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Positive selection in the adhesion domain of Mus
sperm Adam genes through gene duplications
and function-driven gene complex formations
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Abstract

Background: Sperm and testes-expressed Adam genes have been shown to undergo bouts of positive selection in
mammals. Despite the pervasiveness of positive selection signals, it is unclear what has driven such selective bouts.
The fact that only sperm surface Adam genes show signals of positive selection within their adhesion domain has
led to speculation that selection might be driven by species-specific adaptations to fertilization or sperm
competition. Alternatively, duplications and neofunctionalization of Adam sperm surface genes, particularly as it is
now understood in rodents, might have contributed to an acceleration of evolutionary rates and possibly adaptive
diversification.

Results: Here we sequenced and conducted tests of selection within the adhesion domain of sixteen known
sperm-surface Adam genes among five species of the Mus genus. We find evidence of positive selection associated
with all six Adam genes known to interact to form functional complexes on Mus sperm. A subset of these complex-
forming sperm genes also displayed accelerated branch evolution with Adam5 evolving under positive selection. In
contrast to our previous findings in primates, selective bouts within Mus sperm Adams showed no associations to
proxies of sperm competition. Expanded phylogenetic analysis including sequence data from other placental
mammals allowed us to uncover ancient and recent episodes of adaptive evolution.

Conclusions: The prevailing signals of rapid divergence and positive selection detected within the adhesion
domain of interacting sperm Adams is driven by duplications and potential neofunctionalizations that are in some
cases ancient (Adams 2, 3 and 5) or more recent (Adams 1b, 4b and 6).
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Background
The majority of protein coding genes analyzed through
molecular evolutionary studies have been found to
evolve under purifying selection, but genes that function
in perception, immunity and reproduction are often
fast-evolving exceptions to this rule [1-3]. Reproductive
genes, such as those that code for species-specific
fertilization proteins, male accessory gland proteins, and
sperm proteins have been shown to exhibit rapid evolu-
tion in taxa as diverse as invertebrates, mammals and
plants [4-9].
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The ADAM (A Disintegrin And Metalloprotease) gene
family contains at least 35 members in mammals, with
more than half known to be testes-expressed. The ana-
lysis of ADAM family evolution among mammals has
found faster divergence of genes expressed in testes with
evidence of positive selection at codon sites within the
adhesion domain of sperm surface genes [10-13]. This
localization of adaptive selection in Adam genes led us
to hypothesize an important role in sperm-egg interac-
tions with positive selection possibly driven by sexual se-
lection. Thus far, very few studies have successfully
linked bouts of positive selection at sperm surface genes
to differences in mating systems, testes masses or other
proxies of sexual selection [14].
Sexual selection is likely to have driven positive selec-

tion within the adhesion domain of sperm Adam genes
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in rodents. In the Mus genus, sperm competition favours
larger numbers of sperm and has resulted in marked dif-
ferences in relative testes size between different species,
with Mus spicilegus having the largest relative testes
mass (RTM) and relative testes weight (RTW) [15-17].
Moreover, knockout mice for ADAM2 and ADAM3
show drastic decreases in sperm aggregation, a trait that
has been suggested to confer sperm with competitive ad-
vantages [18-20].
Alternatively, localized signals of positive selection

within the adhesion domain of Adam genes could result
from species-specific adaptations to fertilization. There are
sixteen Adam sperm surface genes in mice, with twelve
known to be localized on mature sperm and three (Adams
1, 2 and 3) being directly linked to sperm migration and
sperm-egg adhesion and fusion. ADAM3 knockouts ap-
pear to have the most severe effect on reproductive fitness,
resulting in infertile males due to deficiencies in sperm-
zona pellucida (ZP) interactions, and more importantly,
sperm migration into the oviduct [21-23]. ADAM2 knock-
outs also significantly affect reproductive success. In vivo,
ADAM2 null mice have a fertility rate 50 times lower than
the wild-type. This drop in fertility once again does not
appear to be the result of a single process, but is instead a
combination of deficiencies in sperm-egg fusion, sperm-
egg binding, sperm-ZP binding and sperm migration [24].
ADAM1a knockouts result in sperm unable to migrate to
the egg; in vivo the knockout produces an infertile pheno-
type but in vitro, sperm are able to fertilize eggs. ADAM1b
knockouts appear to produce normal sperm but affect the
levels of ADAM2 on mature sperm [25,26]. Interestingly,
six of the sperm surface genes (Adams 1 to 6) assemble
into functional complexes. Currently, there is evidence
for three sperm-specific complexes (ADAM2-ADAM3-
ADAM4, ADAM2-ADAM3-ADAM5, and ADAM2-ADAM3-
ADAM6), two testes-specific complexes (ADAM1a-ADAM2,
and ADAM2-ADAM3), and one complex common to
both (ADAM1b-ADAM2) [27]. All complexes require at
least ADAM2 and/or ADAM3, if not both, and their inter-
actions appear to be central for a variety of sperm func-
tional adaptations to fertility in mice.
One final consideration is that while the inclusion of a

wide range of species in prior phylogenetic studies of
Adam genes has served to resolve some aspects of the
history of the gene family, the use of very distant species
makes the proper identification of selective pressures
more difficult [12,28,29]. This is because bouts of selec-
tion can be localized to specific clades or even branches
within the phylogeny, causing a failure to detect a signal
of selection when a wide range of species are included in
the analysis [12,30]. Similarly, analyses utilizing wide
ranges of ancient paralogs that cluster within a phylo-
genetic clade can fail to detect positive selection that is
gene-specific [29].
Here we present novel sequence data for all sperm-
expressed members of the ADAM family in Mus. Se-
quences were utilized to conduct tests of selection
within the adhesion domain of sixteen known sperm
surface genes among five species of the Mus genus. We
find evidence of positive selection associated with all
six sperm surface Adam genes involved in interacting
complexes within the Mus phylogeny, and see acceler-
ated branch evolution for some. The selective bouts
showed no associations to proxies of sperm competi-
tion. We expanded the phylogenetic analysis to include
species within the Glires clade and from the superorder
Laurasiatheria and found positive selection across
groups (ancient) for Adams 2, 3 and 5 and more recent
localized bouts of selection for Adams 1b, 4b and 6 in
Mus/Glires.
Methods
DNA samples and sequencing
Genomic DNA was obtained from the Jackson Labora-
tory (www.jax.org) for M. musculus musculus, M. m.
domesticus, M. spretus, M. spicilegus and M. caroli (Strain
Names: SKIVE/Ei, LEWES/Ei, SPRET/Ei, PANCEVO/Ei
and Mus caroli/Ei respectively). Primers were designed for
the adhesion domain of all known Mus sperm Adams (1a,
1b, 2, 3, 4a, 4b, 5, 6a, 6b, 7, 18, 24, 26a, 26b, 30 and 32)
using Primer3 (http://frodo.wi.mit.edu/) and published M.
m. domesticus sequence data (Additional file 1: Table S1).
The adhesion domain was identified for each gene using
The Motif Scan Server’s Prosite options (http://myhits.
isb-sib.ch/cgi-bin/motif_scan). Polymerase chain reaction
(PCR) amplification of adhesion domain exons was carried
out with Phusion High-Fidelity DNA Polymerase (Thermo
Scientific) in 12.5 and 25.0 μl reactions using the following
general conditions: initial denaturation for 30 s (98°C) was
followed by 35 cycles of denaturation for 10 s (98°C),
annealing for 30 s (temperature gradient), and extension
for 9 s (72°C). A final extension step was carried out for
5 min (72°C). Optimization of most primer pairs resulted
in a species-specific temperature gradient for the an-
nealing step that ranged from 55-70°C (see Additional
file 1: Table S2 for optimized primer conditions).
Optimized PCR products were Sanger sequenced at the

SickKids TCAG DNA Sequencing Facilities in Toronto,
Canada. Products were sequenced using both the forward
and reverse primers and a consensus sequence for each
species was constructed using ClustalW in Mega 5.2 with
visual inspection and manual adjustments [31,32]. For
some Adam genes, M. spretus sequences were retrieved
from the SNP database (http://www.sanger.ac.uk/cgi-bin/
modelorgs/mousegenomes/snps.pl). All our sequence data
has been deposited in Genbank under accession numbers
KF144343 to KF144410.

http://www.jax.org
http://frodo.wi.mit.edu/
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://myhits.isb-sib.ch/cgi-bin/motif_scan
http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl
http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/snps.pl
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Phylogenetic reconstruction
The Basic Local Alignment Search Tool (BLAST) at
NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) was used
to query sequence data against the mouse genome to en-
sure that primers had correctly isolated targeted Adam
exons. To further enhance confidence in Mus species se-
quencing data, and to confirm orthology among differ-
ent Adam genes, we included our sequences within a
larger mammalian phylogeny. We collected Adam gene
sequence data for 98 additional mammals from NCBI
and Ensembl (See Additional file 1: Table S1 for acces-
sion numbers) and aligned the adhesion domain using
ClustalW in Mega5.2. The ProtTest 2.4 Server was uti-
lized to determine the best model of protein evolution
for phylogenetic reconstruction [33]. The phylogeny was
built in Mega 5.2 using Maximum Likelihood and the
reliability of the tree branching was assessed using 1,000
bootstrap replicates [34]. This alignment and phylogeny
has been deposited to treeBASE as indicated in the
Availability of supporting data section.

Phylogenetic branch and site tests of selection
Alignments were analyzed using different models within
the codeml program of PAML v. 4.7 using an unrooted
Mus phylogeny [35]. The likelihoods of the one ratio
model, with ω estimated or fixed at 1.0, and that of the
free-ratio model were compared. We also used the two-
ratio and the branch-site models to test for differential
evolutionary rates and selection linked to proxies of sexual
selection. The tests were done by flagging the ancestral
branch and the branches leading to the two species with
larger relative testes measurements (M. spicilegus and M.
spretus). Two measures of testes size are commonly used
in the literature, relative testes weight (RTW) and relative
testes mass (RTM). Depending on the scale used, there is
a 4 to 5-fold difference in relative testes size for the Mus
species examined in this work. M. spicilegus boasts the
largest values (RTW= 0.030, RTM= 1.682) followed by M.
spretus (RTW= 0.017, RWM= 1.072). The remaining spe-
cies utilized in this study have the following values: M. m.
musculus (RTW= 0.006, RTM= 0.411), M. m. domesticus
(RTW= 0.008, RTM= 0.506) and M. caroli (RTW =0.007,
RTM= 0.434) [15-17].
The likelihoods of the site models M8 and M8a were

calculated to identify, within the Mus phylogeny, genes
and sites that had experienced positive selection. These
models allow ω to vary among codon sites; model M8
assumes that positive selection might occur and ω values
can exceed 1 while the null model, M8a, fixes ω at 1.
For genes showing evidence of positive selection within
the Mus genus, the M8-M8a tests of selection were
conducted for species of the Glires clade (Rodentia and
Lagomorpha) and the superorder Laurasiatheria. This
approach was used to determine whether bouts of positive
selection were restricted to Mus and/or Glires or more
ancestrally shared with other placental mammals. The
Bayes Empirical Bayes (BEB) method was conducted in
conjunction with model M8 to identify specific amino
acid sites experiencing bouts of adaptive evolution [36].

Additional tests of selection and functional divergence
Tests of site-specific functional divergence were conducted
on complex-forming paralogous Mus sperm Adams (1a/
1b, 4a/4b, 6a/6b) using the GU99 method within DI-
VERGE v. 1.04 [37,38]. This analysis identifies gene pairs
evolving under functional divergence, where one duplicate
is highly conserved while the other evolves in a highly vari-
able manner [39]. TreeSAAP v. 3.2, a program that exam-
ines amino acid substitution by measuring selection’s effect
on 31 different amino acid properties, was utilized within
the expanded phylogenies (Glires and Laurasiatheria) to
identify sites of positive selection for Adams 1, 2, 3, 4 and
5 [40]. These two analyses provide amino acid sites be-
lieved to be positively selected or integral for functional di-
vergence. Sites identified through TreeSAAP were utilized
to validate or reject those from the PAML BEB results,
while DIVERGE assessed if amino acids identified as evolv-
ing under positive selection by BEB in PAML contributed
to functional divergence between paralogous Adam genes.

Results
Our phylogenetic reconstruction supported the overall
orthology of mammalian Adam genes used in this study
(Figure 1 and Additional file 1: Table S3). The nested
branch models of evolution showed that in most cases a
model that allows for different ω estimates per tree branch
was not necessarily a better fit to the data than a model as-
suming a single estimated ω for all branches in the Mus
tree (Additional file 1: Table S4). For Adams 1a, 4a, 6a, 6b,
7 and 30, an average branch ω significantly lower than one
(purifying selection) was a better fit to the data than an
average branch ω of one. Adam4b also showed a significant
result in support of purifying selection at a 10% level of
significance (FDR corrected P < 0.1), whereas Adam5 was
found to be evolving under positive selection throughout
the phylogeny (Table 1 and Additional file 1: Table S4).
Those Adams not listed above had average branch ω
values non-significantly different from one, indicating
rapid branch evolution due to relaxed selection (Table 1).
It is noteworthy that several genes (Adams 1b, 2, 3, 4
and 5) that interact to form functional complexes on ma-
ture mouse sperm are among the relaxed/positively se-
lected genes with large average ω branch values (Table 1).
While there was evidence of an overall constancy of ω

ratios across all branches in the Mus phylogeny, it is
possible that localized bouts of sexual selection within
branches might have been lost in such a test. Therefore
we tested branches leading to species with larger testes,

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Figure 1 Sperm Adam molecular phylogeny supporting Adam sequence orthology. The WAG model of protein evolution with G, the
gamma distribution shape parameter, and I, invariant sites, was selected for the phylogenetic reconstruction. The model was selected based on
its likelihood and AIC (akaike information criterion) value (Additional file 1: Table S3).
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as a proxy of sperm competition, by estimating the like-
lihood of a model with estimated ω along the foreground
and background branches against a model with the fore-
ground branch ω fixed at 1.0. Down the M. spicilegus
and M. spretus foreground lineages, an estimated ω < 1.0
was only a better model for Adams 4a and 7. Results
from the branch-site model within PAML also indicated
that codon sites specific to M. spicilegus and/or M.
spretus were not evolving more quickly under the influ-
ence of sexual selective pressures. Thus, we found evi-
dence of purifying selection for two Adam genes and no
indication of sexual selection at the branch ancestral to
the species with largest RTW and RTM or at the branch
leading to M. spicilegus or M. spretus individually using
two separate tests (Additional file 1: Tables S4 and S5).
Despite the apparent constancy of evolutionary rates

within branches of the Mus phylogeny, it is possible that
some codon sites might have been influenced by bouts
of positive selection. Likelihood ratio tests comparing
PAML’s site models (M8 and M8a) were conducted on
each of the 16 known Mus sperm Adams (as listed in the
Methods section). The results indicate that positive selec-
tion has driven the evolution of codon sites within Adams
2, 4b, 5 and 24 (FDR corrected P < 0.05), with Adams 1b,
3 and 26 also showing evidence of positive selection (FDR
corrected P < 0.1) (Table 1). When paralogous gene pairs
were examined together, positive selection was also found
to influence the evolution of Adams 4, 6 and 26 (Table 1).
We used DIVERGE analysis on Adams 1, 4 and 6 to assess
the potential role of positively selected sites on functional
divergence between gene paralogs. For Adam1, seven out
of nine positively selected sites were supported as contribu-
tors to functional divergence between Adams 1a and 1b
(Additional file 2: Figure S1). Nine out of eleven positively
selected sites were supported as contributors to functional
divergence between Adams 4a and 4b (Additional file 2:
Figure S2). Adams 6a and 6b did not show positive selec-
tion by themselves but they did when analyzed together
(Table 1). None of the positively selected sites detected
using PAML were found to contribute to functional diver-
gence between these paralogs (Additional file 2: Figure S3).
Expanded phylogenies for Glires (including our Mus

sequences) and Laurasiatheria, were produced for all
complex-forming sperm Adams to examine whether the
signals of positive selection identified for Mus were clade
specific, shared with Rodentia and Lagomorpha (Glires),
or ancient and shared with other placental mammals
(Laurasiatheria). PAML analyses suggested that Adams
2, 3 and 5 displayed site-specific evidence of positive se-
lection throughout the Glires and Laurasitheria, indicat-
ing that these signals are not Mus-specific. In contrast to
these results, clade-specific bouts of selection appear to



Table 1 Branch and site tests of selection in Mus

Gene l n 2Δℓ M0N0 ω Branch 2Δℓ p1; ω (M8) Site

(ω vs ω = 1.0) Selection (M8-M8a) Selection

Adam1a 321 5 9.78 0.16 Purifying 0 Purifying

Adam1b 321 5 0.03 0.91 Relaxed 3.89 0.07; 9.10 Positive

Adam1 321 10 63.11 0.21 Purifying 1.94 Purifying

Adam2 333 5 0.2 0.78 Relaxed 9.77 0.11; 12.87 Positive

Adam3 339 5 0.04 0.89 Relaxed 4.08 0.13; 8.92 Positive

Adam4a 327 5 6.18 0.22 Purifying 0 Purifying

Adam4b 327 5 3.25 4.69 Purifying 15.36 0.04; 38.74 Positive

Adam4 327 10 0.8 1.39 Relaxed 49.84 0.07; 23.54 Positive

Adam5 273 5 4.36 3.78 Positive 24.38 0.20; 30.03 Positive

Adam6a 327 5 9.75 0.21 Purifying 2.02 Purifying

Adam6b 327 5 9.74 0.17 Purifying 0.65 Purifying

Adam6 327 10 11.67 0.32 Purifying 8.15 0.08; 5.69 Positive

Adam7 267 5 11.03 0.15 Purifying 0 Purifying

Adam18 339 5 1.96 0.46 Relaxed 2.21 Purifying

Adam24 330 5 0.06 1.15 Relaxed 7.64 0.06; 19.11 Positive

Adam26a 327 4 0.07 0.87 Relaxed 1.53 Purifying

Adam26b 327 4 1.35 0.5 Relaxed 0.11 Purifying

Adam26 327 7 0.24 0.78 Relaxed 4.03 0.29; 3.63 Positive

Adam30 327 5 7.95 0.14 Purifying 0 Purifying

Adam32 285 5 1.91 0.46 Relaxed 0.01 Purifying

n = number of species included; l = length of adhesion domain analyzed (bp); 2Δℓ = the difference in likelihood estimates from different models of selection;
ω= dN/dS per codon for sites under positive selection; p1 = proportion of codon sites under positive selection. Test statistics (2Δℓ) are bolded (FDR corrected
P < 0.05) or underlined (FDR corrected P < 0.10) to denote statistical significance.
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be present for Adams 1, 4 and 6. Positive selection of
Adam1 in Mus is restricted to Adam1b (Table 1), a pat-
tern mirrored by the paralogs in Glires, with no evidence
of positive selection within Laurasiatheria (Table 2).
There were not enough sequences available for Adams 4
and 6 to run the analysis outside Glires, but a signal of
positive selection was found for Adam4b but not
Adam4a in Mus (Table 1), so the situation could be
similar to what was seen for Adam1. Adam6 was only
positively selected when both paralogs (6a and 6b) were
pooled together in the analysis (Table 1), and the signal
was lost when other species of Glires were included,
suggesting that positive selection is localized in Mus.
The majority of positively selected sites detected by
PAML’s BEB analysis within Glires and Laurasiatheria
were validated using TreeSAAP (Table 2).

Discussion
The lack of evidence of linkages between proxies of sexual
selection and adaptive evolution in Mus is in contrast to
prior evidence we have found of sexual selection in pri-
mates for Adam2 and Adam18 [12]. This result highlights
the importance of testing selection within specific groups
or clades before making generalizations about sexual
selection, as selective bouts can be lineage-specific and
thus lost in phylogenetic analysis that include widely di-
verged species [41]. In fact, based on evidence on the po-
tential role of sperm aggregation in sperm competition, it
is possible that sexual selection might drive the evolution
of some sperm Adam genes in different genera such as
Apodemus (common wood mouse) and Peromyscus (deer
mice) [18,19]. The different results observed between
Adam genes in primates [12] and species of the Mus
genus could also be explained if any relationship between
proxies of sperm competition and positive selection is
driven by transitions from monandry to polyandry.
Results for the site model (M8 vs. M8a) indicate that

positive selection has driven the evolution of codon sites
within Adams 1b, 2, 3, 4b, 5, 6, 24 and 26. Six of these
sperm surface genes (Adams 1–6) interact in forming
functional complexes, and an interesting divide exists
within these positively selected genes in Mus. As exam-
ined by Huxley-Jones and colleagues, Adams 2, 3 and 5
are closely related members of clade B [28]. They are all
large, single-copy, multi-exon genes that display positive
selection throughout the Glires clade and the superorder
Laurasiatheria, indicating that these selective bouts are
ancient and not Mus-specific. Adams 1, 4 and 6 belong



Table 2 Sperm Adam site selection for expanded species groups showing clade localization of selective bouts

Gene Group n p1; ω (M8) 2Δℓ (M8-M8a) BEB sites (P > 95%) TreeSAAP sites (BEB)

Adam1a Glires 9 1.51

Adam1b Glires 9 0.24; 1.93 4.56 2 30 (2)

Adam1 Glires 18 0.16; 2.05 10.89 4 59 (4)

Laurasiatheria 6 2.44

Adam2 Glires 9 0.02; 21.73 11.34 2 38 (2)

Laurasiatheria 7 0.33; 2.54 22.71 16 55 (15)

Adam3 Glires 9 0.03; 8.44 5.07 1 27 (1)

Laurasiatheria 8 0.13; 2.64 10.05 1 48 (1)

Adam4 Glires 12 0.31; 3.98 24.71 11 20 (9)

Laurasiatheria 2 Not Run

Adam5 Glires 8 0.05; 21.51 23.32 4 20 (3)

Laurasiatheria 8 0.16; 3.55 24.09 9 37 (9)

Adam6 Glires 13 0.6

Laurasiatheria 3 Not Run

n, 2Δℓ, ω, and p1 are utilized as in Table 1. BEB Sites are the number of sites identified as being under positive selection using model M8 in PAML and a posterior
probability threshold higher than 95%. TreeSAAP Sites are the number of positively selected sites as identified by TreeSAAP with the number of sites shared with
PAML in brackets. Significance of the 2Δℓ test statistics is depicted as in Table 1.
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to the more recently derived clade C [28]. They are all
small, single-exon genes that are thought to have arisen
through retrotransposition of spliced Adam mRNA into
an ancestral genome [27]. In rodents, paralogous mem-
bers of clade C are likely the result of even more recent
tandem duplications, as they are situated adjacent to
their duplicates on chromosomes 5 (Adam1) and 12
(Adams 4 and 6). In agreement with a recent origin, we
found positive selection for clade C Adams within Mus
affecting either a single member of the gene pair or
when both paralogs were analyzed together. The pairing
of purifying and positive selection seen for Adams 1a
and 1b alongside differences in protein localization and
function is in support of the classical model of neo-
functionalization [25,26,42]. Adam 4 paralogs show the
same pattern of purifying and positive selection, which is
also strongly suggestive of neofunctionalization, but
nothing is yet known about the duplicate functions or
protein localization. The fact that most codon sites iden-
tified to be under positive selection in Adam1b and
Adam4b in Mus are also found to contribute to func-
tional divergence between paralogs provides further sup-
port to the hypothesis of neofunctionalization of both
Adams 1 and 4. Adam1 showed no evidence of selection
within Laurasiatheria and the Adam6 signal was lost
when other species of Glires were included, suggesting
that positive selection within these clade C Adams is
specific to Mus. Interestingly, Adam6 showed no evi-
dence of functional divergence between paralogs which
might suggest a more recent duplication event or weaker
selective pressures acting on this gene.
It is yet unclear what drives positive selection at Adams
24 and 26 (Table 1). Adam26 is another member of clade
C, and although little is known about its function, the
positive selection signal within its adhesion domain is
similar to that of Adam6, thus likely driven by a relatively
recent duplication event. Adam24−/− mice have been
functionally assessed previously. They show a 50% drop in
fertility with an increased number of sperm fusing to each
egg, supporting the hypothesis that ADAM24 functions as
an important sperm component to block polyspermy [43].
It is therefore possible that the adaptive evolution of Mus
Adam24 might be linked to species-specific adaptation to
trigger such blocks.
Conclusions
We have tested positive selection within the adhesion
domain of all sperm-expressed members of the Mus
Adam gene family and have identified an important role
played by duplications and neofunctionalization. We also
established that these bouts are not driven by selection
linked to sperm competitive pressures. This stands in
contrast to our previous findings in primates and high-
lights the importance of phylogenetically testing bouts of
selection within specific species groups [12]. An expan-
sion of the phylogenetic analysis beyond Mus highlights
a dichotomy in the mode of evolution of the adhesion
domain of sperm surface Adam genes driven by a com-
bination of ancient (Adams 2, 3 and 5) and more recent
(Adams 1b, 4b and 6) neofunctionalization of complex
forming sperm proteins.
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NCBI under the following accession numbers: KF144343
to KF144410.

Additional files

Additional file 1: Tables S1, S2, S3, S4 and S5. Accession numbers for
species included in expanded phylogeny, primer conditions, ProtTest
output, nested model (M0, M1, M2) likelihood ratio test results from
PAML, and branch site model likelihood ratio results from PAML.
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