, and is the most diver-
gent in fig. 1. The rest two ungulate herpesviruses within
Rhadinoviruses, AIHV-1 and EHV-2, are divergent from
others which is in accordance with other analyses [36,38].
However, another ungulate herpesvirus, BoHV-4, clusters
closely to HHV-8 and CeHV-17, which is incompatible
with the hypothesis that herpesviruses have coevolved
with their hosts [39].

All Iridoviruses except IIV-6 fall into one cluster in fig. 1.
IIV-6 and ASFV from Asfarviridae group together, which
partly supports the theory that Iridoviridae and Asfarviridae
are monophyletic [40]. It is interesting to note that

ISaKNV, which was still an unclassified Iridovirus at the
time we fixed our data sets, has been placed in a new
genus Megalocytivirus, which supports both our analysis
and Do's [41]. The same is true of PsHV-1, which is
assigned to Alphaherpesvirinae in fig. 1 just as ICTV has
done not long ago, and it should belong to Iltovirus for it
clusters to GaHV-1. Similarly, WSSV, an unclassified
marine invertebrate virus [42], has also been classified
into a new virus family, Nimaviridae, which is again sup-
ported by our results.

Our results could also provide some clues to these
hypotheses about origins and evolution of viruses of sev-
eral families.

Several unclassified viruses are analyzed for obtaining
some hints for their possible taxonomic statuses. As
shown in fig. 1, PsHV-1 may belong to Iltovirus, which was
supported by Thureen's result [43]; AtHV-3 to Rhadinovi-
rus the same as McGeoch's analysis [44]; TuHV-1 to
Cytomegalovirus just as Bahr's result [37]. SAdV-3 and
SAdV-1 are close to HAdV-(A, B, C, D, E, F), and they may
be two new species of Mastadenovirus [45,46]. NeleNPV
and NeseNPV group together, and they may belong to a
new genus according to Herniou's results [30]. In fig. 1
DPV locates between Suipoxvirus and Yatapoxvirus but not
very closes to each of them, further supporting the idea
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that it appears to be assigned to a new genus Cervidpoxvirus
[35,47]. HZV-1, originally defined as Baculovirus but cur-
rently as an unclassified dsDNA virus [48], clusters with
WSSV whin Nimaviridae in our results.

However, there are some outliers in fig. 1. IcHV-1 and
OsHV-1 group closely but jump out of the branch of Her-
pesviridae, which is consistent with dissimilarities in
sequence comparisons between OsHV-1 and the three
vertebrate herpesvirus subfamilies [49] and up-to-date
classification to two new families [50]. CuniNPV stay out-
side the whole large clade of Baculoviridae [51], and it also

should belong to a new genus according to Herniou's pro-
posal [30]. IIV-6 closes with ASFV [40] but stays outside
all other Iridoviruses, which may support partly the theory
that Iridoviridae and Asfarviridae are monophyletic [40].

Conclusion

We present here a phylogenetic analysis of large DNA
viruses with the CV method and discuss their relation-
ships at a deep level. The results support the biologist's
systematics in overall structure and in many details and
provide some clues to these hypotheses about origins and
evolution of viruses of several families.
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It should be pointed out that although baculoviruses and
their hosts are obviously subject to coevolution [30], the
phylogenetic relationships of many families and the lower
taxonomic levels cannot be fully explained by only the
hypothesis of coevolution, e.g. the variety of host origin of
Atadenovirus and Siadenovirus and the location of BoHV-4.

Some traditional methods, e.g. the measures by concate-
nating aligned sequences, are efficient and powerful to
recover the phylogeny of virus with closely evolutionary
relationship. However, definition and selection of
orthologs may limit their application to distance evolu-
tionary viruses. Furthermore, these methods, in some
cases, need adjustment or fine turning.

The CV method could circumvents the ambiguity of
choosing orthologs especially for viruses since substitu-
tion rate of viruses is high and only a few number of uni-
versal common genes could be found (another paper
about the stable analysis of the CV method will be submit-
ted subsequently), it may suggest a new angle to Large
DNA viruses evolution. Furthermore, the CV method is
robust to HGT events. It has been observed that combin-
ing many genes could reduce sampling error and converge
phylogenies on correct solution with good support
[12,52]. Herniou obtained 32 different tree topologies by
using 63 individual genes and one tree based on the com-
bined alignment of the 63 genes, while the latter was con-
sistent with most individual gene trees [12]. The CV
method could use the information from all coding pro-
teins so that it may still construct stable trees even dashing
with a few horizontal transferred genes. We used two sets
of data in our previous analysis on bacteria: one is based
on whole genomes, and the other is a set of ribosome pro-
teins. Both the results lead to reasonable phylogenetic
trees but the first one is better, this shows that these
orthologs only appeared in a subset species would also
help to stabilize the tree topology. In this way, the method
could be a well supplement to the traditional methods.
The CV method may provide a quick reference in viruses
phylogeneny and a fast analysis of co-evolution of viruses
and their hosts whenever their proteomes are available
[26].

Methods

All viral genomes were downloaded from NCBI before
May. 24th, 2005. There are two available data sets of virus
complete genomes. Those in GenBank [53] are the origi-
nal data submitted by their authors. Those at the National
Center for Biotechnological Information (NCBI) [54] are
reference genomes curated by NCBI staff. Since the latter
represents the approach of one and the same group using
the same set of tools, it may provide a more consistent
background for comparison. Therefore, we used all the
translated amino acid sequences (the .faa files with
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NC_accession numbers) from NCBI. There are 1489 viral
genomes, including 248 phages. Under the assumption
that small DNA viruses (genome size < 10 k) probably
have a different evolutionary history than large DNA
viruses [9,11], and their mutation rate approaches that of
RNA viruses (the order of substitutions per site per year,
[55]), only large DNA viruses (total length of all coding
proteins > 4 k) were used in the phylogenetic analysis,
which included 124 viruses (phages have been excluded).
Among the 124 dsDNA viruses there are seven viruses that
are classified to certain families but their lower taxonomy
states remain unknown, and two viruses are tentative spe-
cies, and one virus that is only recognized as a dsDNA
virus. The Additional file 1 lists the dsDNA viruses used,
their abbreviations, and the NCBI accession numbers [see
Additional file 1: 124 large dsDNA virus names, abbrevia-
tions, and NCBI accession numbers].

The main steps of the method are (see [28] for details):
First, collect all amino acid sequences of a species. Second,
calculate the frequency of appearance of overlapping oli-
gopeptides of length K. A random background needs to be
subtracted from these frequencies by using a Markov
model of order (K - 2) in order to diminish the influence
of random neutral mutations at the molecular level and to
highlight the shaping role of selective evolution. Some
strings that contribute mostly to apomorphic characters
become more significant after the subtraction. The sub-
traction procedure is an essential step in our method.
Third, putting these "normalized" frequencies in a fixed
order, a composition vector of dimension 20K is obtained
for each species. Fourth, the correlation C(A, B) between
two species A and B is determined by taking projection of
one normalized vector on another, i.e., taking the cosine
of the angle between them. Lastly, the normalized dis-
tance between the two species is defined to be D = (1 - C)/
2. Once a distance matrix has been calculated it is straight-
forward to construct phylogenetic trees by following the
standard neighbor-joining method in the Phylip package
[56].

The best choice of K is related to the uniqueness of
sequence reconstruction from its K-word components and
is determined basically by the length of the sequence at
hand. According to so-called "sequencing by hybridiza-
tion" [57], for dsDNA viral genomes with length around
4,000 a.a., the minimal K is estimated to be 5.

Only large genome viruses are used in our analysis to
avoid the problem of small sample size when using CV
method whose subtraction procedure is based on statis-
tics. The CV method avoids the problems caused by HGT
on the application of prokaryotic phylogeny by using
whole genome sequences, because the extent of lateral
transfer has been increasingly restricted to smaller and
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smaller gene pools of closer and closer related species as
time goes by [58]. However, its application on classifica-
tion of small DNA viruses may be affected by HGT
because of relative shorter genome length, that's one of
the reasons only large DNA viruses are used.

Authors' contributions

LG carried out the molecular phylogenetic studies, partic-
ipated in the design of program, and drafted the manu-
script. JQ carried out the design of program and
algorithm, participated in molecular phylogenetic studies,
and helped to draft the manuscript.

Additional material

Additional File 1

124 large dsDNA virus names, abbreviations, and NCBI accession num-
bers.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2148-7-41-S1.doc]

Acknowledgements

The authors thank professor Bailin Hao for discussion and comments. The
manuscript has greatly benefited from stimulating comments and sugges-
tions of the three anonymous reviewers. The computation of this project
was performed on the HP-SC45 Sigma-X parallel computer of ITP and
ICTS, CAS. This paper was partailly based on the PhD thesis work of the
two authors.

References

. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes
MK, Lemon SM, Maniloff |, Mayo MA, McGeoch DJ, Pringle CR, Wick-
ner RB: Virus Taxonomy: Seventh Report of the International Committee
on Taxonomy of Viruses Academic Press, San Diego; 2000.

2. Davison AJ, Benko M, Harrach B: Genetic content and evolution
of adenoviruses. | Gen Virol 2003, 84:2895-2908.

3. Gubser C, Hue S, Kellam P, Smith GL: Poxvirus genomes: a phyl-
ogenetic analysis. | Gen Virol 2004, 85:105-117.

4, Bulach DM, Kumar CA, Zaia A, Liang B, Tribe DE: Group Il nucle-
opolyhedrovirus subgroups revealed by phylogenetic analy-
sis of polyhedrin and DNA polymerase gene sequences. |
Invertebr Pathol 1999, 73:59-73.

5. Chen X, ljkel WFJ, Dominy C, Zanotto P, Hashimoto Y, Faktor O,
Hayakawa T, Wang CH, Prekumar A, Mathavan S, Krell P}, Hu Z, Vlak
JM: Identification, sequence analysis and phylogeny of the lef-
2 gene of Helicoverpa armigera single-nucleocapsid baculo-
virus. Virus Res 1999, 65:21-32.

6.  Koonin EV: The phylogeny of RNA-dependent RNA polymer-
ases of positive-strand RNA viruses. Journal of General Virology
1991, 72:2197-2206.

7. Melcher U: The '30K' superfamily of viral movement proteins.
Journal of General Virology 2000, 81:257-266.

8. Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann HW,
Krisch HM: Phylogeny of the major head and tail genes of the
wide-ranging T4-Type bacteriophage. | Bacteriol 2001,
183:358-366.

9. Tidona CA, Darai G: Iridovirus homologues of cellular genes:
implications for the molecular evolution of large DNA
viruses. Virus Genes 2000, 21:77-81.

10. Tidona CA, Schnitzler P, Kehm R, Darai G: Is the major capsid
protein of Iridoviruses a suitable target for the study of viral
evolution? Virus genes 1998, 16:59-66.

18.

19.

20.

21.

22.

23.

24,

25.

26.
27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

http://www.biomedcentral.com/1471-2148/7/41

Shackelton LA, Holmes EC: The evolution of large DNA viruses:
combining genomic information of viruses and their hosts.
Trends in Microbiology 2004, 12:458-465.

Herniou EA, Luque T, Chen X, Vlak JM, Winstanley D, Cory ]S,
O'Reilly DR: Use of whole genome sequence data to infer bac-
ulovirus phylogeny. Journal of Virology 2001, 75:8117-8126.

Filee J, Forterre P, Laurent J: The role played by viruses in the
evolution of their hosts: a view based on informational pro-
tein phylogenies. Res Microbiol 2003, 154:237-243.

Hughes AL: Origin and evolution of viral interleukin-10 and
other DNA virus genes with vertebrate homologues. | Mol
Evol 2002, 54:90-101.

Hendrix RW, Lawrence ]G, Hatfull GF, Casjens S: The origins and
ongoing evolution of viruses. Trends in Microbiology 2000,
8:504-508.

Bugert JJ, Darai G: Poxvirus homologues of cellular genes. Virus
Genes 2000, 21:111-133.

Bamford DH, Burnett RM, Stuart D: Evolution of viral structure.
Theoretical Population Biology 2002, 6 1:461-470.

Li W: Molecular Evolution Sinauer Associates, Inc; 1997.

Sakaoka H, Kurita K, lida Y, Takada S, Umene K, Kim YT, Ren CS,
Nahmias AJ: Quantitative analysis of genomic polymorphism
of herpes simplex virus type | strains from six countries:
studies of molecular evolution and molecular epidemiology
of the virus. | Gen Virol 1994, 75:513-527.

Gao L, Qi J, Wei H, Sun Y, Hao B: Molecular phylogeny of coro-
naviruses including human SARS-CoV. Chinese Science Bulletin
2003, 48:1170-1174.

Harrison RL, Bonning BC: Comparative analysis of the genomes
of Rachiplusiaou and Autographa californica multiple nucle-
opolyhedroviruses. | Gen Virol 2003, 84:1827-1842.

Hyink O, Dellow RA, Olsen M), Caradoc-Davies KMB, Drake K,
Herniou EA, Cory ]S, O'Reilly DR, Ward VK: Whole genome anal-
ysis of the Epiphyas postvittana nucleopolyhedrovirus. | Gen
Virol 2002, 83:957-971.

Montague MG, Hutchison CA: Gene content phylogeny of her-
pesviruses. Proc Natl Acad Sci USA 2000, 97:5334-5339.

Rohwer F, Edwards R: The phage proteomic tree: a genome-
based taxonomy for phage. Journal of Bacteriology 2002,
184:4529-4535.

Stuart G, Moffett K, Bozarth RF: A whole genome perspective on
the phylogeny of the plant virus family Tombusviridae.
Archives of Virology 2004, 149:1595-1610.

Snel B, Huynen MA, Dutilh BE: Genome trees and the nature of
genome evolution. Annu Rev Microbiol 2005, 59:191-209.

Chu K, Qi}, Yu Z, Anh V: Origin and Phylogeny of Chloroplasts
Revealed by a Simple Correlation Analysis of Complete
Genomes. Mol Biol Evol 2004, 21:200-206.

Qi J, Wang B, Hao B: Whole Proteome Prokaryote Phylogeny
without Sequence Alignment: A K-String Composition
Approach. Journal of Molecular Evolution 2004, 58:1-11.

Farkas SL, Benké M, Elé P, Ursu K, Dan A, Ahne W, Harrach B:
Genomic and phylogenetic analyses of an adenovirus iso-
lated from a corn snake (Elaphe guttata) imply common ori-
gin with the members of the proposed new genus
Atadenovirus. | Gen Virol 2002, 83:2403-2410.

Herniou EA, Olszewski JA, O'Reilly DR, Cory JS: Ancient coevolu-
tion of baculoviruses and their insect hosts. Journal of Virology
2004, 78:3244-3251.

Zanotto PM, Kessing BD, Maruniak JE: Phylogenetic interrelation-
ships among baculoviruses: evolutionary rates and host asso-
ciations. Journal of Invertebrate Phathology 1993, 62:147-164.
Rohrmann GF: Evolution of occluded baculoviruses. In The biol-
ogy of baculoviruses Edited by: Granados R, Federici B. Boca Raton, Fla:
CRC Press, Inc; 1986:203-215.

Federici BA: Baculovirus pathogenesis. In The baculoviruses Edited
by: Miller LK. New York: Plenum Press; 1997:33-56.

McLysaght A, Baldi PF, Gaut BS: Extensive gene gain associated
with adaptive evolution of poxviruses. Proc Natl Acad Sci USA
2003, 100:15655-15660.

Afonso CL, Delhon G, Tulman ER, Lu Z, Zsak A, Becerra VM, Zsak L,
Kutish GF, Roch DL: Genome of Deerpox Virus. | Virol 2005,
79:966-977.

Alba MM, Das R, Orengo CA, Kellam P: Genomewide function
conservation and phylogeny in the Herpesviridae. Genome Res
2001, 11:43-54.

Page 6 of 7

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1471-2148-7-41-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14573794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14718625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14718625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9878291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10564750
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1895057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1895057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10640565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11114936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11114936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11022791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11022791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11022791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9562891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9562891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9562891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15381195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15381195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11483757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12798227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11734902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11734902
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11121760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11121760
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11022794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12167365
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8126449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8126449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8126449
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12810877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11907346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11907346
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10805793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10805793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12142423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15290383
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16153168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16153168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595102
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14743310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14743310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14743310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12237421
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14660798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14660798
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15613325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11156614

BMC Evolutionary Biology 2007, 7:41

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.
54.

55.

56.
57.
58.

Bahr U, Darai G: Analysis and characterization of the com-
plete genome of tupaia (tree shrew) herpesvirus. | Virol 2001,
75:4854-4870.

McGeoch DJ, Davison A: The descent of human herpesvirus 8.
Seminars in Cancer Biology 1999, 9:201-209.

McGeoch DJ, Cook S: Molecular phylogeny of the Alphaherpes-
virinae subfamily and a proposed evolutionary timescale. |
Mol Biol 1994, 238:9-22.

lyer LM, Aravind L, Koonin EV: Common origin of four diverse
families of large eukaryotic DNA viruses. | Virol 2001,
75:11720-11734.

Do JW, Moon CH, Kim HJ, Ko MS, Kim SB, Son JH, Kim JS, An EJ, Kim
MK, Lee SK, Han MS, Cha §J, Park MS, Park MA, Kim YC, Kim JW,
Park JW: Complete genomic DNA sequence of rock bream
iridovirus. Virology 2004, 325:351-363.

Yang F, He J, Lin X, Pan D, Zhang X, Xu X: Complete genome
sequence of the shrimp white spot bacilliform virus. | Virol
2001, 75:11811-11820.

Thureen DR, Keeler CL Jr: Psittacid Herpesvirus | and Infec-
tious Laryngotracheitis Virus: Comparative Genome
Sequence Analysis of Two Avian Alphaherpesviruses. | Virol
2006, 80:7863-7872.

McGeoch D), Gatherer D, Dolan A: On phylogenetic relation-
ships among major lineages of the Gammaherpesvirinae. |
Gen Virol 2005, 86:307-316.

Kovacs GM, Davison AJ, Zakhartchouk AN, Harrach B: Analysis of
the first complete genome sequence of an Old World mon-
key adenovirus reveals a lineage distinct from the six human
adenovirus species. | Gen Virol 2004, 85:2799-2807.

Kovacs GM, Harrach B, Zakhartchouk AN, Davison AJ: Complete
genome sequence of simian adenovirus I: an Old World
monkey adenovirus with two fiber genes. | Gen Virol 2005,
86:1681-1686.

Lefkowitz EJ, Wang C, Upton C: Poxviruses: past, present and
future. Virus Research 2006, 117:105-118.

Cheng CH, Liu SM, Chow TY, Hsiao YY, Wang DP, Huang JJ, Chen
HH: Analysis of the complete genome sequence of the Hz-1
virus suggests that it is related to members of the Baculoviri-
dae. | Virol 2002, 76:9024-9034.

Davison AJ, Trus BL, Cheng N, Steven AC, Watson MS, Cunningham
C, Le Deuff RM, Renault T: A novel class of herpesvirus with
bivalve hosts. | Gen Virol 2005, 86:41-53.

McGeoch DJ, Rixon FJ, Davison AJ: Topics in herpesvirus genom-
ics and evolution. Virus Research 2006, 117:90-104.

Moser BA, Becnel JJ, White SE, Afonso C, Kutish G, Shanker S, Almira
E: Morphological and molecular evidence that Culex nigripal-
pus baculovirus is an unusual member of the family Baculo-
viridae. | Gen Virol 2001, 82:283-297.

Mitchell A, Mitter C, Regier JC: More taxa or more characters
revisited: combining data from nuclear protein-encoding
genes for phylogenetic analyses of Noctuoidea (Insecta: Lep-
idoptera). Syst Biol 2000, 49:202-224.

Benson DA, Karsch-Mizrachi |, Lipman D), Ostell |, Wheeler DL:
GenBank. Nucleic Acids Res 2006, 34:D16-D20.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer
LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman D),
Madden TL, Maglott DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM,
Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Suzek
TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E: Database
resources of the National Center for Biotechnology Infor-
mation. Nucleic Acids Res 2006, 34:D173-D180.

Truyen U, Gruenberg A, Chang S, Obermaier B, Veijalainen P, Parrish
C: Evolution of the feline-subgroup parvoviruses and the con-
trol of canine host-range in vivo. | Virol 1995, 69:4702-4710.
Felsenstein J: PHYLIP (phylogeny inference package) version
3.5c. [http://evolution.genetics.washington.edu/phylip.html].
Pevzner PA: Computational Molecular Biology: An Algorithmic Approach
Volume 75. MIT Press; 2000.

Woese CR: The universal ancester. Proc Natl Acad Sci USA 1998,
95:6854-6859.

http://www.biomedcentral.com/1471-2148/7/41

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 7 of 7

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11312357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10343071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8145260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8145260
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15246274
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11689662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16873243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15659749
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15914845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16503070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16503070
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12186886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16490275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16490275
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11161265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11161265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11161265
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381840
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7609035
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7609035
http://evolution.genetics.washington.edu/phylip.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9618502
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results and discussion
	Adenoviridae
	Baculoviridae
	Poxviridae
	Herpesviridae

	Conclusion
	Methods
	Authors' contributions
	Additional material
	Acknowledgements
	References

