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Background: The family Pteropodidae comprises bats commonly known as megabats or Old World fruit bats.
Molecular phylogenetic studies of pteropodids have provided considerable insight into intrafamilial relationships,
but these studies have included only a fraction of the extant diversity (@ maximum of 26 out of the 46 currently
recognized genera) and have failed to resolve deep relationships among internal clades. Here we readdress the
systematics of pteropodids by applying a strategy to try to resolve ancient relationships within Pteropodidae, while
providing further insight into subgroup membership, by 1) increasing the taxonomic sample to 42 genera; 2)
increasing the number of characters (to >8,000 bp) and nuclear genomic representation; 3) minimizing missing
data; 4) controlling for sequence bias; and 5) using appropriate data partitioning and models of sequence

Results: Our analyses recovered six principal clades and one additional independent lineage (consisting of a single
genus) within Pteropodidae. Reciprocal monophyly of these groups was highly supported and generally congruent
among the different methods and datasets used. Likewise, most relationships within these principal clades were
well resolved and statistically supported. Relationships among the 7 principal groups, however, were poorly
supported in all analyses. This result could not be explained by any detectable systematic bias in the data or
incongruence among loci. The SOWH test confirmed that basal branches’ lengths were not different from zero,
which points to closely-spaced cladogenesis as the most likely explanation for the poor resolution of the deep
pteropodid relationships. Simulations suggest that an increase in the amount of sequence data is likely to solve

Conclusions: The phylogenetic hypothesis generated here provides a robust framework for a revised cladistic
classification of Pteropodidae into subfamilies and tribes and will greatly contribute to the understanding of
character evolution and biogeography of pteropodids. The inability of our data to resolve the deepest relationships
of the major pteropodid lineages suggests an explosive diversification soon after origin of the crown pteropodids.
Several characteristics of pteropodids are consistent with this conclusion, including high species diversity, great
morphological diversity, and presence of key innovations in relation to their sister group.

Background

The family Pteropodidae comprises 186 currently recog-
nized species commonly known as Old World fruit bats
or megabats, and as such constitutes one of the largest
families of the order Chiroptera (Mammalia) [1]. The
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name “megabats” is an abbreviation for Megachiroptera,
and was coined in recognition of the large body size of
some pteropodid species, which can reach over 1 kilo-
gram in weight and have a wingspan of over 1.5 meters
[2]. Pteropodids are almost exclusively phytophagous,
feeding mostly on fruits, although some species are spe-
cialized for nectar feeding. As a group, pteropodids are
primary dispersers of pollen and seeds in the Old World
tropics [2]. They have a widespread distribution in
Africa, the tropics of Asia, and Australia as well as
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occurring on many islands from the Indian Ocean to the
Western Pacific Ocean, where some species are highly
endangered and in risk of extinction [1,3]. Unlike other
bat families, members of Pteropodidae do not use laryn-
geal echolocation, instead relying primarily on vision
and olfaction to avoid obstacles and locate food sources.

Phylogenetic relationships of Pteropodidae have been
the source of considerable debate. In the 1990s a con-
troversy developed over whether or not Chiroptera was
monophyletic or instead composed of two different evo-
lutionary lineages (Megachiroptera and Microchiroptera)
that achieved powered flight independently from origins
within different parts of the mammalian family tree (see
[4], and references cited therein). Comprehensive ana-
lyses of morphological and molecular data refuted this
hypothesis and confirmed bat monophyly [5-8] but ana-
lyses of DNA sequence data revealed a surprise - some
“microbats” were in fact more closely related to Ptero-
podidae than to the remaining Microchiroptera families
[9,10]. This led to a revision of higher-level bat taxon-
omy that saw Megachiroptera and Microchiroptera dis-
carded and two new groups recognized,
Yinpterochiroptera (for Pteropodidae and its close rela-
tives, echolocating bats of the superfamily Rhinolophoi-
dea) and Yangochiroptera (for the remaining
echolocating bats) [11].

All of these higher-level studies confirmed monophyly
of Pteropodidae, but considerable confusion has
remained concerning relationships within this clade.
Contra traditional classifications (e.g., [12]), early mole-
cular phylogenies of the group discovered that nectar-
feeding megabats did not constitute a single monophy-
letic group, but instead various nectar-feeding genera
were related to different fruit-feeding lineages (e.g.,
[8,13]). These relationships were formally recognized in
the classification of Bergmans [14], who divided the
group into six extant subfamilies and several tribes
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(Table 1). Subsequent phylogenetic studies of pteropo-
dids have further questioned or strongly refuted com-
monly recognized groupings (subfamilies, tribes), and
identified new, novel groupings of taxa [13,15-21]. The
most comprehensive studies to date based on molecular
sequence data included 26 genera and were based
mostly on mitochondrial genes including 12S rRNA, 16S
rRNA and the Cytochrome b gene plus a small sample of
nuclear data (~400 bp of the oncogene cmos) [18,19].
Giannini and Simmons [19] confirmed the monophyly
of Pteropodidae and of many higher-level taxa defined
by Bergmans [14] (e.g., Pteropodini, Macroglossini, Dob-
soniini, Epomophorinae, Epomophorini, Myonycterini,
Cynopterinae). Nevertheless, support values for some
nodes were low and resolution was poor in several parts
of the tree. The weakest part of the phylogeny was one
of the most critical parts — the backbone, which ideally
should show how the various higher-level groups are
related to one another [19]. Basal relationships among
subfamilies and tribes were discordant among different
data treatments and generally received low statistical
support. For this reason, questions still remain regarding
relationships within and between major pteropodid
clades.

Lack of resolution along the backbone of a phyloge-
netic tree can result from sampling bias (or stochastic
bias), systematic bias, or a combination of both [22].
Sampling bias occurs when a data set does not contain
enough information to allow full resolution of taxon
relationships, either due to inadequate taxonomic sam-
pling or lack of phylogenetic signal in the sampled loci
[23-26]. Both factors could have influenced previous
phylogenetic analyses of megabats, which were based
mostly on mitochondrial loci that may be saturated with
substitutions at the tribal/subfamily level [27]. Incomple-
teness of taxonomic sampling, which may contribute to
poor phylogenetic results particularly at higher

Table 1 Bergmans (1997) classification of Family Pteropodidae

Subfamily Tribe Genera

Pteropodidae Pteropodini Pteropus, Acerodon, Pteralopex, Styloctenium, Neopteryx
Macroglossini - Macroglossus, Syconycteris
Notopterini Notopteris, Melonycteris

Nyctimeninae Nyctimene, Paranyctimene

Harpyionyterinae Harpyionycteris

Rousettinae Rousettini Rousettus, Eonycteris, Eidolon
Dobsoniini Dobsonia, Aproteles

Epomophorinae  Epomophorini

Myonycterini  Myonycteris, Lissonycteris, Megaloglossus
Scotonycterini - Scotonycteris, Casinycteris
Plerotini Plerotes

Cynopterinae

Epomophorus, Micropteropus, Hypsignathus, Epomops, Nanonycteris

Cynopterus, Ptenochirus, Megaerops, Dyacopterus, Balionycteris, Chironax, Thoopterus, Sphaerias, Aethalops, Penthetor,

Latidens, Alionycteris, Otopteropus, Haplonycteris
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taxonomic levels, clearly could have played a role in
pteropodid analyses, as only 26 out of the 46 pteropodid
genera currently recognized (57%) were represented in
the largest, previous molecular studies. Another type of
bias, known as systematic bias, is caused by non-phylo-
genetic noise in the sequences such as differences in
base composition (causing unrelated taxa with similar
base composition to erroneously cluster together) and/
or substitution rate (causing long-branch attraction) (e.
g. [28,29]). Because these types of variation violate the
assumptions of most reconstruction methods, they are
also potential causes for inaccuracy and poor resolution
in phylogenetic trees [22,30,31]. Moreover, sampling
bias and systematic bias may synergistically interact,
compounding their effects on the outcome of phyloge-
netic inference [26]. None of these potential sources of
systematic bias have been addressed in previous phylo-
genetic studies on megabats.

An alternative explanation for low resolution of rela-
tionships on a phylogenetic tree is that, instead of being
a consequence of bias or methodological artifacts, it
reflects the true evolutionary history of the group. Rapid
diversification of a clade over a short period of time
may cause such a phylogenetic pattern, as has been
claimed for the origin of the mammalian [32,33] and
avian orders [34,35]. If diversification took place quickly
and long time ago, there may be little phylogenetic sig-
nal because slowly-evolving genes may not have accrued
many changes (due to the short time span) while faster-
evolving genes may have initially picked up changes, but
these were then overwritten by subsequent sequence
evolution. Also, short time interval between cladogenetic
events may hinder complete lineage sorting, confound-
ing relationships within that time frame [36]. Such trees,
with very short internal branches connected to the root,
are also known as star phylogenies (e.g. [37,38]).

Here we present a comprehensive study of the phylo-
genetic relationships among megabat genera based on a
large DNA-sequence dataset. Our focus was on resol-
ving tribal membership and relationships among subfa-
milies. We attempted to address potential sources of
bias in the phylogenetic reconstruction of this group,
including low number of informative characters, missing
data, poor taxonomic sampling, and sequence bias. This
was accomplished by obtaining new sequences for four
nuclear loci, thus significantly increasing taxonomic
sampling, and by filling in gaps in sequence data from
mitochondrial loci that had been previously sequenced
in megabats by collecting new data from the additional
taxa available to us. The inclusion of additional taxa not
only adds important information on variation but can
also help break up long branches, thus improving phylo-
genetic accuracy and helping resolve clades that may
remain ambiguous with smaller taxon samples
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[23,39-41]. The simultaneous analysis of several genes
has the obvious advantage of increasing the number of
phylogenetically informative characters and balancing
stochastic errors [42-48], but can also reduce the effects
of systematic bias that may affect individual gene parti-
tions, especially when locus-specific substitution models
are employed in a probabilistic framework [31,49-51].

To minimize the effects of various potential sources of
error in our analyses, detailed phylogenetic analyses
were conducted using tests for systematic sequence bias,
different reconstruction methods, optimal data partition-
ing in maximum likelihood analyses, and topology com-
parisons based on data simulations. Our results defined
7 well-supported groups for a new, cladistic classifica-
tion of pteropodids, in several points different from the
last formal classification by Bergmans [14]. The most
basal relationships within Pteropodidae, however, could
not be fully resolved despite the increase in the amount
of data and the use of careful phylogenetic analyses.
This result could not be explained by any source of
measurable sequence bias, pointing to a biological cause
for the observed pattern.

Results
Sequence data statistics
To minimize the effects of missing data on tree resolu-
tion [52], we first focused on a dataset that included 51
pteropodid species for which at least four of the six
sequence fragments (RAG1, RAG2, vWF, BRCA1, Cytb,
and 12S16S) used in this study were available (dataset
1). The combined alignment of dataset 1 was 8181bp
long, yielding 2504 parsimony informative sites. Details
of sequence statistics of dataset 1 in the combined and
per loci matrices are shown in Table 2. A saturation
plot of the combined dataset (ingroup only, without taxa
with missing one or more loci) did not show signs of
substitution saturation (Additional file 1), which was
confirmed by a statistical test for saturation (Iss = 0.645,
Iss.cSym = 0.844, p < 0.0001) [53].

Despite differences among genes and codon positions,
we found relative homogeneity in GC content among
pteropodid taxa (Additional file 2). The y? test failed to

Table 2 Sequence statistics and maximum parsimony
scores per gene and in the combined dataset 1

locus RAG1 RAG2 VWF BRCA1 Cytb 12S16S dataset
1

alignment 1084 760 1231 1352 1140 2566 8181
(bp)

invariable 851 567 811 848 592 1487 4648
pars. infor. 154 115 256 296 502 864 2504
Cl MP? 0.536 0582 0516 0748 0210 0287 0334
RC MP® 0357 0410 0322 0605 0077 0138 0.165

@ Consistency Index. ® Rescaled Consistency Index



Almeida et al. BMC Evolutionary Biology 2011, 11:281
http://www.biomedcentral.com/1471-2148/11/281

detect significant differences in either entire genes or
individual codon positions. We also checked for simila-
rities and differences in GC content among the principal
clades of Pteropodidae that could bias the resolution of
the relationships among them (Additional file 2). Except
for the 3™ codon position of the Cytb locus, GC content
showed little among clade variation. Rates of nucleotide
substitution were also relatively homogeneous, with only
7 pairwise taxa comparisons showing significant differ-
ences. All these comparisons involved an outgroup
taxon compared with an ingroup taxon; no significant
rate differences could be detected within the ingroup
(Pteropodidae). Borderline p values were found in some
comparisons involving Balionycteris maculata, but not
in other pairwise comparisons. This result suggests the
long-branch attraction is not likely to have a major
effect in our phylogenetic results.

Phylogenetic analyses of individual genes

MP and ML analyses were run for each locus separately
(ML trees are available in the Additional file 3). Most
topological differences among resulting trees were seen
in basal relationships, but none was supported by > 60%
bootstrap, which suggests absence of incongruent phylo-
genetic signal among genes [54]. In a parsimony frame-
work, the pairwise ILD tests did not detect significant
pairwise incongruence. The same result was obtained
with the likelihood based hierarchical test [55].

Maximum parsimony analyses of the combined dataset

The maximum parsimony (MP) analysis of the com-
bined dataset 1 recovered one most parsimonious tree
with 15637 steps and consistency index of 0.334 (Figure
1). This tree showed a monophyletic Pteropodidae with
six well-supported internal clades and one independent
lineage. Some of these clades are congruent with pre-
viously proposed subfamilies, such as Cynopterinae [14],
Harpyionycterinae [21], and Nyctimeninae and tribes,
such as Pteropodini, Scotonycterini, Macroglossini, and
Epomophorini [14]. Basal relationships among these
seven main pteropodid groups, however, were resolved
with only low support in both Bremer decay values (<5)
and bootstrap precentages (<80%, Figure 1). To check
whether variation in GC content in 3" codon position
of the Cytb gene could be affecting the results, we rea-
nalyzed the data eliminating this partition from the
matrix (Additional file 4). The only difference in topol-
ogy was that the African clade was the third pteropodid
clade to diverge instead of Pteropodini as shown in Fig-
ure 1, but basal relationships had even lower support.

ML analyses using optimal partition schemes
To choose a partition scheme of the sequence data to be
used in the maximum likelihood (ML) analyses, we
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compared several alternative schemes under the GTR
model, based on their AIC/AICc and BIC scores (Table
3). The trees obtained with those different schemes
recovered the same principal clades as the MP tree, only
varying the relationships among them (Additional file
5). Given the small improvement in AIC and BIC scores
in partition scheme 7 as compared to scheme 6, we ana-
lyzed both schemes under optimal substitution models
for each partition. Optimal substitution models were
selected using AICc for the different partitions in
schemes 6 and 7 (Additional file 6). The analyses based
on partition schemes 6 and 7 resulted in the same
topology, very similar to ML topology B (obtained with
scheme 6 and the GTR+I" model applied across all par-
titions, Additional file 5), which we will call henceforth
optimal ML tree (Figure 2). The only difference between
these two topologies is the position of Eidolon: while in
topology B Eidolon appears as the most basal branch, in
the optimal ML tree it appears as the second most basal
branch with cynopterines occupying the most basal
position. Branch support was assessed using partition
scheme 6, since this scheme had fewer parameters and
comparable results in both likelihood scores and topol-
ogy to those obtained with partition scheme 7. The
basal relationships within Pteropodidae again had no
statistical support. The principal clades and clades
within those, however, received substantial support, with
very few bootstrap values below 80% (Figure 2). Simi-
larly to results in MP analyses, removal of the 3" codon
position of the Cytb partition did not affect the results
(Additional file 4).

Topology comparisons

The principal Pteropodidae clades were well defined and
supported by all the different phylogenetic analyses we
conducted. However, there was considerable disagree-
ment among analyses concerning relationships among
these clades. To decide whether one particular arrange-
ment could be justifiably preferred to others, we carried
out a series of topology comparison tests. On a MP fra-
mework, we found the optimal ML tree (tree length =
15670) to be significantly worse than the MP tree (tree
length = 15636) by both the KH (p = 0.007) and the TN
(p = 0.006) tests. On the other side, neither test distin-
guished the MP tree from ML topology B (tree length =
15647). We did the same comparisons in a ML frame-
work using the SH and the AU tests, but no significant
likelihood differences were found among the different
hypotheses.

Tests for zero-length branches

In all four loci tested, several basal branches could be
simultaneously collapsed without significant likelihood
differences between the collapsed and the best gene tree
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Sl 83 Chironax melanocephalus
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85 Otopteropus cartilagonodus
Figure 1 Single most parsimonious tree recovered with dataset 1. Tree scores are shown in Table 2. Numbers above branches are Bremer
decay values and below branches are bootstrap percentages (when above 50%) obtained with 1000 replicates.

as compared to the null distribution obtained with
simulations: four branches for RAGI, five for vWF, six
for BRCAL, and five for 12516S (Table 4). Analyzing the
combined matrix, five basal branches could be separately

collapsed without significantly changing tree likelihood
according to the SH and the AU tests (at 1% signifi-
cance level; Additional file 7). Nevertheless, only three
of them could be simultaneously collapsed with the
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Table 3 Partition schemes used in ML analyses of combined dataset 1
scheme # partitions® InL AIC/AICc BIC parameters topology©
1 1 no partition -94660.30 189554.6 190374.7 117 A
2 4 codon_1, codon_2, -90704.00 181696 1827054 144 A
codon_3, 12516S
3 5 nuclear_12, -86566.50 173439 1745114 153 B
nuclear_3, Cytb_12,
Cytb_3, 125165
4 6 RAG1, RAG2, VWF, -90465.01 181254 182389.6 162 C
BRCAT, Cytb,
12516S
5 7 nuclear_1, -86362.20 173066.3 1742649 171 D
nuclear_2,
nuclear_3, Cytb_1,
Cytb_2, Cytb_3,
12516S
6 11 RAG1_12, RAG1_3, -85935.75 172296.3 173736.5 207 B
RAG2_12, RAG2_3,
vWF_12, VWF_3,
BRCA1_12,
BRCA1_3, Cytb_12,
Cytb_3, 125165
7 16 each codon position -85683.00 171887.5 173637.8 252 E

for each coding
gene, 125165

2 Number of partitions. ® Numbers after underscore represent codon position. © Topologies are illustrated in the Additional file 5.

same result (only two nodes at 5% significance; Table 4).
These results are in agreement with the idea that a sub-
stantial increase in the amount of data allows resolving
splits that happen in a very short period of time. To
determine how much sequence data would be necessary
to resolve each of the basal nodes we simulated datasets
of 10 kb, 12 kb, and 14 kb based on the best tree, using
the same sequence parameters of the original combined
dataset. The best trees obtained for the simulated data-
sets were then compared with trees derived from the
best tree but with each of the basal nodes collapsed
separately. Significant resolution of basal nodes as mea-
sured by pSH < 0.01 would be obtained with 10 kb for
node D, 12 kb for nodes C and E, and 14 kb for nodes
A and B (Figure 3, Figure 2).

The position of additional genera

Combined dataset 2 included five additional genera for
which data were available for only one or two mitochon-
drial loci; the dataset thus includes 56 ingroup taxa and
five outgroup taxa. The MP analysis of dataset 2 resulted
in six equally parsimonious trees with 16389 steps. The
consensus tree has again Eidolon as the most basal ptero-
podid and a polytomy including all other principal clades
as recovered in our analyses of dataset 1 (Figure 4). Most
of the extra genera included in dataset 2 fell in clades
according to expectations based on the most current
classification of Pteropodidae [14,21], with the exception
of Notopteris. Most of the relationships involving the
additional taxa, however, had low or no statistical

support. To analyze dataset 2 using ML methods, we
used partition scheme 6 and the same optimal models as
in our analysis of dataset 1. The resulting tree showed
very similar relationships for the additional taxa as com-
pared to the MP tree (Figure 5). The main difference was
in the close relationships of Pteralopex, although the
principal clade in which it fell was the same.

Biogeographic analysis

The objective of our biogeographic analyses was to infer
ancestral areas for the main pteropodid clades that
appeared consistently across analyses. Because of miss-
ing taxa, a thorough analysis of the biogeographic his-
tory of pteropodids would not be accurate. Thus, we
used DIVA [56] to infer ancestral areas for the clade
containing all the pteropodids plus the six principal
clades. These results were plotted on the ML tree
obtained for dataset 2 (Figure 5). New Guinea and Mel-
anesia Islands (area H) appear as a possible ancestral
area for most internal clades, with the only exception
being cynopterines. The results for the Cynopterinae
subfamily agree with our previous analyses, indicating
that this clade had its origins most likely in the Sundaic
region [27]. Another interesting result is the origin of
the clade formed by African genera, Rousettus, and
Eonycteris. Although different area combinations have
similar probabilities of being the ancestral area of that
group, the African continent does appear as one of
them, while all other alternatives are area combinations
that include Africa.
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Figure 2 Maximum likelihood tree obtained with dataset 1 and partition scheme 6. Substitution models and parameters used are listed in
the Additional file 6. Bootstrap values above 50% are shown next to branches.

Myonycteris torquata
Hypsignathus monstrosus
Epomops franqueti
Nanonycteris veldkampii
Epomophorus wahlbergi
Micropteropus pusillus

100
100

Discussion

Phylogenetic relationships and systematics of
pteropodids

Here we present the most complete ever analysis of the
evolutionary relationships of pteropodid bats using a
number of reconstruction and statistical approaches.
The phylogenetic trees presented here, independently of

the reconstruction method employed or the partition
analyzed (from individual genes to combined data),
almost unanimously recovered six principal clades and
one independent lineage (Eidolon), variously joined by
versions of a poorly supported backbone. By contrast,
relationships of genera within each of those principal
clades were generally consistent and in agreement across
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Table 4 Results of tests for zero-length branches on gene
trees

gene collapsed nodes® Dli simulations® Dli main°©
BRCA1 A+B+C+D+E+1 0.197 - 12408 3.238
RAG1 A+C+D+E 0.054 - 14313 1061
vWF A+B+C+D+E 0.893 - 13.801 5479
125165 A+B+CH+E+1 0.773 - 9.641 6.007
combined A+B+C 0.043 - 5.656 4496

2 Nodes are labeled on Figure 2 of the manuscript. ® Range of the likelihood
differences between collapsed tree and best tree obtained over 100
simulations, representing the null distribution for the main likelihood
comparison.  Likelihood difference between the collapsed tree and the actual
best tree.

the different analyses performed. Some of the principal
pteropodid clades recovered in our trees are congruent
with previously proposed subfamilies, such as Cynopteri-
nae [14], Harpyionycterinae [21], and Nyctimeninae [14].
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The other three main clades, represented by Macroglos-
sini, Epomophorinae + Rousettini, and Pteropodini +
Melonycteris (all groups sensu Bergmans [14]), were in
disagreement with previous classifications into subfami-
lies. Some of these discrepancies had already been
observed in previous studies, such as the clustering of
Epomophorinae + Rousettini [19].

The phylogeny of the subfamily Cynopterinae was
recently addressed by Almeida et al. [27]. The two
major cynopterine clades recovered in that study also
appeared as supported groups in all topologies recov-
ered in our analyses, suggesting that these groupings are
stable to varying taxonomic sampling and character data
representation. Similarly, a recently recognized and
expanded group of megabats, Harpyionycterinae (see
[20,21]), was also recovered in this study. This heteroge-
neous group is formed by two clades, the dobsoniine or
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Figure 3 P value of SH test versus length of simulated datasets. SH tests were done between ML best trees and derived trees with a
collapsed node for the original dataset (8174 bp) and three simulated datasets (10 kb, 12 kb, and 14 kb). The simulated datasets were obtained
with the same nucleotide frequency and substitution parameters found in the original dataset. Nodes A, B, C, D, and E are labeled in Figure 2.
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Aethalops alecto
Alionycteris paucidentata
Haplonycteris fischeri
Otopteropus cartilagonodus
Penthetor lucasi

Chironax melanocephalus
Latidens salimalii
Casinycteris argynnis
Scotonycteris zenkeri
Eonycteris robusta
Eonycteris spelaea
Rousettus amplexicaudatus
Rousettus madagascariensis
Rousettus leschenaultii
Stenonycteris lanosus
Megaloglossus woermanni
Mpyonycteris torquata
Lissonycteris angolensis
Hypsignathus monstrosus
Epomops franqueti
Nanonycteris veldkampii
Epomophorus wahlbergi
Micropteropus pusillus
Syconycteris australis
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Macroglossus minimus
Notopteris macdonaldi
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Nyctimene cephalotes
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Melonycteris fardoulisi
Melonycteris melanops
Pteralopex atrata
Styloctenium mindorensis
Acerodon celebensis
Pteropus tonganus
Pteropus vampyrus
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Figure 4 Consensus of six most parsimonious trees obtained with dataset 2. Numbers shown above branches refer to Bremer decay values

bare-backed bats (Dobsonia and Aproteles) and the
harpy bats from the Philippines and Sulawesi. Boneia
bidens, a bat formerly included as a subgenus of Rouset-
tus (e.g., [1,14]) joined this clade as sister to

Harpyionycteris as previously reported [21]. The Ptero-
podini and Macroglossini tribes were also recovered as
major clades in our study, but not as sister taxa or close
relatives (Figure 4) in a monophyletic subfamily
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Pteropodinae, as proposed by Bergmans [14]. In this study,
Pteropodinae was recovered as a clade composed of one
nectarivorous genus (Melonycteris) associated to flying
foxes and related megabats (Acerodon, Desmalopex,

Mirimiri, Pteralopex, Pteropus, and Styloctenium). The
exclusion of two genera (Mirimiri and Neopteryx) and the
lack of statistical support for some internal relationships
claim for a more detailed study of the pteropodines.
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One major clade, including rousettines (excluding
Boneia as discussed earlier) and all African megabats
(excluding Eidolon as discussed earlier) was recovered
consistently and with high support across all analyses in
this study. Versions of this clade, although differing
somewhat in taxonomic sampling, have been consis-
tently recovered since Hollar and Springer [13] first
investigated pteropodid relationships using molecular
methods [16,18,19]. This clade was originally highly con-
troversial because the molecular data joined taxa from
disparate traditionally recognized taxonomic groupings:
rousettines (Eonycteris, Rousettus, and Stenonycteris) and
epomophorines (the remainder of the African, except
for Eidolon) sensu Bergmans [14]. Giannini and Sim-
mons [19], however, demonstrated morphological sup-
port for this now expanded “African clade”. It is
noteworthy that two other African genera, Scotonycteris
and Casinycteris, included in the Epomophorinae sub-
family by Bergmans [14] and here for the first time
sampled in a molecular phylogenetic study, appeared as
sister to that clade in our analyses. This finding has
important biogeographic implications, pointing to an
African origin of this group as shown in the results of
the biogeographic analysis.

Eidolon is an unusual taxon that was the single mega-
bat genus not linked to any other genera in a major
clade. To some extent, this is a somewhat unsurprising
result as affinities of Eidolon have always been conten-
tious; however, it is remarkable that the observed place-
ment of Eidolon does not seem to be an artifact from
primary data since no significant codon bias nor differ-
ences in evolutionary rates could explain this result.
Morphology tends to support an association of Eidolon
and other large megabats in the pteropodine clade [19].
A clade formed by Eidolon + Pteropodini, however, was
not represented in any of the trees obtained with the
combined dataset. This result suggests that the non-
overlapping distribution of Eidolon versus pteropodines
in continental Africa may have ecological and biogeo-
graphic rather than phylogenetic origin. Eidolon was
included in the Rousettinae subfamily by Bergmans [14],
but our results strongly suggest it should be in a sepa-
rate subfamily by itself. It is possible that the Melanesian
genus Notopteris represents another case of independent
lineage, as suggested by the lack of statistical support
for its relationship with other pteropodid genera. As
only mitochondrial sequences were available for this
genus, additional data will be required to resolve the
affinities of Notopteris.

Despite general lack of agreement among partitions
and methods of analysis and statistical support for the
relationships of the principal pteropodid clades, two
groupings seem to be slightly favored. These two group-
ings received more than 50% bootstrap support in the
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optimal ML tree and appeared in a few other recovered
trees. One is the clustering of Macroglossini and Har-
pyionycterinae as sister clades also obtained in MP tree
and several of the suboptimal ML trees (Figure 4), with
maximum bootstrap support of 73%. The other is the
clade formed by Nyctimeninae and Pteropodini, which
received 64% bootstrap support in the optimal ML tree
and was also recovered in other ML trees (ML topolo-
gies B, C, D - Additional file 5), but did not appear in
the MP tree.

Basal polytomy

Evolutionary relationships that cannot be resolved in a
phylogenetic analysis may represent a soft or a hard
polytomy. A soft polytomy is the result of analytical
bias, while a hard polytomy illustrates biological phe-
nomena such as an explosive radiation. Hard polytomies
are so called because can only be broken with a large
amount of data and careful analyses. Before indentifying
a hard polytomy it is necessary first to eliminate possible
bias that could cause a soft polytomy.

We were able to assemble a matrix with a wide genera
representation and relatively little missing data. The
concatenated matrix of six loci showed no signs of sub-
stitution saturation, and contained enough phylogenetic
signal to resolve a strongly supported monophyletic
Pteropodidae, the superfamily Rhinolophoidea sensu
Teeling et al. [57], and most ingroup relationships (37
out of 49) with bootstrap > 96% (43 with bootstrap >
70%). Detailed characterization of the data did not
uncover important systematic sequence bias that could
blur phylogenetic signal [58]— megabats were shown to
be relatively homogeneous in nucleotide composition at
most partitions and in evolutionary rates, and no signifi-
cant conflicting phylogenetic signal was detected among
the different loci used. Moreover, phylogenetic analyses
under the ML framework using specific substitution
models for different partitions of the data most likely
accounted for any minor sequence bias that could have
affected the analyses [31,50,51,54,59].

Instead of having conflicting signal, the different loci
used in this study agreed in a general lack of resolution
at the base of the pteropodid tree. The results of the
SOWH test support that at least some of the basal
(inter subfamilies) relationships have zero-length
branches in one or more gene partitions, some of which
occurring across all partitions. As expected, an increase
in the amount of data (i.e. the combined dataset)
decreased the number of basal branches that could be
simultaneously collapsed without affecting likelihood
scores. Simulations of larger datasets suggest that the
addition of about 6 kb to the Pteropodidae combined
matrix used here would probably allow to resolve all
basal relationships of the family. This result is similar to
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that obtained in the analyses of the relationships among
bird orders. After being shown to represent a hard
polytomy [34], the intraordinal relationships of Neoaves
could finally be resolved with a 32 kb dataset [35].
Because the radiation of Neoaves is much older than
that of Pteropodidae, it is expected that that group
require more data for phylogenetic resolution. As pre-
viously suggested, the older the radiation, the greater
the effect of rapid diversification on phylogenetic resolu-
tion [60].

Explosive radiation of megabats?

Lack of phylogenetic resolution (hard polytomy) even
when a considerable amount of data is used has been
interpreted as evidence of closely spaced cladogenetic
events [32,33,35,60,61]. Pteropodidae has apparently
been distinct from other bat lineages since at least the
early Eocene [10,62] but the crown group is believed to
be of more recent origin. Estimates for the beginning of
crown group divergence range between 31 and 20 mil-
lion years (My) [10,27]. Using an estimate of 26 My for
the pteropodid radiation and the substitution rates
obtained with our combined dataset, the first three cla-
dogenetic events of Pteropodidae are estimated to have
occurred within approximately 0.5 My.

The results of our phylogenetic analysis, therefore,
suggest that pteropodids experienced an explosive radia-
tion that generated all main lineages representing its
extant diversity. Although a more focused analysis
would be necessary to fully evaluate this hypothesis,
some characteristics of the family Pteropodidae are con-
sistent with the idea that it experienced an explosive
radiation. Explosive radiations are usually associated
with high taxonomic diversity [63] and Pteropodidae is
in fact one of the most diverse bat families. Among the
20 bat families currently recognized, Pteropodidae ranks
second in both genus and species diversity with over 45
genera and over 180 species [1,64].

Explosive radiations can be caused by demographic
factors, intrinsic evolutionary rates, ecological adapta-
tion, or a combination of any or all of these factors [65].
When an explosive radiation is accompanied by ecologi-
cal adaptation (adaptive radiation), it often involves the
evolution of novel characters (key innovation)
[63,65,66]. Pteropodidae exhibits numerous innovations
when compared to their closest relatives (Rhinolophoi-
dea and Yangochiroptera), including primary phyto-
phagy and predominance of visual over acoustic
orientation (for an extensive list of differences between
megabats and microbats see [67]). Also in accordance
with ecological adaptation as a drive to diversification is
the marked morphological diversity of megabats, such as
the high variance in body size, as compared to the other
bat families [68] and the independent evolution of
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nectarivorous habits and associated morphological adap-
tations in several of the pteropodid clades. Among the
demographic causes of explosive radiations are small
population sizes (favoring differentiation through genetic
drift) and/or the existence of isolated peripheral popula-
tions. Given the flight power of megabats and their geo-
graphic distribution on (often isolated) islands,
colonization of underpopulated areas and the existence
isolated peripheral populations could both have contrib-
uted for an explosive radiation of megabats.

Conclusions

Our phylogenetic analyses identified six principal clades
and one additional independent lineage within Pteropo-
didae. This result points to the need for a new formal
classification of the family based on monophyletic units.
The trees presented here are the most complete ever for
the family in terms of genera representation, and are
robust in terms of providing statistical support for pter-
opodid relationships. They thus provide a sound phylo-
genetic framework for the study of the morphologic,
ecologic, and behavioral evolution within this highly
diverse and divergent bat family. In contrast with the
high statistical support obtained for the major pteropo-
did groups and subordinate clades, relationships among
the seven principal clades were largely unresolved. Con-
gruence in this aspect among different gene trees and
the results of simulations and the SOWH test suggest
that crown pteropodids experienced an explosive radia-
tion soon after their origin. To further evaluate the
hypothesis of an explosive radiation of megabats and
determine the potential processes involved will require a
number of additional analyses including estimates of
divergence times, estimates of diversification rates, and
comparisons with other mammalian families with simi-
lar divergence times. A complete genus-level taxonomic
sampling along with complete locus representation will
be important in these future analyses.

Methods

Sampling

The effect of missing data on phylogenetic estimation is
still a matter of controversy [52,69-72]. Our preliminary
analyses using data partitions of the concatenated gene
matrix and maximum likelihood searches showed recon-
struction problems when whole partitions were missing
for certain taxa. Accordingly, in order to minimize any
possible effects of missing data, we generated two differ-
ent data matrices for phylogenetic analyses. In the first
matrix (combined dataset 1), our goal was to minimize
missing data while including as much as possible of the
generic diversity of Pteropodidae. This matrix included
51 pteropodid species, representing 37 of the 46 ptero-
podid genera (Additional file 8). Among these 51
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ingroup samples, 50 had all sequences determined
experimentally by us from tissue samples donated by
several institutions and individuals. Sequences of the
remaining species were obtained from the Genbank
(NCBI-NIH). In this first matrix, 44 of the ingroup taxa
were represented by all eight genes used in the analyses,
four taxa had one missing gene, and one taxon had two
missing genes. Some of the sequences obtained by us
have already been published [20,21,27,73].

A second matrix (dataset 2) was built to include five
additional pteropodid genera for which only a few
sequences are available (Additional file 8). These genera
were mostly represented by two mitochondrial genes,
usually the ribosomal genes 12S and 16S. Most of these
sequences were obtained from the Genbank, except for
those of the genus Latidens, which we sequenced our-
selves. Dataset 2 included all currently recognized ptero-
podid genera except four taxa for which no DNA
sequence is available (Paranyctimene, Mirimiri, Neop-
teryx, and Plerotes) [1,74].

As outgroups, we used sequences from Genbank of
five non-pteropodid bats. Four of these, Rhinopoma
hardwickii, Hipposideros commersoni, Megaderma lyra,
and Rhinolophus creaghi, belong to the yinpterochirop-
teran superfamily Rhinolophoidea, which is widely
accepted as the sister group of Pteropodidae [9,10]. The
fifth outgroup species, Artibeus jamaicensis, represents
the other chiropteran suborder, Yangochiroptera.

Molecular methods

Eight genes were sequenced for this study, including
both nuclear and mitochondrial loci. The four nuclear
gene regions included the exon 28 of the von Willeb-
rand Factor gene (vWF, 1230 bp), partial Recombination
Activating Gene 1 (RAGI, 1084 bp), partial Recombina-
tion Activating Gene 2 (RAG2, 760 bp), and partial
Breast Cancer 1 gene (BRCAI, about 1370 bp). These
genes have been used to reconstruct the phylogeny of
the Chiroptera families and were able to resolve most
interfamilial relationships [9]. Besides, these genes have
been successfully used to resolve relationships at sub-
family and genus levels in diverse groups of bats
[21,27,73,75]. The four mitochondrial genes were
sequenced in two fragments: one containing the com-
plete sequence of the Cytochrome b gene (Cytb, 1140
bp) and another including partial rRNA 12S gene (1069
bp), the valine tRNA gene, and partial rRNA 16S gene
(1330 bp), totaling about 2550 bp. The latter fragment
has also proven highly informative at the familial level
in Chiroptera [9]. The combined sequence set encom-
passed a total of 8181 bp of aligned nucleotides (includ-
ing indels). Individual ingroup samples in dataset 1 had
concatenated sequences ranging from 6011 bp to 8025
bp in length.
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Total DNA was obtained from preserved tissue sam-
ples with the DNeasy tissue kit (QIAGEN). PCR amplifi-
cation was carried out using previously published
primers (RAG1 and RAG2: [9]; vWF: [76]; Cytb: [77];
12S: [78]; 16S: [16,78]). New primers were designed for
the 16S gene: 121-f (AGAGGAGAYAAGTCGTAM-
CAAG), 16u-f (AGCCAYCAATTRAGAAAGC), 16q-r
(GTTTGCCGAGTTCCTTTTAC), and 16k-r (ATAGA-
TAGAAACCGACCTGGA); and the BRCAI gene:
BRCA1-f2 (AACAGATGGGTTGAAACTAAGG),
BRCA1-f3 (AGGYGATTATGTTCAGAAGAAG),
BRCA1-r2 (GAAGGCTAGGATTGACAAACTC), and
BRCA1l-r4 (ATTTAATTCTAGTTCCAYATTGC).
Additional sequencing primers were also used for vWF,
RAGI [21] and 12S/valine-tRNA [27]. All sequences
were obtained with an automated ABI 3730XL sequen-
cer. Sequence editing and prealignment were done with
the Sequencher 4.2 software (Gene Codes). Genbank
accession numbers and voucher information for taxa
included in this study are provided in the in the Addi-
tional file 8.

Sequence statistics

Alignments were done using the program MAFFT [79]
using the default costs for gaps (gap opening penalty =
1.53; gap extension penalty = 0.123). Among the protein
coding genes, only BRCAI had indels, all of which were
in frame. Gap positioning was adjusted to match amino
acid codon positions with MacClade 4.08 [80]. The frag-
ment containing 12S-valine-tRNA/16S also contained
several indels. This last fragment was treated as a single
partition in our dataset, which totaled six gene parti-
tions: RAG1, RAG2, vWF, BRCA1, Cytb, and 12S/val-
tRNA/16S (hereafter “12516S”). Conflicting phylogenetic
signal among partitions was checked using the incon-
gruence-length difference test (ILD) [81] as implemen-
ted in PAUP* 4.10 b [82], running 500 searches with
random stepwise addition and 10 replicates per search.
The ILD test has been criticized for being sensitive to
both type I and type II errors [83,84]. As an alternative
test for incongruence, we used the script concartepillar.
py which employs a hierarchical clustering method and
likelihood-ratio tests to identify pairs of loci that have
incongruent phylogenetic signal [55]. In these tests we
excluded taxa for which one or more loci were not
available, so that each alignment had the same set of
taxa.

Substitution saturation in the combined dataset was
checked by plotting number of transition and transver-
sions as a function of GTR distances. Additionally, we
used a saturation test [53] implemented in the program
DAMBE [85]. Base composition bias among taxa was
analyzed for each locus including all codon positions
and for each codon position separately using the x> test
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implemented in PAUP* 4.10 b [82]. Pairwise relative rate
tests were done using HyPhy [86]. In all multiple tests,
significance was corrected for multiple testing using the
sequential Bonferroni criterion.

Phylogenetic analyses

Phylogenetic inferences were done using maximum par-
simony (MP) and maximum likelihood (ML). The MP
searches were run on PAUP* 4.10 b [82], with 1000 ran-
dom sequence additions followed by tree bisection
reconnection branch swapping (TBR). Gaps were treated
as missing data. Statistical support for clades were
obtained with non-parametric bootstrap using PAUP*
4.10 b and Bremer decay values using TreeRot v.3 [87].

ML analyses were carried out with the program Tree-
Finder [88]. For the combined dataset 1, we first tried
several partitioning schemes and compared their out-
comes to determine the optimal scheme. Seven different
partition schemes based on gene and codon position
were tested, from one that separates all genes and
codon positions, totaling 16 partitions, to non-partition-
ing of the data (analyzing it as one single partition). In
these analyses, the GTR model was generally applied,
with partition-wide estimates of the rate parameters by
maximum likelihood optimization and empirical nucleo-
tide frequency parameters. The performances of the dif-
ferent partition schemes were evaluated by comparing
the likelihood, AIC (Akaike Information Criterion)
[89,90], and BIC (Bayesian Information Criterion) [91]
values of the resulting trees. AICc was used instead of
AIC in cases where the ratio of the number of para-
meters to the number of bases was equal or less than
40. AIC and BIC correct the likelihood of a model for
the number of the parameters, penalizing overparame-
terization [92]. The partition schemes with better scores
(lower AIC and BIC values) were then used in ML ana-
lysis with optimal substitution models for each partition.
Selection of partition-wide substitution models was
done in Treefinder, using AIC. Statistical support of
branches was obtained with 500 replicas of partition-
wise bootstrap.

Alternative topologies were compared in a ML frame-
work using the Shimodaira-Hasegawa (SH) [93] and the
Approximately Unbiased (AU) [94] tests as implemented
in TreeFinder. In the MP framework, we used the pro-
gram PAUP* to run the Kishino-Hasegawa (KH) and
the Templeton non-parametric tests [95,96].

Zero-branch length simulations

To test whether basal, non-supported branches had
lengths significantly different from zero in the individual
gene and combined dataset trees, we compared the best
tree found for that dataset with trees identical to the
best tree but with unsupported branches collapsed. For
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that we employed the SH and the AU tests using Tree-
Finder. To access whether multiple nodes were involved
in a polytomy at the base of the Pteropodidae tree, we
used a similar approach to that proposed by Poe and
Chubb [34]. Briefly, for each best ML gene tree, basal
branches were collapsed one by one simultaneously (up
to 6), and the likelihood of these collapsed trees were
compared with the likelihood of the best tree. Because
typical likelihood comparison tests should not be
employed when multiple branches are collapsed at the
same time [97], we created null distributions for the test
statistic (the difference in likelihood between the best
and the collapsed tree) using simulated datasets as in
the SOWH test [98]. Sequences were simulated based
on trees with collapsed branches using the same evolu-
tionary model and substitution parameters obtained for
the original dataset with the program evolver of PAML
v.4.4 [99,100]. For each of the 100 simulated matrices,
we obtained the best tree over 10 independent runs
using RAXML v7.2.6 [101] and calculated the difference
in likelihood of this tree to that of the collapsed tree
(used to simulate the sequences) using basem! (PAML
v4.4). In this way we obtained a null distribution of 100
likelihood differences between best and collapsed tree
(the null hypothesis tree). In the analyses involving
simulations, only ingroup species for which all genes
were sequenced (44 species) were kept in the matrix
and the GTR+I" model was generally employed. These
analyses were not done for RAG2, due the low resolu-
tion of its gene tree (Additional file 3, Figure S4), and
Cytb, because of the large difference in substitution
rates between the 3™ codon position and the other posi-
tions (Additional file 6).

Biogeographic analysis

The biogeographic history of the major pteropodid
clades was analyzed using DIVA (Dispersal-Vicariance
Analysis) [56,102]. Geographic distribution of the ptero-
podid genera were obtained in Simmons [1] and double
checked with updated information from the http://gis.
miiz.waw.pl/webapps/thebats/iucn/ website. All species
of the same genera were assigned the same distribution
area, except for Roussetus. To remark that the most
basal Rousettus in our tree (R. amplexicaudatus) inha-
bits the Asian continent, we assigned only its own area
to this species, while to the other two Rousettus species
(R. leschenaultii and R. madagascariensis) we assigned
all areas occupied by species of this genus. The area
units and the geographic distributions of genera used in
the DIVA are listed in the Additional file 9 (Tables S5
and S6). DIVA was based on the ML tree obtained for
dataset 2 (all available pteropodid taxa), using alterna-
tively maxarea=2 or 3. Results obtained with maxarea =
3 option in general contained all the areas obtained with
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maxarea = 2 plus 3-area combinations of those areas.
Hence, we show here only the results obtained with

maxarea = 2.

Additional material

Additional file 1: Saturation plot of the combined dataset 1. Figure
S1 represents a saturation plot of the combined dataset 1 (with the
exclusion of taxa missing one or more loci) based on GTR distances.

Additional file 2: GC content. Table S1 shows GC content statistics per
gene and codon position, across all taxa and within main pteropodid
clades.

Additional file 3: ML gene trees. The file contains Figures S2 through
S7 illustrating gene trees obtained by maximum likelihood with each

and Cytb.
Additional file 4: Trees obtained with the exclusion of 3™ codon

values and Figure S9 illustrates the ML bootstrap tree.

Additional file 5: ML topologies obtained with different data
partition schemes. Figure S9 illustrating resumed ML trees obtained
with dataset 1 under alternative partition schemes as described in Table
4 (main text).

Additional file 6: Substitution models and parameters. Table S2
listing optimal substitution models and parameters for each partition
under scheme 6.

showing P values of the SH and the AU tests for zero-length branches
based on the combined dataset 1 for each main pteropodid node
labeled on Figure 2 (main text).

Additional file 8: Sequences used in this study. List of samples with
Genbank accession numbers of sequences used in this study (Table S4).
Additional file 9: Areas and generic distributions used in the
biogeography analysis. Table S5 lists area units and Table S6 the
generic distribution in those areas as used in the biogeography analysis.

individual gene partition analyzed here: RAG1, RAG2, VWF, BRCAT, 125165

positions of Cytb™. Figure S8 illustrates the MP tree with Bremer decay

Additional file 7: P values of tests for zero-length branches. Table S3
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