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Abstract

Background: Recent years have seen the development of various pathway-based methods for the
analysis of microarray gene expression data. These approaches have the potential to bring
biological insights into microarray studies. A variety of methods have been proposed to construct
networks using gene expression data. Because individual pathways do not act in isolation, it is
important to understand how different pathways coordinate to perform cellular functions.
However, there are no published methods describing how to build pathway clusters that are closely
related to traits of interest.

Results: We propose to build pathway clusters from pathway-based classification methods. The
proposed methods allow researchers to identify clusters of pathways sharing similar functions.
These pathways may or may not share genes. As an illustration, our approach is applied to three
human breast cancer microarray data sets. We found that our methods yielded consistent and
interpretable results for these three data sets. We further investigated one of the pathway clusters
found using PubMatrix. We found that informative genes in the pathway clusters do have more
publications with keywords, like estrogen receptor, compared with informative genes in other top
pathways. In addition, using the shortest path analysis in GeneGo's MetaCore and Human Protein
Reference Database, we were able to identify the links which connect the pathways without shared
genes within the pathway cluster.

Conclusion: Our proposed pathway clustering methods allow bioinformaticians and biologists to
investigate how informative genes within pathways are related to each other and understand
possible crosstalk between pathways in a cluster. Therefore, building pathway clusters may lead to
a better understanding of molecular mechanisms affecting a trait of interest, and help generate
further biological hypotheses from gene expression data.

Background

The increasing use of high-throughput microarray tech-
nologies in biological and biomedical research has moti-
vated many novel statistical and computational
approaches to analyze such data. They can be applied to

(1) identify differentially expressed genes, (2) discover
subclasses through clustering, and (3) classify subjects
into known classes. Although most of these methods
either examine one gene at a time, i.e. single-gene based,
or all the genes at the same time, a number of methods
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investigate a set of genes at a time, where the gene-set
information can come from various external databases,
such as KEGG [1], BioCarta [2] and GenMapp [3]. These
curated gene-sets or pathways from biological experi-
ments often serve a particular cellular or physiological
function. These gene-set based (or pathway-based) meth-
ods include Gene Set Enrichment Analysis (GSEA) [4],
Random Forests [5], Hotelling's T2 [6], and Significance
Analysis of Microarray to gene-set analyses (SAM-GS) [7].
Although it is unlikely that one particular method will be
superior to others for all the data sets, these methods seem
to be able to generate biologically meaningful results for
different data sets. In addition, pathway-based tests can
identify more subtle changes in expression than single
gene based tests [8]. Furthermore, pathway-based meth-
ods can generate biological hypotheses more effectively
based on prior knowledge. These hypotheses may be read-
ily tested using complementary approaches, e.g. proteom-
ics and metabolomics analyses.

It is well known that different pathways do not work in
isolation. In fact, each pathway is part of an overall bio-
logical network. Therefore, it is natural to ask how differ-
ent pathways, or gene-sets, coordinate their activities. In
the context of using gene expression data to predict a trait
of interest, e.g. cancer, some pathways may function in a
coherent fashion whereas others may have independent
functions or effects on phenotypes. Despite the impor-
tance of this topic, there is scant literature on relating dif-
ferent pathways. In this paper, we propose to cluster
pathways that have similar effects on the phenotype of
interest. Our approach is built on our previous proposal
of adopting the Random Forests approach for pathway
analysis [5]. The Random Forests approach has been
found to perform very well among a number of machine
learning methods in pathway-based classification. To
extend the Random Forests approach for pathway cluster
analysis, we use class votes from Random Forests to build
pathway clusters related to phenotype of interest. As
detailed below in the Methods section, class votes can pro-
vide a measure of the similarity between two subjects'
gene expression profiles for a given pathway. This meas-
ure can then be used to define similarities, or distances,
between pathways. Based on these inferred pathway dis-
tances, we then use the Tight Clustering [9] approach to
identify pathway clusters. The identification of such clus-
ters may provide useful information for biologists to gen-
erate hypotheses on the underlying disease mechanisms.
Pathway clusters may also help identify novel biomarkers
for screening or serving as drug targets for combination
therapy.

The rest of the paper is organized as follows. The detailed
methodology is discussed in the Methods section. In the
Results section, we demonstrate the usefulness of this
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approach through the application of our methods to three
different breast cancer microarray data sets to uncover
pathway clusters that are involved in estrogen receptor
(ER) status classification. We conclude the paper in the
Discussion and Conclusions sections.

Methods

We first briefly review the Random Forests approach for
pathway analysis [5]. Random Forests constructs many
classification trees and thus the name 'forest'. For each
pathway, the input data for Random Forest would be a
gene expression matrix of the genes belonging to the path-
way by the number of subjects in the data set. Every tree
in a Random Forests is built using a deterministic algo-
rithm and the trees are different from the ordinary tree
algorithms (e.g. CART) owing to two factors. First, at each
node, a best split is chosen from a random subset of the
predictors rather than all of them. Second, every tree is
built using a bootstrap sample of the original observa-
tions. A subject is put down a tree for classification using
the input vector of gene expression for genes within a par-
ticular pathway. The tree gives a classification and decides
which class this subject belongs to. In the end, the forests
choose the class that gives the majority votes for each sub-
ject. The out-of-bag (OOB) data, approximately one-third
of the observations, are then used to estimate the predic-
tion accuracy. Small classification error based on genes in
a given pathway would indicate the pathway as poten-
tially interesting [5].

We can build for each pathway a Random Forest to predict
an individual's phenotype based on his/her gene expres-
sion levels within this pathway. To define whether two
pathways have similar effects on an individual's pheno-
type, we can use the pathway prediction results to define
their similarities. For example, if two pathways always
give the same phenotype prediction based on gene expres-
sion data in these pathways, we infer that these two path-
ways have similar functions. To realize this idea, we use an
output from Random Forests, class votes, to define path-
way distances that can be used to build pathway clusters.

Class Votes

To define class votes, for each study subject, the propor-
tion of votes for a specific class is recorded based on the
prediction results from individual trees in the Random
Forest. Therefore, every pathway defines a class vote
matrix of length n by k, where n is the number of samples
in the study and k is the number of classes. In case of only
two classes, we can use the votes of one class to represent
the confidence of each individual belonging to that partic-
ular class. For example, for subject A, if we have 0.15 for
class 1 and 0.85 for class 2, that means subject A has been
voted to be class 2 85% of the time. Therefore, two path-
ways can be thought to have similar effects on the pheno-
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type if the class vote matrices/vectors from these two
pathways are similar.

Building Pathway Clusters
Based on class votes, we propose to use Tight Clustering to
infer pathway clusters.

Tight Clustering is a robust method using re-sampling for
clustering and pattern recognition [9]. It finds tight and
stable clusters in a sequential manner. The K-means algo-
rithm is applied iteratively, along with the calculations of
the average co-membership matrices and similarity meas-
ures of cluster sets. When performing Tight Clustering on
the class votes for a pair of pathways, the Euclidean dis-
tance between them is used. Tight Clustering does not
explicitly estimate the number of clusters, but allows the
user to specify the target number of Tight Clusters. It is
usually infeasible to estimate the number of clusters since
it is not uncommon to see figures that give clear and
informative pattern for different number of clusters. For
more details of the algorithm, see [9]. As mentioned in
their paper, because microarray analysis is an exploratory
tool to guide further biological investigations which could
potentially be costly, some genes, called scattered genes in
their paper, should be left out of the Tight Clusters. This is
also true in the pathway-based context. Tight Clusters of
class votes for pathways are found and pathways that are
not related to other pathways should be left without being
clustered. We varied the target number of Tight Clusters
from 5 to 20 in analyzing the breast cancer data sets. Tight
Clusters which contain two or more top ranked pathways
with low OOB error rates are investigated further and
pathway clusters are built from them. A heatmap can be
used to visualize the Tight Clustering output.

Schematic diagrams of our proposed methods are given in
Figures 1 and 2.

Data sets

Pathways

A total of 495 pathways were used for the analysis. These
pathways are wired diagrams of a set of predefined genes
and molecules from KEGG [1], BioCarta [2], and Gen-
Mapp [3] databases. Every pathway in these databases
contains a set of genes that are related to some cellular,
molecular and/or physiological functions from earlier
experiments. These genes are then mapped to the corre-
sponding probes IDs on the microarray chipsets. The dis-
tribution is as follows:

(1) A total of 151 pathways were taken from KEGG, a
pathway database with the majority responsible for
metabolism, degradation and biosynthesis. There are also
a few signal or information processing pathways and oth-
ers related to human diseases and drug development.
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A Schematic Diagram of How to Identify Clusters of
Pathways. Pathway (gene sets) information from externally
available database, such as KEGG, BioCarta and GenMapp is
combined with gene expression from clinical studies. We
perform pathway-based Random Forests classification to
obtain Class Votes. We identify clusters of pathways contain-
ing pathways with low OOB error rate using Tight Cluster-
ing. We identify the clusters of pathways that are consistent
among different data sets. These pathway clusters are investi-
gated further for possible crosstalk among them.
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Figure 2
Tight Clustering. A diagram illustrating Tight Clustering on
Class votes.

(2) We considered 283 BioCarta pathways. Most of these
pathways are related to signal transduction for human
with a smaller group of metabolic pathways.

(3) The 61 GenMapp pathways we used consist of more
genes per set on average. There are different types of path-
ways such as metabolic pathways, signal transduction
pathways, gene families and subcellular components.

Microarray data

Three different breast cancer microarray data sets were
used. All of these studies used Affymetrix GeneChip®, but
they are of different versions. Consort data set was based
on hgu-133 plus 2.0 with 54,613 probesets whereas the
other two, LymphNode and p53 data sets [10,11], were
based on an older chip called hgu-133a with 22,215
probesets. Consort [12] data set consists of 99 breast tissue
samples with clinical status of estrogen receptor. LymphN-
ode data set consists of frozen tumor samples of 286
lymph-node negative patients who had not received adju-
vant systematic treatment [10]. p53 data set is a set of 251
frozen tissues that were sequenced for p53 [11].

We chose the breast cancer data sets and ER positive/neg-
ative status (ER+/ER-) to study because breast cancer has
been extensively studied in the literature and tumor sam-
ples are normally classified on the basis of ER status [13].
A recent publication described a set of prognostic gene
expression classifiers for ER+ breast cancer [14]. The estro-
gen receptor status has also been used to predict breast
cancer therapy, breast cancer survival rate and estimate the
risk of breast cancer [15-18]. ER+ breast cancers are usu-
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ally treated with hormone therapy whereas ER- breast can-
cers are treated using chemotherapy. Not all breast
carcinomas are responsive to the treatment though. Thus,
there is an urgent need to identify novel therapeutic tar-
gets and develop new agents. Moreover, pathway crosstalk
and new biological insights might help find predictive
biomarkers [19].

To deal with the issue of unbalanced sample size between
the ER+ and ER- groups we utilized weighted Random
Forests. The p53 data set is the most unbalanced among
the three breast cancer data sets we analyzed, it has 213 in
the ER+ and 38 in the ER- groups. For more details on why
we chose this approach, see the discussion in the see Addi-
tional file 1, DMS1.

The above data sets are available for download from the
GEO website under the accessions GSE2109, GSE3494
and GSE2034 for the Consort, p53 and LymphNode data
sets, respectively. See Table 1.

Software

The library package randomForest v4.5-18 from the R pro-
gram was used in our analysis [20] for the Balanced Ran-
dom Forests solution. A modified version of the original
Fortran code was used to perform the Weighted Random
Forests in our pathway-based context [21]. For pathway
clusters visualization, Cytoscape [22] was used.

Biological Significance

We considered using GO terms based enrichment analy-
sis, but Goeman and Bithlmann [23] pointed out that this
approach may not be satisfactory and may result in false
positives. Therefore, we used two alternative approaches.
First, we used PubMatrix [24], a web-based application
that identifies genes' citation with keywords of interest.
Genes that contribute most in predicting the correct class
in pathway-based classification are called informative
genes [5]. We compared the informative genes defined by
Random Forests classification that were obtained in the
pathway cluster sets and examined whether these genes
are more likely to have publications with the keywords of
interest compared with informative genes from the top
pathways not in the pathway cluster. Although impor-
tance measure in Random Forests could be biased [25], it
is unlikely in our case since we only used normalized gene
expression data and did not combine it with other cate-

Table I: Breast cancer data sets used in this study

Data sets Reference n Genes Response type
Consort INTEGEN 99 54613 ER status
LymphNode  [10] Wang (2005) 286 22215 ER status
p53 [1'1] Miller (2005) 251 22215 ER status
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gorical data, such as sequence data described in [25]. Sec-
ond, we investigated possible pathways crosstalk using
GeneGo's MetaCore [26] and Human Protein Reference
Database (HPRD) [27]. Shortest path analyses between a
pair of genes were performed using GeneGo's MetaCore to
assess how close the two genes are related to each other
based on the curated database of human protein-protein,
protein-DNA and protein compound interactions.

Results

Class Votes

The target number of Tight Clusters, 5, 10, 15 and 20 were
chosen and the tuning parameters were as defined in the
Tight Clustering manual. We found that the pathway clus-
ters identified when the target number was 5, 10 and 15
were essentially a subset of those in the 20 Tight Clusters
case. To facilitate the investigation of pathway crosstalk,
we consider a larger number of Tight Clusters, i.e. 20. We
considered forming 25, 30, 35 tight clusters in addition to
5, 10, 15, and 20. Most of the clusters discovered in 20
tight clusters run were rediscovered in 25, 30, and 35.
Please see Additional files 2 and 3, varysize_5-10-15-
20.xls and varysize_20-25-30-35.xls for more details. On
page 12 of the manual for the Tight Clustering program,
four sets of parameters for tight clusters of size 5, 10, 15
and 20 were suggested. Therefore, we chose 20 tight clus-
ters. Among these 20 inferred Tight Clusters, we selected
those clusters containing two or more pathways whose
OOB error rates were among the top 22 lowest across all
the pathways. Since we aim to pick out the top pathways
with the same OOB error rates, if we had chosen the top
20 pathways, we would have missed some pathways with
the same OOB error rates. Based on this criterion, the
OOB error rates cut off was 15.5%, 15.5%, and 20% for

Table 2: Tight Cluster Results |
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the p53, LymphNode and Consort data sets respectively. In
each of the three data sets, three Tight Clusters were
selected. These Tight Clusters are listed in Additional file
1, Table A1 for Consort; Table A2 for LymphNode; and Table
A3 for p53 data set. A2ii and A3i from Additional file 1 for
LymphNode and p53 data sets, respectively, highly resem-
ble each other (Table 2). Apart from the Alzheimer's dis-
ease pathway, the other five pathways are overlapped
between the LymphNode and p53 data sets. A2iii, A3ii and
Ali in the respective data sets are also very similar (Table
3). "Butanoate metabolism", "Propanoate metabolism"
and "Valine leucine and isoleucine degradation" appear
in each of the three Tight Clusters of the three different
data sets. The A3iii Tight Cluster in p53 data set is a subset
of a much larger Tight Cluster A2i in LymphNode, see Addi-
tional file 1, Tables A2 and A3 for more details.

Pathway Clusters

We further investigate the pathway cluster (Table 2) found
from the previous section. Figure 3 consists of three path-
way clusters built from the overlapped pathways. It can be
seen that "GATA3 participates in activating the Th2
cytokine gene pathway" and "Nitrogen Metabolism path-
way" do not have any overlapping probes with the other
3 pathways. The ESR1 gene is shared among 3 pathways:
"PELP1 Modulation of Estrogen Receptor Activity path-
way", "CARM1 and Regulation of the Estrogen Receptor
pathway", and "Downregulated of MTA 3 in ER negative
Breast Tumors pathway". In addition to ESR1, the PELP1
and CARM1 pathways share the informative PELP1 gene.
Genes, such as RARA, PGR, PDZK1, HSPB1, HDAC2, and
MAPK3 that are not shared also show some importance in
classifying subjects.

LymphNode (A2ii in Additional file I) OOB error(%) Number of probes
BC-Pelpl_Modulation_of_Estrogen_Receptor 15.38 20
Alzheimer's_disease 17.13 23
BC-Deregulation_of CDKS5_in_Alzheimers_Disease 16.08 24
BC-Downregulated_of MTA_3_in_ER_negative_Breast_Tumors 12.24 26
BC-GATA3_participate_in_activating_the_Th2_cytokine 11.89 33
Nitrogen_metabolism 14.34 40
Gene Symbols of informative genes in this pathway cluster
MAPK3, PELPI, ESRI, PDZK 1, HSPBI, CAl2, GLS, IL5, JUNB, GATA3, MAP2K3, MAPT, STH, CSNKIAI
p53 (A3i in Additional file )
BC-Pelpl_Modulation_of Estrogen_Receptor 13.94 20
BC-Downregulated_of MTA_3_in_ER_negative_Breast_Tumors_ 15.54 26
BC-GATA3_participate_in_activating_the_Th2_cytokine 13.55 33
Nitrogen_metabolism 17.13 40
BC-CARMI_and_Regulation_of _the_Estrogen_Receptor 14.34 54
Gene Symbols of informative genes in this pathway cluster
MAPK3, PELPI, ESRI, PDZKI, HSPBI, HDAC2, CAI2, GLS, IL5, JUNB, GATA3, MAP2K3
The bold pathways are those with low OOB error rates
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LymphNode (AZ2iii in Additional file 1) OOB error(%) Number of probes
beta_Alanine_metabolism 16.08 42
Alanine_and_aspartate_metabolism 16.78 42
Glutamate_metabolism 16.08 50
Butanoate_metabolism 16.08 59
Propanoate_metabolism 17.83 59
Valine_leucine_and_isoleucine_degradation 14.69 71
Gene Symbols of informative genes in this pathway cluster

ABAT, ALDHIA3, GLUL, GMPS, HMGCL, HSD17B4, MAP3K 15, MCCC2, PDHAI

p53 (A3ii in Additional file I)

Alanine_and_aspartate_metabolism 17.53 42
Butanoate_metabolism 15.54 59
Propanoate_metabolism 18.33 59
GM-Glycolysis_and_Gluconeogenesis 23.11 66
Valine_leucine_and_isoleucine_degradation 15.54 71
Gene Symbols of informative genes in this pathway cluster

ABAT, ALDHIA3, HMGCL, HSD17B4, MAP3K 5, MCCC2, PDHAI

Consort (Ali in Additional file I)

Glycosphingolipid_biosynthesis 23.23 34
BC-GATA3_participate_in_activating_the_Th2_cytokine 14.14 43
Butanoate_metabolism 15.15 82
Propanoate_metabolism 21.21 85
Valine_leucine_and_isoleucine_degradation 17.17 25

Gene Symbols of informative genes in this pathway cluster
ABAT, GATA3, HSD17B4, MCCC2, PRKARIB

The bold pathways are those with low OOB error rates

PubMatrix

To more systematically study the biological significance of
the results, we looked at the publications of the top
informative genes (top two genes in each pathway) with
keywords, like breast cancer, estrogen receptor, and pro-
gesterone receptor, of interest. We examined the top
informative genes from the pathway cluster in Table 2,
which consists of 5 pathways, with two of them that do
not have any overlapping probes with the rest. It is evident
from PubMatrix search that the proportions of these
informative genes in the pathway cluster do show a higher
number of literature support compared with the informa-
tive genes outside of the pathway cluster (Table 4). This is
true for the informative genes for all three data sets and
more so for the p53 data set. To assess the significance of
these results, Fisher's Exact Test was performed. For breast
cancer citations, the p-values were 0.149, 0.002, and
0.061 for data sets, LymphNode, p53, and Consort, respec-
tively (Table 5). This indicates a significantly higher pro-
portion of citations related to breast cancer for genes in
pathway cluster of Table 2 compared to other informative
genes in the top pathways for the p53 data set. The result
for Consort just misses the significant cutoff of 0.05, and it
is not significant for the LymphNode data set. It was not
surprising to see more significant results for estrogen

receptor citations, since we are specifically doing classifi-
cation on the ER+/ER- status. All of the p-values are signif-
icant; 0.048, 0.0006, and 0.0084 for data sets LymphNode,
p53, and Consort, respectively (Table 6).

Possible Pathway Crosstalk

From the previous section, we have seen that even though
there are no overlapping genes between both "Nitrogen
metabolism" and "GATA3 participate in activating Th2
cytokine genes expression" pathways with other pathways
containing ESR1, they appear to form a tight pathway
cluster. In order to further understand the possible cross-
talk between them, we looked at HPRD and GeneGo's
MetaCore. We found connections between GATA3 path-
way and CARM-1 pathway from HPRD. This is illustrated
in Figure 4, where the dark grey oval genes GATA and junB
in GATA3 pathway interacts with PPARBP and ESR1 in
CARM-1 pathway. The gene PPARBP, Peroxisome prolif-
erator-activated receptor binding protein, is determined
to be at a high level of expression and amplified in breast
cancer [28]. In Figure A5 in Additional file 1, it suggests
how different proteins receive signals from ESR1 and act
upon HIF-1 to regulate CA12.
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Figure 3
Pathway Clusters. A pathway cluster showing a total of five pathways, three of which have shared genes and two pathways
do not share common genes.
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Table 4: Proportion of genes showing more than the indicated number of literature support

Informative genes not in pathway cluster (Table 2) of top 22 pathways for LymphNode BC ER PR

> | 0.44 0.33 0.20
>2 0.31 0.27 0.18
>5 0.24 0.20 0.09
LymphNode (pathway cluster) BC ER PR

> | 0.42 0.42 0.33
>2 0.42 0.42 0.25
>5 0.25 0.33 0.17
Informative genes not in pathway cluster (Table 2) of top 22 pathways for p53 BC ER PR

> | 0.41 0.35 0.20
>2 0.33 0.28 0.13
>5 0.24 0.24 0.11
p53 (pathway cluster) BC ER PR

> | 1.00 1.00 0.75
>2 1.00 0.75 0.63
>5 0.63 0.63 0.25
Informative genes not in pathway cluster (Table 2) of top 22 pathways for Consort BC ER PR

> | 0.50 0.22 0.16
>2 0.44 0.38 0.25
>5 0.34 0.28 0.13
Consort (pathway cluster) BC ER PR

> | 0.88 0.75 0.63
>2 0.75 0.63 0.50
>5 0.50 0.50 0.25

BC = breast cancer, ER = estrogen receptor, PR = progesterone receptor

Shortest Path Analyses

To investigate the possibility of pathway crosstalk further,
we searched for the shortest path between GATA3 and
CA12 with other top informative genes in the network of
all links in the database of GeneGo's MetaCore. This tool
assists in finding regulatory paths between two or more
genes of interest. The results are shown in Tables 7 and 8.
For both GATA3 and CA12, they are the genes with the
least number of gene steps to the gene ESR1, with 2 and 3

Table 5: Breast Cancer Citations

steps, respectively. It furthers strengthens our belief that
the pathways GATA3 and Nitrogen Metabolism are
closely tied with the other four pathways within the path-
way cluster. The number of links with a distance of two
between GATA3 and ESR1 is 6, which is much larger than
ESR1 and EGFR or IKBKB both with just one gene con-
necting between them. The gene, MUC1, connects ESR1
and EGFR. IKK-alpha is the gene which connects ESR1
and IKBKB. These two genes are a subset of the 6 between

LymphNode In citation Not in citation p-value
Genes in pathway cluster (Table 2) 8 4

Informative genes not in pathway cluster (Table 2) of top 22 pathways 20 25 0.149

p53 In citation Not in citation p-value
Genes in pathway cluster (Table 2) 8 0

Informative genes not in pathway cluster (Table 2) of top 22 pathways 19 27 0.002

Consort In citation Not in citation p-value
Genes in pathway cluster (Table 2) 7 |

Informative genes not in pathway cluster (Table 2) of top 22 pathways 16 16 0.061

Page 8 of 12

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:87

Table 6: Estrogen Receptor Citations

http://www.biomedcentral.com/1471-2105/9/87

LymphNode In citation Not in citation p-value
Genes in pathway cluster (Table 2) 8 4
Informative genes not in pathway cluster (Table 2) of top 22 pathways 16 30 0.048
p53 In citation Not in citation p-value
Genes in pathway cluster (Table 2) 8 0
Informative genes not in pathway cluster (Table 2) of top 22 pathways 15 30 0.0006
Consort In citation Not in citation p-value
Genes in pathway cluster (Table 2) 6 2
Informative genes not in pathway cluster (Table 2) of top 22 pathways 7 25 0.0084

GATA3 and ESR1. Furthermore, there are 7 literature sup-
port of genes MUC1 and HNF3-alpha [29-35] related to
breast neoplasm compared to 6 (MUC1) for EGFR and
none for IKBKB. In fact, EGFR is one of the genes in the
Calcium Signalling pathway which also share genes with
the GATA3 pathway. CA12 and ESR1 are also closely tied;
CA12 is connected to ESR1 through HIF-1 and NCOA1.
There are 4 literature support of genes HIF-1 and NCOA1
related to breast neoplasm [36-39]. Again, the EGFR is at
the top of this chart with the same number gene steps but
with 4 different paths, and two more literature support
than CA12. Another gene IL6ST has two different paths
and three literature support. Although, it seems that the
connection between CA12 and the four pathways with
ESR1 is not as strong, it is still significant relative to the
majority of the top informative genes which show 4 or
more gene steps.

interacts

in CARM-1

interacts pathway

regulates

Figure 4

Links between GATA3 and CARMI pathways using
HPRD. The connection between genes in GATA3 and
CARMI pathways using information obtained from HPRD.

Discussions

In this article, we have described a Random Forests-based
approach to identify clusters of pathways sharing similar
functions. Class votes measure similarity at the individual
level. Using the three different breast cancer data sets to
classify between estrogen receptor positive and negative
status, we found that Tight Clustering for class votes
yielded consistent and interpretable results. We also con-
sidered other means of measuring the similarity of class
votes, such as the similarities between class votes solely by
Euclidean distances, but their performance was less con-
sistent than the methods described here. Moreover,
another output, proximity matrices, for Random Forests
was also investigated, but it was found to be highly corre-
lated with the class votes (see Figures A4.). Bioinformati-
cians and biologists can make use of the proposed
methods to discover pathway clusters, find informative
genes shared between pathways and identify genes that
bridge between pathways within a pathway cluster. This
allows researchers to obtain results that are more closely
tied to the biological mechanism of diseases and to exam-
ine pathway crosstalk.

Due to the unbalanced nature of the data sets in this
study, the weighted random forests (WRF) algorithm was
used. WRF seems to perform better than the alternative
balanced random forests procedure. Although we are
looking at ER+ vs. ER- status for the Consort, p53 and Lym-
phNode data sets, it is reasonable to obtain different path-
way clusters from them. This is because the patients were
from different clinical settings. The Consort data set con-
sists of patients from a consortium of different breast can-
cer studies, the p53 data set consists of patients whose
tissue were sequenced for p53 and the LymphNode data set
only has patients with negative lymph node status.

In this article, we have also demonstrated the biological
relevance of our approach using PubMatrix. The number
of citations for informative genes within the pathway
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Table 7: Shortest Path between GATA3 and other Genes in the Top 22 Pathways (without overlap with GATA3 pathway)

GATAS3 and Distance (gene steps) Number of links with the shortest Genes with literature related to

distance* breast cancer*

ESRI (in pathway cluster)

EGFR
IKBKB
IFNAR
GFRAI
IGFI
ATP7B
VAV3
COX7c
B3GNT6
MYCLI
ACACB
UQCRH
LYN
ACTNI
IL6ST
STC2
PDXK
CFLAR
BBOXI
TARS
SSH3
NDUFA9
HMGCL
ABAT
DAZAP2

Infinity

N

OO UTUT A DN DNAWWWWWWWWWWWWWNN

6

6 [MUCI, SMADS, IKK-alpha, HDAC4, 7
HNF3-alpha, GATA-1]

I [MUCI] 6 (subset of the 7 above)
| [IKK-alpha] 0

*shown only for the shortest distance

Table 8: Shortest Path between CA|2 and other Genes in the Top 22 Pathways (without overlap with Nitrogen Metabolism pathway)

CAI2 and Distance (gene steps) Number of links with the shortest Genes with literature related to breast

distance* cancer*

ESRI (in pathway cluster)
EGFR

IL6ST
COX7c
IGFIR
YES
ACTINI
PRKX
VAV3
ABAT
HMGCL
SSH3
TARS
ADCY9
BBOXI
PDXK
UQCRH
B3GNT6
DAZAP2

w w

NNNNOGOTOOOULTUTU A DN DA W

9

Infinity

I (HIF-1, NCOAI) 4
4 (HIF-1 + MAPK3, Beta-catenin, STAT5B, 6
MAPKI)

2 (HIF-1 + MAPKI, MPAK3) 3

*shown only for the shortest distance
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cluster together with keywords, like estrogen receptor, is
enriched compared to other informative genes of top
pathways. We have illustrated the use of GeneGo and
HPRD to help us understand possible crosstalk among
pathway clusters. The shortest path analyses of GATA3
and CA12 show that the informative genes in pathway
clusters are closer in terms of regulatory paths than those
informative genes in other top pathways. Furthermore,
with the aid of a network visualization tool, biologists can
investigate how the informative genes are related to each
other within the pathway clusters.

Conclusion

The novel methods presented in this article were able to
identify pathway clusters related to outcome of interests
that are biologically meaningful. Understanding how the
informative genes relate and talk with each other within
pathway clusters can help generate further biological
hypotheses for follow-up studies. These may be tested
using other "omics" technologies, such as proteomics and
metabolomics. When the outcome variable is continuous,
we can employ the Random Forests Regression approach
[5] and easily extend what we have described in this article
to the regression setting by using the predicted values
from the Random Forests output.

In this paper, we have proposed one way to building path-
way clusters. It might be possible to utilize output from
other pathway-based methods, such as GSEA to deter-
mine the similarity in enrichment scores between two
pathways and build a graph of pathway network from the
calculated similarity measures. Moreover, our approach
would encourage other researchers to look into new ways
in building pathway clusters and bring fresh insights into
microarray analysis.
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