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Abstract

Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an
increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of
numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all
green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000
species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life
forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring
a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data.

Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete
or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered
well-supported backbone relationships and strong support for relationships that were not observed in previous analyses
of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In
several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus
amino acid characters, and the considerable variation in GC content among lineages and within single genomes
affected the phylogenetic placement of several taxa.

Conclusions: Analyses of the plastid sequence data recovered a strongly supported framework of relationships for
green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii)
a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms
and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade
(Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the
challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for
future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly
emphasize the importance of exploring the effects of different partitioning and character coding strategies.
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Background
Viridiplantae, or green plants, are a clade of perhaps
500,000 species [1-6] that exhibit an astounding diversity
of life forms, including some of the smallest and largest
eukaryotes [3,7]. Fossil evidence suggests the clade is at
least 750 million years old [8-10], while divergence time
estimates from molecular data suggest it may be more
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than one billion years old [11-14]. Reconstructing the
phylogenetic relationships across green plants is challen-
ging because of the age of the clade, the extinction of
major lineages [15-17], and extreme molecular rate and
compositional heterogeneity [18-22]. Most phylogenetic
analyses of Viridiplantae have recovered two well-
supported subclades, Chlorophyta and Streptophyta
[23,24]. Chlorophyta contain most of the traditionally
recognized “green algae,” and Streptophyta contain the
land plants (Embryophyta), as well as several other
lineages also considered “green algae”. Land plants
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include the seed plants (gymnosperms and angiosperms;
Spermatophyta), which consist of ~270,000 to ~450,000
species [1,3].
While many of the major green plant clades are well

defined, questions remain regarding the relationships
among them. For example, the closest relatives of land
plants have varied among analyses [23,25-29], as have
the relationships among the three bryophyte lineages
(mosses, liverworts, and hornworts) [29-35]. The rela-
tionships among extant gymnosperms also remain con-
tentious, particularly with respect to the placement of
Gnetophyta [20,36-43].
Most broad analyses of green plant relationships based

on nuclear gene sequence data have relied largely on
18S/26S rDNA sequences [30,37,44,45], although recent
analyses have employed numerous nuclear genes [40,46].
Some studies have used mitochondrial gene sequence
data, often in combination with other data [29,47,48].
However, investigations of green plant phylogeny typic-
ally have either largely or exclusively employed chloro-
plast genes (e.g., [29,49-52]). Sequence data from the
plastid genome have transformed plant systematics and
contributed greatly to the current view of plant relation-
ships. With the plastid genome present in high copy
numbers in each cell in most plants, and with relatively
little variation in gene content and order [53], as well as
few reported instances of gene duplication or horizontal
gene transfer [54,55], the plastid genome provides a
wealth of phylogenetically informative data that are rela-
tively easy to obtain and use [56,57]. Although early
phylogenetic studies using one or a few chloroplast loci
provided fundamental insights into relationships within
and among green plant clades, these analyses failed to
resolve some backbone relationships [56-59]. These
remaining enigmatic portions of the green plant tree of life
ultimately motivated the use of entire, or nearly entire,
plastid genome sequences for phylogenetic inference.
Complete sequencing of the relatively small (~150 kb)

plastid genome has been technically feasible since the
mid-1980s [60,61], although few plastid genomes were
sequenced prior to 2000 (see [62,63]). Next-generation
sequencing (NGS) technologies, such as 454 [62] and
Illumina [64-67], greatly reduced the cost and difficulty
of sequencing plastid genomes, and consequently, the
number of plastid genomes available on GenBank in-
creased nearly six-fold from 2006 to 2012 [68]. Phylogen-
etic analyses based on complete plastid genome sequences
have provided valuable insights into relationships among
and within subclades across the green plant tree of life (re-
cently reviewed in [26,35,68,69]). Still, studies employing
complete plastid genomes generally have either focused
on subclades of green plants or have had relatively low
taxon sampling. Thus, they have not addressed the major
relationships across all green plants simultaneously.
We assembled available plastid genome sequences to
build a phylogenetic framework for Viridiplantae that
reflects the wealth of new plastid genome sequence data.
Furthermore, we highlight analytical challenges for re-
solving the green plant tree of life with this type of data.
We performed phylogenetic analyses of protein-coding
data on 78 genes from 360 taxa, exploring the effects of
different partitioning and character-coding protocols for
the entire data set as well as subsets of the data. While
our analyses recover many well-supported relationships
and reveal strong support for some contentious relation-
ships, several factors, including base composition biases,
can affect the results. We also highlight the challenges
of using plastid genome data in deep-level phylogenomic
analyses and provide suggestions for future analyses that
will incorporate plastid genome data for thousands of
species.

Results
Data set
We assembled plastid protein-coding sequences from 360
species (Additional file 1) for which complete or nearly
complete plastid genome sequences were available on Gen-
Bank. Of the 360 species, there were 258 angiosperms
(Angiospermae), 53 gymnosperms (Acrogymnospermae, in-
cluding three Gnetophyta), seven monilophytes (Monilo-
phyta), four lycophytes (Lycopodiophyta), three liverworts
(Marchantiophyta), one hornwort (Anthocerotophyta), two
mosses (Bryophyta), six taxa from the paraphyletic strepto-
phytic algae, and 26 chlorophytic algae (Chlorophyta). The
phylogenetic character matrices contained sequences from
78 genes and the following number of alignment positions:
58,347 bp for the matrix containing all nucleotide positions
(ntAll) and the RY-coded (RY) version of the ntAll matrix;
38,898 bp in the matrix containing only the first and sec-
ond codon positions (ntNo3rd), and 19,449 amino acids
(AA). The number of genes present per taxon varied from
18 to 78 (mean = 70), while the number of taxa present per
gene ranged from 228 to 356 (mean = 322; see Additional
file 2). Taxa with few genes present, such as Helicospori-
dium (18 genes) and Rhizanthella (19 genes), represent
highly modified complete plastid genomes of non-
photosynthetic species [70,71]. The percentage of missing
data (gaps and ambiguous characters) was ~15.6% for
each of the four data sets. The pattern of data across each
of the four matrices is decisive, meaning that it can
uniquely define a single tree for all taxa [72]. The data
contain 100% of all possible triplets of taxa, and are de-
cisive for 100% of all possible trees. All alignments have
been deposited in the Dryad Data Repository [73].

GC bias
GC content varied considerably both among lineages
and also within single genomes, and chi-square tests
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rejected the null hypothesis of homogeneous base fre-
quencies (Table 1). The average GC content in the ntAll
matrix was 38.9%, and it ranged from 54.3% in Selagin-
ella uncinata to 27.5% in Helicosporidium sp. (Figure 1,
Additional file 3). Also, the average GC content varied
among first, second, and third codon positions, with by
far the most variation among lineages at the third codon
position (Figure 1, Additional file 3). Although there was
extensive heterogeneity in GC content across all species,
there was relatively little variation among the seed plant
taxa (Figure 2). There also was significant correlation
between nucleotide composition and amino acid com-
position. Plastid genomes that are GC-rich had a signifi-
cantly higher percentage (Figure 3; p < 0.001) of amino
acids that are encoded by GC-rich codons (i.e., G, A, R,
and P). Similarly, GC-rich plastid genomes had a signifi-
cantly lower percentage (Figure 4; p < 0.001) of amino acids
that are coded by AT-rich codons (i.e., F, Y, M, I, N, and K).

Phylogenetic analyses
In the phylogenetic analyses of all data sets and partitioning
schemes, the partitioning strategy with the most partitions
consistently fit the data best based on the AICc (Table 2).
These best-fit models partitioned the AA matrix by gene
(78 partitions) and the nucleotide (ntAll, ntNo3rd) and RY
matrices by codon position and gene (234 partitions). All a
posteriori bootstopping analyses indicated that convergence
of support values had been reached after 100 replicates,
and thus our choice of 200 replicates was more than suffi-
cient to obtain reliable bootstrap values.
We will focus on reporting the relationships of major

clades of Viridiplantae shown in the 50% maximum like-
lihood (ML) majority-rule bootstrap consensus summary
trees for each data set: ntAll (Figure 5), ntNo3rd (Figure 6),
RY (Figure 7), and AA (Figure 8). These summary trees
collapse some clades for ease of viewing the major rela-
tionships within Viridiplantae. A summary of important
results and conflicts among these four data sets is given in
Table 3. We provide full majority-rule bootstrap consen-
sus trees for the ntAll (Figures 9, 10, 11, 12, 13, and 14),
ntNo3rd (Additional file 4), RY (Additional file 5), and AA
(Additional file 6) data sets. ML trees with branch lengths
and BS values are also provided: ntAll (Additional file 7),
ntNo3rd (Additional file 8), RY (Additional file 9), and
Table 1 Chi-square tests of nucleotide composition
homogeneity among lineages

Data χ2 df p

ntAll 31350.257185 1077 < 0.0001

ntNo3rd 11968.002464 1077 < 0.0001

ntAll (Position 1) 8366.331439 1077 < 0.0001

ntAll (Position 2) 6003.338041 1077 < 0.0001

ntAll (Position 3) 46288.248785 1077 < 0.0001
AA (Additional file 10). Average support values among
all internal nodes in the ML trees were slightly higher
in the ntAll phylogeny (~94% bootstrap support [BS];
Additional file 7) compared to the other data sets
(~90-91% BS; Additional files 8, 9, and 10). The ntAll
phylogeny also had the most clades resolved with ≥
70% BS (92%; 327 bipartitions resolved out of 357 pos-
sible) while the ntNo3rd, RY, and AA data sets had 87%,
87%, and 86% of the possible bipartitions resolved at ≥
70% BS, respectively. All resulting trees have been depos-
ited in the Dryad Data Repository [73].
The monophyly of Chlorophyta receives 100% BS in all

analyses. Prasinophyceae are consistently not monophy-
letic. Instead, the prasinophyte Nephroselmis is sister to all
other Chlorophyta (Figure 9; Additional files 4, 5, and 6),
while remaining Prasinophyceae form a clade that is vari-
ously supported (ntAll 97% BS, ntNo3rd 78% BS, RY 93%
BS, and AA 68% BS) and is sister to a clade of the
remaining Chlorophyta. Chlorophyceae are monophyletic
(100% BS in all analyses), but Trebouxiophyceae and Ulvo-
phyceae are not monophyletic, and the relationship of
Chlorophyceae to these lineages is unresolved.
We consistently recovered a single set of relationships

among the streptophytic algae subtending the land plant
clade. Zygnematophyceae are sister to land plants, Coleo-
chaetophyceae are sister to Zygnematophyceae + Embryo-
phyta, Charophyceae are sister to Coleochaetophyceae +
(Zygnematophyceae + Embryophyta), and a clade of
Mesostigmatophyceae +Chlorokybophyceae is sister to all
other Streptophyta. Each of these relationships has ≥86%
BS support (Figures 5, 6, 7, and 8).
The branching order of the non-vascular land plant

lineages differs among analyses. In analyses of the ntAll
and RY data sets, Marchantiophyta (liverworts), followed
by Bryophyta (mosses), and then Anthocerotophyta
(hornworts) are the earliest-branching land plant
lineages, with Anthocerotophyta the immediate sister
to the vascular plants (Tracheophyta; Figures 5 and 7).
In the ntAll and RY analyses, these relationships had ≥89%
BS support except for the Bryophyta + (Anthocerophyta+
Tracheophyta) relationship in the ntAll analysis, which
received only 69% BS (Figure 5). In contrast, in the ntNo3rd
and AA analyses, Bryophyta and Marchantiophyta formed a
clade (78% BS [Figure 6] and 99% BS [Figure 8], respect-
ively), followed by Anthocerophyta as sister to Tracheophyta
(94% [Figure 6] and 53% BS [Figure 8], respectively).
Within Tracheophyta, the ntNo3rd, RY, and AA data

sets all place Lycopodiophyta sister to a Euphyllophyta
clade (Monilophyta + Spermatophyta; ≥89% BS, Figures 6,
7, and 8). However, the analysis of the ntAll data set
places Monilophyta sister to a clade of Lycopodiophyta +
Spermatophyta (75% BS, Figures 5, 6, 7, 8, 9, and 10).
Our analyses of Monilophyta generally reveal strong

support for a clade of Equisetales + Psilotales as sister
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Figure 1 Box plots of percent GC content in the ntAll and ntNo3rd data sets as well as in the first, second, and third codon positions
of the ntAll data set.
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to Marattiales + leptosporangiate ferns (represented by
Cyatheales and Polypodiales). The lowest support obtained
was for Equisetales+ Psilotales in the ntNo3rd analysis
(84% BS; Figure 6) and ntAll (89% BS; Figure 5); all other
nodes in all analyses received > 90% BS, with Marattiales +
leptosporangiate ferns receiving ≥ 99% BS.
Within Spermatophyta, all analyses place the extant

gymnosperms (Acrogymnospermae) sister to Angiosper-
mae with 100% BS. Within extant gymnosperms, Cyca-
dales and Ginkgoales form a clade (≥ 98% BS in ntAll,
ntNo3rd, and AA; 51% BS in RY) that is sister to a clade
in which Gnetophyta (100% BS in all analyses) are nested
within the paraphyletic conifers. There is generally high
support (100% BS in ntAll [Figure 5], ntNo3rd [Figure 6],
and AA [Figure 7]; 87% BS [Figure 8] in RY) placing
Gnetophyta as sister to a clade of Araucariales +Cupres-
sales. This “Gnecup” clade [sensu 16, 30, 41] is then sis-
ter to Pinales, which has 100% BS in all analyses.
In all analyses, Angiospermae receive 100% BS, and

Amborella (Amborellales) is sister to all other angiosperms,
followed by Nymphaeales, and then Austrobaileyales. These
relationships are mostly supported by 100% BS. However,
Nymphaeales + (Austrobaileyales+Mesangiospermae) re-
ceives 81% BS (Figure 6) in the ntNo3rd analyses and 70%
BS (Figure 8) in the AA analyses. The remaining angio-
sperms (Mesangiospermae) receive 100% BS in all ana-
lyses. Within Mesangiospermae, the relationships among
Monocotyledoneae, Magnoliidae, Eudicotyledoneae, and
Ceratophyllum (Ceratophyllales) are not well supported
and vary depending on the analysis. The strongest support
for the placement of Ceratophyllales is 75% BS as sister to
Eudicotyledoneae in the RY analysis (Figure 7).
Chloranthales receive 61-69% BS as sister to the well-

supported (100% BS in ntAll, RY; 83% BS in ntNo3rd)
Magnoliidae. However, Magnoliidae are not monophy-
letic in the AA analyses, where Piperales are sister to
Ceratophyllales (67% BS; Figure 8).
Within the monocot clade (Monocotyledoneae), Acorales,

followed by Alismatales, have 100% BS in all analyses as
subsequent sisters to the remaining monocots. In three of
our analyses (ntAll, ntNo3rd, and AA), a variously sup-
ported clade (72%, 69%, and 80% BS, respectively) of
Liliales + (Pandanales +Dioscoreales) is sister to a clade
(>95% BS in these three analyses) of the remaining
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monocots (Asparagales +Commelinidae). However, in the
RY-coded analysis, Pandanales +Dioscoreales (100% BS) is
sister to a clade of Liliales + (Asparagales +Commelinidae),
which receives 69% BS (Figure 7). Here Asparagales +
Commelinidae is supported by 80% BS.
Within the eudicots (Eudicotyledoneae), which receive

100% BS in all analyses, Ranunculales are sister to the
Table 2 AICc scores for each of the phylogenetic matrix parti

Matrix Number of
characters

Partitioning strategy Number of
partitions

ntAll 58,347 OnePart 1

CodonPart 3

GenePart 78

CodonGenePart 234

RY 58,347 OnePart 1

CodonPart 3

GenePart 78

CodonGenePart 234

ntNo3rd 38,898 OnePart 1

CodonPart 2

GenePart 78

CodonGenePart 156

AA 19,449 OnePart 1

GenePart 78

Partitioning strategies judged to be the best by the AICc are in bold.
remaining taxa. In the ntAll, ntNo3rd, RY, and AA ana-
lyses, the clade of these remaining taxa receives 100%,
85%, 100%, and 62% BS, respectively. Relationships vary
among Sabiaceae, Proteales, and a clade of the remaining
taxa, depending on the analysis. In the ntAll and ntNo3rd
analyses, Proteales + Sabiaceae are supported as a clade,
although with only 63% and 60% BS, respectively.
tioning strategies

Log-likelihood AICc ΔAICc

−3135739.544116 6272952.811161 114533.884536

−3099273.099639 6200056.468462 41637.541838

−3120195.077316 6243312.241766 84893.315142

−3076219.426792 6158418.926624 0

−1239354.453402 2480173.246480 21572.787069

−1235533.368070 2472537.854401 13937.394990

−1234706.178899 2471197.311314 12596.851903

−1228081.159986 2458600.459411 0

−1387913.034830 2777313.721117 30326.016847

−1385570.086154 2772645.570816 25657.866546

−1376158.263023 2755293.787916 8306.083646

−1371218.716450 2746987.704270 0

−1418038.152084 2837614.101717 8353.616354

−1413039.660496 2829260.485363 0
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However, in the RY analysis, Proteales are sister to a clade
containing Sabiaceae plus the remaining taxa, which has
79% BS. In the AA analysis, relationships among these
three clades are unresolved.
Among the remaining eudicots, we consistently recov-

ered Trochodendrales as sister to Buxales + Pentapetalae
and Gunnerales as sister to the remaining lineages of Pen-
tapetalae: Dilleniaceae, Superrosidae, and Superasteridae.
The placement of Dilleniaceae remains uncertain. The
family is sister to Superrosidae in the ntAll (95% BS),
ntNo3rd (77% BS), and RY (57% BS) analyses, but appears
as sister to Superasteridae (70% BS) in the AA analysis.
Within Superrosidae, a clade of Vitales + Saxifragales

is supported in the ntAll (75% BS), ntNo3rd (70% BS),
and AA (78% BS) analyses. In the RY analysis, the rela-
tionship among Saxifragales, Vitales, and remaining
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Figure 6 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the first and
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Rosidae (Fabidae +Malvidae) is unresolved. Fabidae
and Malvidae are both recovered with ≥ 99% BS in the
ntAll and RY analyses. However, each clade receives
only 70% BS in the ntNo3rd analysis. In the AA ana-
lysis neither clade is monophyletic; Zygophyllales are
embedded (68% BS) within a clade of Malvidae taxa.
The COM clade (Celastrales, Oxalidales, Malpigh-
iales) is sister to a clade of Fagales, Cucurbitales,
Rosales, and Fabales in Fabidae in the AA (69% BS;
Figure 8), RY (82% BS; Figure 7), and ntAll (81% BS;
Figure 5) trees and forms a trichotomy with Zygophyllales
and the clade of Fagales, Cucurbitales, Rosales, and Fabales
in the ntNo3rd tree (70% BS; Figure 6). Zygophyllales are
sister to Geraniales (69% BS; Figure 8) in the AA tree and
sister to all other Fabidae in the ntAll and RY trees (with
100% [Figure 5] and 99% BS [Figure 7], respectively).
Superasteridae (Santalales, Berberidopsidales, Caryo-

phyllales, and Asteridae) are recovered in all analyses.
This clade receives 100% BS in the ntAll and RY ana-
lyses, 95% BS in the ntNo3rd analysis, and 66% BS in
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Figure 7 Fifty percent maximum likelihood majority-rule bootstrap consensus summary tree of Viridiplantae inferred from the RY-coded
(RY) analysis. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support
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the AA analysis. Santalales and Berberidopsidales are
strongly supported as subsequent sisters to Caryophyl-
lales +Asteridae. Within Asteridae, Cornales, followed
by Ericales, are subsequent sisters to a strongly sup-
ported clade that comprises strongly supported Campa-
nulidae and Lamiidae clades. Within Lamiidae, the
placement of Boraginaceae is weak among the various
analyses. Boraginaceae are sister to Gentianales (59% BS;
Figure 8) in the AA tree, part of a trichotomy (100% BS;
Figure 5) with Lamiales and Solanales +Gentianales in
the ntAll tree, and sister to a weakly supported clade in-
cluding Gentianales, Lamiales, and Solanales in the
ntNo3rd (Figure 6) and RY (Figure 7) trees.
Analysis of only the third codon positions (nt3rdOnly,

Additional file 11) resulted in several very strong con-
flicts along the backbone of Viridiplantae when com-
pared to the topology from the ntNo3rd analyses. These
conflicts include the backbone relationships within Chloro-
phyta, the placements of Cycadales and Lycopodiophyta,
the relationships of the three major bryophyte lineages,
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and backbone relationships within Poales. Removal of four
taxa (Epifagus, Helicosporidium, Neottia, and Rhizanthella)
with elevated rates of molecular evolution and few genes
present in the data sets did not significantly affect the
resulting topologies.

Discussion
While the enormous phylogenetic data sets that result
from new genome or transcriptome sequencing efforts
can ameliorate the effects of random or stochastic error,
they also may exacerbate the effects of systematic error,
or error resulting from problems in the analysis, such as
model inaccuracy. The high amount of agreement
among our various analyses and strong support for re-
sults generally consistent with previous studies (many of
which also used plastid genes) suggest that plastid gen-
ome sequence data hold much promise for resolving re-
lationships throughout the green plants. However,
several areas of conflict between analyses using different
character-coding strategies demonstrate that plastid



Table 3 Summary of selected similarities and conflicts between bootstrap consensus topologies derived from the four
data sets

Taxon ntAll ntNo3rd RY AA

Amborellales sister to all other
Angiospermae
(100%/100%)

sister to all other Angiospermae
(100%/81% )

sister to all other
Angiospermae
(100%/100%)

sister to all other Angiospermae
(100%/70%)

Anthocerotophyta sister to Tracheophyta
(100%/100%)

sister to Tracheophyta
(94%/100%)

sister to Tracheophyta
(95%/100%)

sister to Tracheophyta (53%/90%)

Ceratophyllales sister to Eudicotyledoneae
(52%/100%)

sister to Monocotyledoneae +
Eudicotyledoneae (52%/54%)

sister to Eudicotyledoneae
(75%/100%)

sister to Piperales (67%)

COM clade within Fabidae (100%) within Fabidae (70%) within Fabidae (99%) sister to a clade including
Cucurbitales, Rosales, Fabales,
Fagales (69%/100%; Fabidae
not monophyletic)

Dilleniales sister to Superrosidae
(95%/100%)

sister to Superrosidae
(77%/100%)

sister to Superrosidae
(57%/100%)

sister to Superasteridae
(70%/66%)

Ginkgoales sister to Cycadales
(98%/100%)

sister to Cycadales
(100%/100%)

sister to Cycadales
(51%/100%)

sister to Cycadales (100%/100%)

Gnetophyta sister to Cupressales +
Araucariales (100%/100%)

sister to Cupressales +
Araucariales (100%/100%)

sister to Cupressales +
Araucariales (87%/100%)

sister to Cupressales + Araucariales
(100%/100%)

Marchantiophyta sister to all other Embryophyta
(100%/69%)

sister to Bryophyta (78%/100%) sister to all other
Embryophyta
(100%/89%)

sister to Bryophyta (99%/100%)

Monilophyta sister to Lycopodiophyta +
Spermatophyta (100%/75%)

sister to Spermatophyta
(93%/100%)

sister to Spermatophyta
(100%/100%)

sister to Spermatophyta
(89%/100%)

Prasinophyceae not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/87%)

not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/78%)

not monophyletic;
Nephroselmis sister to all
other Chlorophyta
(100%/92%)

not monophyletic; Nephroselmis
sister to all other Chlorophyta
(100%/96%)

Zygnematophyceae sister to Embryophyta
(97%/100%)

sister to Embryophyta
(99%/100%)

sister to Embryophyta
(86%/100%)

sister to Embryophyta
(93%/100%)

Bootstrap support (BS) values >50% are shown as percentages. When sister groups for the taxon of interest are listed, bootstrap support (BS) values on the left
are for the clade including the taxon of interest and its sister group within Viridiplantae, while BS values on the right are for the more inclusive clade excluding
the taxon of interest. If only one BS value is given for a sister relationship, only two terminals are involved (see also Figures 5, 6, 7, and 8).
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genome phylogenetics is also susceptible to systematic
error. Here we evaluate the phylogenetic results, empha-
sizing areas of agreement and concern, and then address
some of the methodological issues raised by our results.

Evaluation of phylogenetic relationships
Historically,Chlorophyta have been divided into Prasinophy-
ceae, Trebouxiophyceae, Chlorophyceae, and Ulvophyceae
based on the ultrastructure of the flagellar apparatus and
features related to cytokinesis [74,75]. The current status of
green algae phylogenetics (Chlorophyta and streptophytic
algae) has been reviewed recently [26,76,77]. The most com-
parable study to ours in terms of data and taxon sampling is
by Lang and Nedelcu [26], who constructed a phylogeny of
green algae with plastid genome sequence data. However,
they analyzed only an amino acid data set using Bayesian in-
ference and the CAT model [78,79]. We found a paraphy-
letic Prasinophyceae (not including Pedinomnas; Figures 5,
6, 7 and 8), which agrees with previous molecular analyses
[26,76,77]. However, Lang and Nedelcu [26] recovered a
monophyletic Prasinophyceae, albeit with little support.
Chlorophyceae are monophyletic (100% BS in all of our
analyses), which agrees with the results of Lang and Nedelcu
[26]. We also find that Trebouxiophyceae and Ulvophyceae
are not monophyletic, and that the relationship of Chloro-
phyceae to these lineages is unresolved. The branching order
of the various Trebouxiophyceae, Ulvophyceae, and Chloro-
phyceae lineages within Chlorophyta, unresolved in our
analyses, was also uncertain in earlier analyses (reviewed
in [26,76,77]). Similarly in Lang and Nedelcu [26], Trebou-
xiophyceae and Ulvophyceae were not supported as mono-
phyletic, although unlike our results, almost all nodes in
their phylogeny were maximally supported.
Our analyses provide consistent, strong support for the

relationships of streptophytic algae to land plants, and all
analyses support Zygnematophyceae as the sister to land
plants (Figures 5, 6, 7, and 8). Relationships among these
lineages and the closest relatives of land plants have varied
in previous studies depending on taxon sampling and gene
choice. Some studies agree with our results placing Zygne-
matophyceae as sister to land plants [25,27,80-82], while
other phylogenetic analyses indicate that Charophyceae
[23,83,84] or Coleochaetophyceae [26,40,85,86] occupy this
position. Depending on the analysis, Zhong et al. [87]
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found either Zygnematophyceae alone or a clade of Zygne-
matophyceae +Coleochaetophyceae as sister to land plants.
In particular, the results of Lang and Nedelcu [26] conflict
with our results regarding the sister group to Embryophyta.
While we find a clade of Coleochaetophyceae + (Zygnema-
tophyceae + Embryophyta), their results strongly support
Zygnematophyceae + (Coleochaetophyceae + Embryophyta).
Phylogenetic relationships among bryophytes (mosses,

hornworts, and liverworts) are also contentious, and
nearly every possible relationship among these lineages
has been reported, often with strong support. Most
studies have shown the bryophytes as paraphyletic with
respect to Tracheophyta rather than as a clade [30-33].
As recovered in our ntAll and RY analyses (Figures 5
and 7), liverworts (Marchantiophyta) often are placed
sister to all other land plants, followed by mosses
(Bryophyta), and with hornworts (Anthocerotophyta)
sister to Tracheophyta [29,34,47,50,88,89]. A sister re-
lationship between mosses and liverworts, found in
our ntNo3rd and AA analyses (Figures 6 and 8), was
proposed previously based on morphological [90-93]
and molecular data [27,30,94,95] and has been recov-
ered with numerous nuclear genes (Wickett et al., in
review). This relationship was also recovered in ana-
lyses of complete plastid genome data by Karol et al.
[34] when divergent taxa (i.e., Selaginella spp.) were
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To Fig. 11: Amborellales, Nymphaeales,
Austrobaileyales, Chloranthales, and Magnoliidae

To Fig. 9: Chlorophyta, Chlorokybophyceae, Mesostigmatophyceae, Charophyceae,
Coleochaetophyceae, Zygnematophyceae, Marchantiophyta, Bryophyta, and Anthocerotophyta

Figure 10 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide
positions (ntAll) analysis. Portion of tree showing Monilophyta, Lycopodiophyta, and Acrogymnospermae. Data set derived from 78
protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also
Figure 5 for a summary tree of major Viridiplantae clades and Additional file 1 for taxonomy. Note position of Lycopodiophyta as sister to Spermatophyta
is likely caused by base composition bias (see text). Tree continued in Figures 9 and 11.
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excluded from phylogenetic analyses and also by Wolf
and Karol [35] when third positions were excluded.
Our results placing Lycopodiophyta sister to Euphyllo-

phyta in all but the ntAll analysis agree with most molecu-
lar phylogenetic analyses [29,96,97]. This split is also
supported by analyses of morphological characters in fossil
[15] and extant taxa [98]. Monilophyta and Spermatophyta
also possess a 30-kb inversion in the large single-copy re-
gion of the plastid genome not found in Lycopodiophyta
and the three bryophyte clades [99]. In the ntAll analysis,
Euphyllophyta are not monophyletic (Figure 5); Lycopodio-
phyta, rather than Monilophyta, are sister to Spermato-
phyta. This relationship has been reported previously [34];
however, it likely is a phylogenetic artifact, perhaps related
to base composition bias (see below). The plastid genome
of the lycophyte Selaginella has an especially high GC con-
tent [21], with Selaginella unicata having the highest GC
content in our ntAll data set (54.3%; Figure 1).
In some previous studies, relationships among lineages

of Monilophyta have not been well resolved or supported
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Figure 11 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide
positions (ntAll) analysis. Portion of tree showing Amborellales, Nymphaeales, Austrobaileyales, Chloranthales, and Magnoliidae. Data set
derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are
indicated. See also Figure 5 for a summary tree of major Viridiplantae clades and Additional file 1 for taxonomy. Tree continued in Figures 10 and 12.
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(e.g., [29,89,96-98]). As a result, the relationships among
Equisetales, Psilotales, Marattiales, and leptosporangiate
ferns are often represented as a polytomy (e.g., [35]). In
contrast, most of our analyses recovered strong support for
a clade of Equisetales + Psilotales as sister to Marattiales +
leptosporangiate ferns (represented here by Cyatheales and
Polypodiales). These relationships agree with recent studies
of monilophyte relationships based on plastid genome se-
quence data [34,35], although support is stronger here. Un-
fortunately, Ophioglossales, which often appear as sister to
Psilotales, lacked a sequenced plastome at the time of our
analyses. However, plastid genome data for Ophioglossales
have subsequently been published and analyzed in a phylo-
genetic context [100], with strong support for Ophioglos-
sales as sister to Psilotales and weak support for this clade
as sister to Equisetales. Results from that study with regard
to Marattiales and leptosporangiate ferns agree with the
relationships presented here.
Relationships among the lineages of extant seed plants,

and especially the placement of Gnetophyta, have long
been debated [38,39,43,51,89,101]. Gnecup trees, found
in all of our analyses, were initially recovered by Nickrent
et al. [30], and then more recently by Zhong et al. [41].
However, Zhong et al. [41] suggested that the support for
Gnecup may be the result of long-branch attraction; by
removing highly variable proteins, support for Gnecup
decreased. Furthermore, by removing what they consid-
ered parallel substitutions between lineages leading to
Gnetophyta and to Cryptomeria (the sole Cupressales in
their analyses), a Gnepine topology was recovered. Al-
though several different placements for Gnetophyta have
been recovered and strongly supported, many studies in-
volving multiple genes have placed Gnetophyta sister to
Pinales (Gnepine; [38,39,43,89], Wickett et al., in review).
Using both coalescent and concatenation analyses, Xi
et al. [102] found that the phylogenetic placement of
Gnetophyta differs between the nuclear and plastid ge-
nomes. In their analyses using nuclear data, the Gnepine
hypothesis is supported, while their analyses of plastid
data support the Gnecup hypothesis. In contrast, Lee et al.
[46] found strong support for Gnetophyta sister to the
remaining gymnosperms [(Cycadales +Ginkgoales) +
conifers)] in an ML analysis of 22,833 sets of nuclear
gene orthologs from 101 land plant genera.
The backbone relationships among angiosperm (Angio-

spermae) lineages generally agree with results from recent
analyses, including a 17-gene analysis of 632 angiosperms
[103] and previous analyses of plastid genome data sets
[63,104-106]. The position of Ceratophyllum (Ceratophyl-
lales), and thus the relationships among Monocotyledo-
neae, Eudicotyledoneae, and Magnoliidae, varies among
our analyses, although without strong support. This con-
trasts with several other large, multi-gene analyses in
which Monocotyledoneae are sister to Ceratophyllales +
Eudicotyledoneae [63,103,106]. Interestingly, the strongest
support for the placement of Ceratophyllales sister to
Eudicotyledoneae is in the RY analysis (75% BS; Figure 7).
However, in that analysis, the relationships among
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Figure 12 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide
positions (ntAll) analysis. Portion of tree showing Monocotyledoneae. Data set derived from 78 protein-coding genes of the plastid genome
(ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree of major Viridiplantae
clades and Additional file 1 for taxonomy. Tree continued in Figures 11 and 13.
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Ceratophyllales + Eudicotyledoneae, Monocotyledoneae,
and Magnoliidae are unresolved.
Within the angiosperms, some relationships that have

been uncertain, particularly at deep levels (reviewed in
[103,107]), receive moderate to strong support in at least
some of our analyses. For example, the placement of
Myrtales and Geraniales in the Malvidae is supported
with 70% BS (Figure 6) in the ntNo3rd tree and ≥ 99%
BS in the RY (Figure 7) and ntAll (Figure 5) trees. Myr-
tales and Geraniales are also placed in a clade with the
Malvidae taxa in the AA analysis (68% BS; Figure 8);
however, Zygophyllales are also included within this
clade, making Malvidae non-monophyletic. Likewise,
Chloranthales are sister to Magnoliidae in all trees, but
with weaker support (61% BS for RY and ntNo3rd, 68%
BS for ntAll, and 69% BS for AA, but with Piperales
removed from Magnoliidae in the latter). In two cases,
all analyses but RY resolve relationships (although often
with only moderate support), with RY producing a
polytomy that does not conflict with the resolutions
found in the other analyses. These two cases are as
follows: (1) Vitales + Saxifragales supported by ≥ 70% BS
in all analyses but RY, with Saxifragales, Vitales, and
remaining Rosidae forming a polytomy in the RY tree
(Figure 7); (2) Dasypogonaceae +Arecales in all but RY
(52%, 78%, and 80% BS in the ntNo3rd, AA, and ntAll
trees, respectively) and a trichotomy of Dasypogonaceae,
Arecales, and Poales + (Zingiberales +Commelinales) in
the RY tree (Figure 7). In two additional cases when RY
is compared to the other three analyses, the RY analysis
produced either stronger support for the placement of a
taxon or a different placement altogether. First, in the
ntAll, ntNo3rd, and AA analyses, the position of
Sabiaceace among the early-diverging lineages of Eudi-
cotyledoneae is weakly supported. However, in the RY
analysis, Sabiaceae receive moderate support (79% BS;
Figure 7) as sister to a strongly supported (100% BS;
Figure 7) clade of Trochodendrales + (Buxales (Gunner-
ales + Pentapetalae)). This contrasts with previous
studies that often place Sabiaceae as sister to Proteales
[103]. An example of a different placement of a taxon
in the RY analysis when compared to the other analyses in-
volves Liliales. The ntAll, ntNo3rd, and the AA analyses
support Liliales as sister to a clade of Dioscoreales+ Panda-
nales with 72%, 69%, and 80% BS, respectively. This place-
ment of Liliales was also recovered in Barrett et al. [108]. In
contrast, in the RY analysis, Liliales are placed in a clade
with Asparagales+Commelinidae with moderate support
(69% BS; Figure 7). This latter placement of Liliales was
strongly supported in an analysis with much better taxon
sampling [103].
Some taxa that have been problematic in previous

studies (e.g., Boraginaceae, Ceratophyllales, the COM
clade, Dilleniaceae, and Zygophyllaceae) continue to defy
definitive placement. Their positions vary among our
analyses, although they are generally not well supported
in some, or all, of the trees. Despite its general place-
ment of the COM clade in Fabidae in these and other
plastid analyses, this clade is more closely related to
Malvidae in some analyses, particularly those using
mitochondrial gene sequences (reviewed in [103]). Re-
cent analyses of plastid, mitochondrial, and nuclear data
suggest that the COM clade may represent ancient re-
ticulation involving Fabidae and Malvidae during the
rapid radiation of Rosidae (Sun et al., in prep.).

Methodological issues of plastid phylogenomic analyses
To address potential systematic error in large-scale
phylogenetic analyses, scientists often either try to improve
the fit of models to the data or change or remove problem-
atic data. With increasing sequence length and number of
genes, it is more likely that a sequence alignment will con-
tain regions with heterogeneous processes of molecular
evolution. We see evidence of this high heterogeneity with
our model-fitting experiments, which always favor the
most parameter-rich models (Table 2). Thus, defining par-
titioning schemes and models that can accurately reflect
the true processes of molecular evolution while not over-
parameterizing the analysis remains critically important for
phylogenetic analyses of large plastid data sets. Although
we assessed models that account for heterogeneity in pat-
terns of molecular evolution among genes and in some
cases codon positions, our model selection tests only eval-
uated a small selection of possible models and partitioning
schemes. It is possible that other partitioning schemes
could enable simpler models.
Most conventional phylogenetic models, like those used

in our analyses, also assume homogeneous processes of
evolution throughout the tree. Yet when the branches of
the phylogeny encompass over one billion years of evolu-
tionary history, as likely do those in the green plants, the
patterns of evolution almost certainly differ among lineages
and through time. This is apparent from the often good
fit of covarion models (which may better describe rate
shifts through time) to plastid genes [109,110] and the
presence of nucleotide compositional heterogeneity, which
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Figure 13 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide
positions (ntAll) analysis. Portion of tree showing Ceratophyllales, Ranunculales, Sabiaceae, Proteales, Trochodendrales, Buxales,
Gunnerales, and Superasteridae. Data set derived from 78 protein-coding genes of the plastid genome (ntax = 360; 58,347 bp; missing
data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree of major Viridiplantae clades and
Additional file 1 for taxonomy. Tree continued in Figures 12 and 14.
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can confound conventional phylogenetic analyses (e.g.,
[111,112]). Also, our models do not account for shifts in
selective pressure or instances of positive selection that will
affect nucleotide and amino acid substitution patterns (e.g.,
[113,114]).
Nucleotide compositional heterogeneity remains a con-

cern for green plant plastid genome analyses. This vari-
ation is most evident in non-seed plant taxa (Figure 2), and
thus it has not been a focus of many previous phylogenetic
analyses of plastid genome sequences. A GC bias in itself is
not necessarily problematic for phylogenetic analyses, but
nearly all commonly used models for likelihood-based
phylogenetic analyses assume single equilibrium nucleotide
frequencies. Given that GC content appears to vary by
codon position in plants (Figures 1 and 2) [115-117], a
partitioning scheme that estimates separate nucleotide fre-
quencies for each codon position may account for some of
the spatial heterogeneity in GC content in the plastid gen-
ome, but it does not address the differences in GC fre-
quency among lineages.
A commonly used strategy to reduce the effects of GC

heterogeneity across lineages is RY-coding, in which the
purines (A and G) are coded as Rs and the pyrimidines (C
and T) are coded as Ys [118]. RY-coding can reduce the
compositional variability among lineages, improve the fit
of models, and increase the signal for internal branches
[118-121]. An obvious disadvantage to RY-coding is that
by coding the sequences with two character states instead
of four, it reduces the amount of information in the se-
quences. In general, we see little overall reduction, and
even some gains, in bootstrap support when using RY-
coding compared to the use of all nucleotide data
(ntAll), suggesting that the benefits of RY-coding make
up for any potential costs of information loss. Perhaps
the biggest topological difference in the RY phylogeny
(Figure 7) compared to ntAll (Figure 5) is the place-
ment of Monilophyta rather than Lycopodiophyta as
sister to seed plants. The unexpected placement of
Lycopodiophyta as the sister to seed plants in the ntAll
analysis (Figure 5) is almost certainly an artifact of sys-
tematic error; several other lines of evidence support
Monilophyta as the sister group of seed plants (see
above).
Approaches to reducing systematic errors by excluding

problematic data, which often include fast-evolving or
saturated sites, also have been suggested for plastid gen-
ome analyses [20,41,80,110,122]. With the proper model
of molecular evolution and adequate taxon sampling,
fast sites are not necessarily problematic; they are only
problematic insofar as they are difficult to model. Yet with
heterogeneous processes of molecular evolution through-
out the tree, the fast-evolving or saturated sites can pro-
duce a significant non-phylogenetic signal (e.g., [123]).
Indeed, the third codon positions appear to have especially
high levels of compositional heterogeneity, potentially
causing systematic error (Figures 1 and 2), and an analysis
of just the third codon positions (nt3rdOnly) conflicts
with the analyses of other data sets in several critical parts
of the tree (Additional file 11). However, third codon posi-
tions also represent a large proportion of the variable sites
in the alignment, and removing them may exclude much
of the phylogenetic information in some parts of the tree.
With regard to backbone relationships in our phylogeny,
excluding the third position sites (ntNo3rd) produces sev-
eral interesting changes in contrast to ntAll: 1) it supports
the sister relationship of mosses and liverworts, 2) monilo-
phytes, not lycophytes, are placed sister to seed plants as
expected, and 3) support for some of the backbone angio-
sperm relationships is reduced. Thus, the effects of remov-
ing the third codon position sites appear to vary in
different parts of the tree.
Another strategy for overcoming potential error associ-

ated with fast-evolving sites is to code the sequences as
amino acids rather than nucleotides. This does not neces-
sarily eliminate problems of compositional heterogeneity,
as the GC bias also may bias amino acid composition
(Figures 3 and 4) [124]. Regarding backbone green plant
relationships, the AA analysis provided similar results to
analyses of only first and second codon positions. AA ana-
lysis also produced some weakly supported, questionable
relationships among angiosperm lineages (i.e., Piperales +
Ceratophyllales; Figure 8). In previous deep-level plant
analyses, analyses of amino acid data have resulted in argu-
ably more problematic or questionable relationships than
analyses of nucleotide data [29,80]. However, these results
are likely due to inappropriate models of amino acid evolu-
tion [125], and with better models, optimized for plastid
evolution, amino acid data may be a valuable source of
phylogenetic information.
Taxon sampling is also important for plastid phyloge-

nomic studies, especially when the model of evolution is
inadequate [56,58,126-131], and genome-scale analyses
often have limited taxon sampling. New methods for rapid
and inexpensive plastid genome sequencing (e.g., [132])
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Figure 14 Fifty percent maximum likelihood majority-rule bootstrap consensus tree of Viridiplantae inferred from the all nucleotide
positions (ntAll) analysis. Portion of tree showing Dilleniaceae and Superrosidae. Data set derived from 78 protein-coding genes of the
plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap support values ≥ 50% are indicated. See also Figure 5 for a summary tree
of major Viridiplantae clades and Additional file 1 for taxonomy. Tree continued in Figure 13.
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may ameliorate the effects of insufficient sampling of ex-
tant taxa; however, many major lineages of green plants
are now extinct, precluding their inclusion in analyses of
molecular data (but see [133-136]). In addition, ancient,
rapid radiations abound within portions of the green plant
tree of life, creating extremely difficult phylogenetic prob-
lems no matter the taxon sampling [63,69,107,137].
Furthermore, even in the absence of systematic error,

it is possible that a tree built from plastid genome data
will not reflect species relationships. The plastid genome
represents a single locus of linked genes (i.e., a single co-
alescent history). For phylogenetic analyses, this can be
beneficial because combining genes with different evolu-
tionary histories into a single character matrix can lead
to phylogenetic error [138-140]. However, incomplete
lineage sorting or ancient reticulation could lead to con-
flict between the plastid gene tree and the species phyl-
ogeny [141]. For this reason, it will be interesting to
compare phylogenetic hypotheses from the plastid gen-
ome with independent phylogenetic estimates from nu-
merous nuclear and mitochondrial loci.
Finally, while full plastid genome sequence data pro-

vide much power for resolving difficult phylogenetic re-
lationships, it is not clear that they can resolve all plant
relationships. Theoretical work suggests that extremely
large data sets may be necessary to resolve some rela-
tionships when the internal nodes are separated by
very short branches [142], and recent analyses indicate
that full plastid genomes are not sufficient to reject al-
ternative topologies among monocots [108]. Indeed, the
unresolved or conflicting parts of the green plant phyl-
ogeny in our analyses are generally associated with short
internal branch lengths (see Additional files 7, 8, 9, 10,
and 11). Thus, even if the model of evolution accurately
reflects the true process of molecular evolution, and
there is no systematic error, plastid genome data alone
may not be sufficient to resolve all parts of the green
plant tree of life. That is, the topology may not be identi-
fiable with the plastid data alone. A recent analysis using
a new diagnostic test for phylogenetic identifiability
based on data cloning suggested that a backbone top-
ology of angiosperms was identifiable from plastid se-
quence data using the GTR + Γ model [143], but the tree
in this paper is much larger and the models more com-
plex. In any case, it will be necessary to include perspec-
tives from the nuclear genome and phenotypic data
before we are confident about all deep-level relationships
among green plants.
Conclusions
Our diverse analyses provide a first approach to address-
ing some of the difficult issues associated with plastid
phylogenetic analyses at this evolutionary depth and
level of taxon sampling. The results of the analyses
using different models, character-coding strategies, and
character subsets suggest that much of the tree is robust
to many different phylogenetic approaches, and they
highlight regions of the tree that need more scrutiny
(i.e., those relationships not consistent across analyses).
More sophisticated modelling approaches may more
accurately characterize the heterogeneous processes of
molecular evolution, but it is also crucial that the
parameters of these complex models can be estimated
by the data at hand [143]. While it may be impossible
for any model to reflect perfectly the complexities of
molecular evolution, as we better characterize these
processes it will be possible to examine through simula-
tions their possible effects on phylogenetic analyses
and to recognize phylogenetic error caused by model
misspecification.

Methods
Taxon and sequence sampling
Protein-coding data, including nucleotides and their cor-
responding amino acid sequences, for all Viridiplantae
taxa that had complete or nearly complete plastid gen-
ome sequences were downloaded from GenBank on
February 28, 2012. If there were multiple genome se-
quences from the same taxon, we included the se-
quence with the most data. Our sampling included
most major lineages of Viridiplantae. A complete list
of taxa and GenBank accession numbers is available in
Additional file 1.
Taxonomic names (Additional file 1) follow various

references. Four classes of chlorophytic algae (Chloro-
phyta) are recognized following a traditional classifica-
tion [26,76]. Classes of streptophytic algae and orders
for both chlorophytic and streptophytic algae follow
Leliaert et al. [76]. Names for the three main bryophyte
clades follow recent classifications: mosses (Bryophyta
[144]), hornworts (Anthocerotophyta [145]), and liver-
worts (Marchantiophyta [146]). Major clades of tracheo-
phytes follow Cantino et al. [147] and Soltis et al. [103].
Familial and ordinal names within major clades of land
plants follow these references: Bryophyta [144]; Anthoceroto-
phyta [145]; Marchantiophyta [146]; lycophytes (Lycopodio-
phyta) and ferns (Monilophyta) [148]; gymnosperms



Ruhfel et al. BMC Evolutionary Biology 2014, 14:23 Page 21 of 26
http://www.biomedcentral.com/1471-2148/14/23
(Acrogymnospermae [149]); and angiosperms (Angiospermae
[150]). All scientific names are italicized to distinguish com-
mon names from scientific names [147,151].

Building the phylogenetic character matrix
To build the phylogenetic matrix, first we used a cluster-
ing approach to identify homologous gene sequences.
Amino acid sequences from all downloaded genomes
were compared to each other using BLASTP v.2.2.26
[152]. Significant BLAST hits were defined as those hav-
ing a maximum e-value of 1.0e-5 and having the hit re-
gion cover at least 40% of the target and query
sequences. Based on the BLAST hits, we formed clusters
of putative homologs using single-linkage clustering.
This approach identified groups of sequences that had a
significant BLAST hit with at least one other sequence
in the cluster and were connected to each other by a
path of significant BLAST hits. The resulting clusters
were modified in two ways. First, clusters that contained
two or more different genes from a single taxon were re-
clustered at a more stringent e-value to separate the
genes. Second, when it appeared that a single gene was
split into multiple clusters, we combined them. Some
clusters contained multiple sequences from the same
species when the gene was present in the inverted repeat
region in the plastid genome. If the sequences were
identical, only one was retained for analysis. In cases
where the two sequences differed slightly, we removed
both sequences. Only clusters containing sequences
from at least 50% of the 360 taxa were retained for the
phylogenetic analyses.
Each remaining amino acid cluster (78 total) was aligned

with MAFFT v. 6.859 [153] using the L-INS-i algorithm,
and subsequently, poorly aligned regions were removed
using trimAl v.1.2rev59 [154]. After using trimAl, we also
visually inspected the trimmed alignments and removed
poorly aligned regions. The nucleotide sequences for each
cluster were aligned with PAL2NAL v.14 [155] to corres-
pond to the trimmed amino acid alignment and ensure
that the correct reading frame was maintained. We
checked for anomalous sequences by building ML trees
from each of the aligned clusters with RAxML [156,157]
following the search strategies outlined below. These
topologies were visually examined, and sequences in
obviously spurious locations in the tree were removed. If
any sequences were removed from a cluster alignment,
we realigned and edited the cluster’s untrimmed data
as described above. Alignments for each gene were
concatenated using FASconCAT v.1.0 [158].
From this data set, we generated an amino acid (AA)

alignment, two nucleotide alignments, and a binary char-
acter alignment. The first nucleotide alignment con-
tained all nucleotide positions (ntAll), while the second
contained only the first and second codon positions
(ntNo3rd). The binary character alignment was an RY-
coded version (RY) of the ntAll data set. RY-coding
[159] involves recoding the nucleotides as binary charac-
ters, either purines (A or G = R) or pyrimidines (C or T =
Y). RY-coding has been used to ameliorate biases caused
by saturation, rate heterogeneity, and base composition
[119,160,161]. To determine if the data sets were decisive
using our selected partitioning schemes (see below), we
followed the approach used in Sanderson et al. [72].
We assessed base composition bias in the nucleotide

data set (ntAll) by conducting a chi-square test using
PAUP* v.4.0b10 [162] to determine if the base frequen-
cies across taxa were homogeneous. To determine if
base composition of the nucleotide sequences in the
ntAll matrix could affect the composition of amino acid
sequences in the AA matrix, we conducted linear regres-
sions in R [163]. We examined the relationship of per-
cent GC content to the percent of amino acids that are
coded for by GC-rich codons (i.e., G, A, R, and P) as
well as the relationship of percent GC content to the
percent of amino acids that are coded for by AT-rich
codons (i.e., F, Y, M, I, N, and K).

Phylogenetic analyses
All ML phylogenetic analyses were implemented with
RAxML v. 7.3.0 [156,157]. The optimal partitioning
scheme for each alignment was chosen from among sev-
eral commonly used partitioning strategies using the
corrected Akaike information criterion (AICc) [164,165].
This penalizes models for additional parameters and
should account for the trade-off between increased model
fit and over-parameterization when choosing the best
model. For the nucleotide (ntAll and ntNo3rd) and
RY-coded data, we examined four possible partitioning
strategies: 1) no partitioning, 2) partitioning by each
codon position (three partitions), 3) partitioning by
gene (78 partitions), and 4) partitioning by each codon
position within each gene (234 partitions). For the AA
data, we tested two partitioning strategies: 1) no parti-
tioning, and 2) partitioning by gene (78 partitions). A
novel approach for determining partitions of phyloge-
nomic data sets a posteriori using a Bayesian mixture
model has recently been proposed [69]. Additionally,
the program PartitionFinder [166] allows for the statis-
tical comparison of multiple a priori partitioning
schemes. We explored both of these methods, but we
were unable to complete the analyses due to computa-
tional limitations resulting from the large size of our
data set.
To determine which partitioning scheme was optimal

for each data set, we first obtained the optimal ML tree
for each data set under each partitioning scheme as fol-
lows. For the nucleotide (ntAll, ntNo3rd) and RY-coded
data, we ran 10 ML searches from different starting
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trees. We used the GTR+Γ model of evolution for each
partition in the nucleotide data set and the binary model
of evolution (BINGAMMA) for the RY data set. For the
AA data, we ran 3 ML searches from different starting
trees. To select the best amino acid substitution model
for each partition of the AA data set, we used the Perl
script (ProteinModelSelection.pl) included in the RAxML
distribution package. For each ML search, we estimated a
separate substitution rate matrix for each partition but a
single set of branch length parameters for all partitions.
We then optimized the model and branch lengths on each
resulting ML tree using RAxML (-f e). AICc values for
each partitioning scheme were then calculated by using
the log-likelihood, number of estimable parameters, and
sample size given by RAxML. The optimal partitioning
strategy for each data set was then used in subsequent ML
bootstrap analyses. Bootstrap searches (200 replicates for
each matrix) were executed separately from the search for
the best ML tree using the standard bootstrap option in
RAxML. To determine if 200 replicates were adequate for
estimating bootstrap values, we conducted a posteriori
bootstopping analyses (-I autoMRE) as implemented in
RAxML and described in Pattengale et al. [167]. All trees
were rooted at the branch between Chlorophyta and
Streptophyta [23,24].
To further explore our data, we conducted the following

phylogenetic analyses using the methods described above
unless otherwise noted. To determine if there is conflict be-
tween the phylogenetic signal in the ntNo3rd data set and
the data set containing only third positions (nt3rdOnly), we
analyzed the nt3rdOnly data partitioned by gene region.
We also conducted phylogenetic analyses on each of the
four main data sets (ntAll, ntNo3rd, RY, and AA) with four
taxa removed: Neottia nidus-avis and Rhizanthella gardneri
(mycoheterotrophic orchids), Epifagus virginiana (a para-
sitic flowering plant), and Helicosporidium sp. (a parasitic
green alga). These taxa have elevated rates of molecular
evolution and relatively few genes present in the data sets
(see Additional file 2). We removed them to ensure that
their inclusion did not cause any phylogenetic artifacts.

Availability of supporting data
The data sets supporting the results of this article are
available in the Dryad Digital Repository: http://doi.org/
10.5061/dryad.k1t1f.

Additional files

Additional file 1: Taxon sampling. Taxa included in this study, their
GenBank accession numbers, original publications, and their higher taxonomy.

Additional file 2: Genes sampled and missing data for each taxon.
Information on taxa sampled for each gene included, and the percent of
missing data for each taxon in each data set. Number of genes present
per taxon and number of taxa present per gene are also given.
Additional file 3: GC content for each taxon in the ntAll and
ntNo3rd data sets as well as in the first, second, and third codon
positions of the ntAll data set.

Additional file 4: Fifty percent maximum likelihood majority-rule
bootstrap consensus summary tree of Viridiplantae inferred from
the first and second codon positions (ntNo3rd) analysis. See also
Figure 6 for a summary tree of major Viridiplantae clades and
Additional file 1 for taxonomy. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 38,898 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 5: Fifty percent maximum likelihood majority-rule
bootstrap consensus tree of Viridiplantae inferred from the RY-
coded (RY) analysis. See also Figure 7 for a summary tree of major
Viridiplantae clades and Additional file 1 for taxonomy. Data set derived
from 78 protein-coding genes of the plastid genome (ntax = 360,
58,347 bp, missing data ~15.6%,). Bootstrap support values ≥ 50% are
indicated.

Additional file 6: Fifty percent maximum likelihood majority-rule
bootstrap consensus tree of Viridiplantae inferred from the amino
acid (AA) analysis. See also Figure 8 for a summary tree of major
Viridiplantae clades and Additional file 1 for taxonomy. Data set derived
from 78 protein-coding genes of the plastid genome (ntax = 360, 19,449
AAs, missing data ~15.6%,). Bootstrap support values ≥ 50% are
indicated.

Additional file 7: Maximum likelihood tree of Viridiplantae inferred
from the all nucleotide positions (ntAll) analysis. Cladogram of the
maximum likelihood bipartition tree is shown on the left with bootstrap
values indicated above the branches. The phylogram of same tree is
shown on the right. Data set derived from 78 protein-coding genes of
the plastid genome (ntax = 360; 58,347 bp; missing data ~15.6%). Bootstrap
support values ≥ 50% are indicated.

Additional file 8: Maximum likelihood tree of Viridiplantae inferred
from the first and second codon positions (ntNo3rd) analysis.
Cladogram of the maximum likelihood bipartition tree is shown on the
left with bootstrap values indicated above the branches. The phylogram
of same tree is shown on the right. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 38,898 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 9: Maximum likelihood tree of Viridiplantae inferred
from the RY-coded (RY) analysis. Cladogram of the maximum
likelihood bipartition tree is shown on the left with bootstrap values
indicated above the branches. The phylogram of same tree is shown on
the right. Data set derived from 78 protein-coding genes of the plastid
genome (ntax = 360, 58,347 bp, missing data ~15.6%,). Bootstrap support
values ≥ 50% are indicated.

Additional file 10: Maximum likelihood tree of Viridiplantae
inferred from the amino acid (AA) analysis. Cladogram of the
maximum likelihood bipartition tree is shown on the left with bootstrap
values indicated above the branches. The phylogram of same tree is
shown on the right. Data set derived from 78 protein-coding genes of
the plastid genome (ntax = 360, 19,449 AAs, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.

Additional file 11: Maximum likelihood tree of Viridiplantae
inferred from the third codon position (nt3rdOnly) analysis.
Cladogram of the maximum likelihood bipartition tree is shown on the
left with bootstrap values indicated above the branches. The phylogram
of same tree is shown on the right. Data set derived from 78 protein-coding
genes of the plastid genome (ntax = 360, 19,449 bp, missing data ~15.6%,).
Bootstrap support values ≥ 50% are indicated.
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