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Abstract

Background: The Turku Event Extraction System (TEES) is a text mining program developed for the extraction of
events, complex biomedical relationships, from scientific literature. Based on a graph-generation approach, the
system detects events with the use of a rich feature set built via dependency parsing. The TEES system has
achieved record performance in several of the shared tasks of its domain, and continues to be used in a variety of
biomedical text mining tasks.

Results: The TEES system was quickly adapted to the BioNLP'13 Shared Task in order to provide a public baseline
for derived systems. An automated approach was developed for learning the underlying annotation rules of event
type, allowing immediate adaptation to the various subtasks, and leading to a first place in four out of eight tasks.
The system for the automated learning of annotation rules is further enhanced in this paper to the point of
requiring no manual adaptation to any of the BioNLP'13 tasks. Further, the scikit-learn machine learning library is
integrated into the system, bringing a wide variety of machine learning methods usable with TEES in addition to

TEES feature sets.

the default SVM. A scikit-learn ensemble method is also used to analyze the importances of the features in the

Conclusions: The TEES system was introduced for the BioNLP'09 Shared Task and has since then demonstrated
good performance in several other shared tasks. By applying the current TEES 2.2 system to multiple corpora from
these past shared tasks an overarching analysis of the most promising methods and possible pitfalls in the
evolving field of biomedical event extraction are presented.

Introduction
Biomedical event extraction as a research field aims to
develop annotations that can capture in detail the com-
plicated relations between concepts in natural language
texts. Compared to binary relation extraction, event
extraction systems are more complicated, but through
the use of nesting, typed and directed arguments and
annotated trigger words can capture in more detail the
semantics of the text.

In the development of biomedical event extraction the
BioNLP Shared Task has been instrumental, providing a
shared platform for comparison of diverse text mining
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methods. Originally organized in 2009, the BioNLP
Shared Task has grown more varied in the following
2011 and 2013 iterations [1,2]. The original shared task
used the NF-kB focused GENIA corpus, but in later
years targets as diverse as epigenetics and bacteria-host
interactions have been introduced. The 2013 task con-
cerns “knowledge base construction”, utilizing multiple
domain corpora to drive the development of the kind of
text mining systems required for automatically assisted
database curation [3].

The Turku Event Extraction System (TEES) (http://
jbjorne.github.com/TEES/) was developed originally for
the 2009 BioNLP Shared Task but has since then grown
into a generalized biomedical event extraction tool. It
uses a graph representation to break the task of event
extraction down into discrete, consecutive classification
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steps, using large feature sets and efficient support vec-
tor machines (SVM) to achieve good performance. The
TEES system achieved the first place in the original
BioNLP Shared Task, and first place in four out of eight
domain tasks in both the 2011 and 2013 BioNLP Shared
Tasks [4,5]. The TEES system was made available as an
open source project in 2009, and has since then been
applied for different event extraction tasks also by other
research groups [6,7].

The BioNLP Shared tasks provide a record of the
development of event extraction systems. In the 2009
task the original TEES 1.0 system achieved an F-score of
51.95%. In the similar 2011 GENIA task a best perfor-
mance of 56.0% F-score was reached by team FAUST
[8]. In the interim of these Shared Tasks the EventMine
system of Miwa et al.[9] reached 56.00% on the original
2009 GENIA corpus. In 2012 Bui et al. [10] introduced
a very computationally efficient system that learned
automatically extraction rules from event templates. The
GENIA corpus used in the 2013 BioNLP Shared Task
has been drastically remodeled so a direct comparison
with the earlier tasks is no longer meaningful.

In participating in the BioNLP 2013 Shared Task the
TEES project aimed to improve the generalization of its
event extraction approach, originally introduced in the
2011 task. The learning of event annotation rules was
fully automated, based on a rule-based analysis of each
task corpus. As an open source project TEES could
potentially be useful also for other participants to expand
and build on, but despite extensive work on the system,
might be too complicated to easily apply. Therefore, the
predictions of the TEES 2.1 system were also provided as
open data, available for any interested participant, during
the system development phase of the 2013 Share Task.

After the BioNLP 2013 Shared Task the automated
annotation scheme learning system was finalized in the
work described in this paper, leading to the TEES 2.2
system that is finally capable of processing any of the
applicable BioNLP Shared Task corpora with no task-
specific manual adaptation required. To help in analyz-
ing the predictions of the system, a visualizer is also
provided in the 2.2 release. As a major new direction for
the system, an integration with the scikit-learn library is
introduced, allowing the application of the vast variety
of high-performance classifiers from this widely used
machine learning library within the TEES system. An
ensemble method provided by scikit-learn is used to
analyze the feature sets used in TEES. To analyze the
TEES 2.2 performance, the system is now applied to all
the past BioNLP Shared Tasks, providing an overall pic-
ture of the relative complexity of the various corpora
when approached with machine learning methods. This
paper builds on and extends the BioNLP’13 workshop
publication [11].
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Methods

TEES overview

The Turku Event Extraction system utilizes a step-wise
machine learning approach to detect complex text-
bound graphs in biomedical domain natural language
texts. The TEES approach is based on a generalized
graph format, applicable for both events and binary rela-
tions. With this graph format, the complex task of event
extraction is broken down into straightforward, consecu-
tive graph node or edge classification tasks. A rich set of
features is derived for each task from the graph format,
leading to large datasets, that can however be efficiently
handled by the SVM™“€5s support vector machine
(http://svmlight.joachims.org/svm_multiclass.html) [12]
when used with a linear kernel. The Turku Event
Extraction System is described in detail in [13].

The graph format

TEES models all event and relation extraction as a task of
graph generation. Named entities and event triggers form
the nodes of the graph, and each node is bound to a sin-
gle text token, the syntactic head of the text span covered
by the node. Binary relations, which can be typed and
directed, are edges that connect two nodes. Events are
represented indirectly: The trigger word is a node, and
event arguments are directed edges that connect the trig-
ger word to other nodes. A single event thus consists of a
trigger node and its set of outgoing argument edges. By
modeling both events and relations as nodes and edges,
TEES can process different kinds of semantic annotations
with the same graph generation pipeline.

The graph is commonly stored in an Interaction XML
file, the internal format of the TEES system, based on a
generic, extensible XML representation developed to be
applicable for diverse corpora [5,14,15]. A detailed
description of the Interaction XML format is provided
in the TEES online documentation (https://github.com/
jbjorne/ TEES/wiki/Interaction-XML). When TEES is
applied to the BioNLP Shared Tasks, a built-in conver-
sion system is used to turn the shared task files (txt/al/
a2) into interaction XML and vice versa. In this process,
the BioNLP Shared Task equivalence annotation is also
expanded into individual events.

The TEES event extraction process is shown in Figure
1. The three primary phases of the system are the entity,
edge and unmerging steps. A recall adjustment para-
meter that increases the amount of predicted entity
nodes is determined experimentally against overall sys-
tem performance, thus optimizing the entity detection
step for the larger task of event extraction. The feature
representations and basic approach of the system are
largely unchanged from the 2011 entry [5].

In the BioNLP Shared Tasks the participants are given pre-
parsed texts where named entities (protein and gene names)
have already been marked. In real-world applications these
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Figure 1 The TEES event extraction process. Preprocessing steps A-C can be omitted in the BioNLP Shared Tasks as corresponding data is
provided by the organizers. The event extraction steps D-F are all independent SVM classification steps, with the trigger and edge detection
steps being linked together by the recall adjustment parameter. (Figure adapted from Bjorne et. al [5])

preliminary steps can be performed using the TEES prepro-
cessor. As in previous Shared Tasks, we used in this work the
official tokenisations and the McCC]J parses converted into
the collapsed CC-processed Stanford dependency scheme,
provided by the organizers [16,17].

Entity detection

The first step in the TEES pipeline is the prediction of
nodes, named entities and event triggers (See Figure 1C).
In the BioNLP Shared Tasks, many of the named entities
are already given. As with all TEES steps, the syntactic
parse is the main source of features. As each node must
be linked to a single syntactic token, TEES generates one
classifiable example for each token (that is not already
part of a named entity) in the text. With multiclass classi-
fication, this token is classified into one of the positive
classes (e.g. Phosphorylation, Regulation) or as a negative.
Overlapping nodes of different types are handled via
merged classes, (e.g. Phosphorylation-Regulation) which
are split into their components after classification. The
entity detection step produces the nodes of the graph,
and the next step is to find the relations that connect
them.

Edge detection

Edges are the binary relations and event arguments that
link together the nodes of the graph (See Figure 1D).

When the nodes are known, edge detection proceeds by
constructing one classifiable example for each (option-
ally directed) pair of nodes. As with nodes, edge exam-
ples are classified into a number of positive classes (e.g.
Theme or Cause), or as negatives. As with nodes, over-
lapping edges of different types are handled with merged
classes. The result of edge detection is a merged seman-
tic network, which contains all the events, relations and
arguments, but where overlapping events are merged
together.

Unmerging

In event annotations, multiple events with different argu-
ments can share the same trigger. In the TEES pipeline
nodes (such as triggers) are predicted first, at a time
when it cannot be said how many events will use them.
The result is that when event arguments are predicted
between these nodes, all overlapping events of the same
type will be merged into a single node and its set of out-
going edges. The unmerging step addresses this issue: A
classifiable example is generated for each node, for each
valid set of outgoing edges, i.e. for each structure that
can potentially be a valid event. The classifier classifies
these into true events or negatives, and the final graph,
with merged events “pulled apart” is constructed from
these predictions (See Figure 1E). This graph can then
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straightforwardly be converted into the BioNLP Shared
Task format.

Following unmerging, for those tasks where events can
have modifiers, an additional modifier detection step can
be performed.

Automated Annotation Scheme Learning

The TEES 2.1 system, developed for the BioNLP 2013
Shared Task, introduced an automated annotation
scheme learning system, automatically adapting the sys-
tem for the annotation rules of different corpora.
Further improved in the 2.2 version, this preprocessing
tool generates an annotation scheme definition that the
various classification steps (described in Section TEES
overview) rely on.

If earlier versions of TEES were to be used with new
corpora, task specific rules had to be defined by manually
extending the program code. The most important func-
tion for such rules was to define the type and number of
arguments for valid events of each annotation scheme.
Thus, TEES could only be easily used to detect events
similar to the ones in the shared task corpora for which
corpus-specific code had been written.

In the current system, the event scheme and its con-
straints are learned automatically. By analyzing the full,
known, annotated corpus (usually training and develop-
ment sets) the system determines the annotation rules
from the annotated events and relations. This learning
system is fully deterministic and rule-based, and learns
five kinds of annotation definitions:

Entities are nodes that cannot have outgoing edges.
They usually represent the named entities of the annota-
tion scheme. A node type is defined as an entity, if it
does not have the “event” attribute set and if it never
has outgoing edges.

Relations are the binary interactions of the annotation
scheme. All interactions, both binary ones as well as
event arguments are represented as interaction elements
in the TEES graph format. An interaction type is defined
as a relation if it does not have the “event” attribute set.
A relation can be either directed or undirected, defined
by the “directed” attribute of the interaction element.

Events are the BioNLP Shared Task style complex
events, which consist of a trigger and multiple arguments.
The annotation scheme learning system detects as event
triggers all nodes that have outgoing edges, or that have
the “event” attribute set. The types of these nodes define
the types of the events. After event types are defined, the
system iterates over all interactions in a document, and
groups them in event instances. The maximum and mini-
mum number of allowed arguments, for each event type,
is updated from the argument counts of each event
instance. The overall maximum and minimum number
of arguments for each event type is updated from the
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limits of each argument type. The result is an event defi-
nition that defines the type of the event, the number of
arguments it can have, and for each of its argument
types, the valid minimum and maximum number.

Modifiers are the negation and speculation attributes
defined in some BioNLP Shared Tasks, such as the
GENIA tasks. If a node is seen having either of these
modifiers, it is defined as a target for such modification
in the learned annotation scheme.

Targets are the node types (entity and event trigger
types) and edge types (relation and event argument
types) that are the prediction targets for the corpus. In
many of the BioNLP corpora, various amounts of anno-
tation, such as named entities, are given for all sets,
including the test set, and do not need to be predicted.
If a node or edge in the graph format does not have the
“given” attribute, it is considered a target and marked as
such in the learned annotation scheme.

An example of a learned annotation scheme for the
2013 GENIA task is shown in Table 1. In learning the
definitions described above, various types of attributes
are required in the graph elements for the system to fully
learn the annotation scheme. These attributes are auto-
matically generated from the original Shared Task anno-
tation, when converting from the BioNLP Shared Task
format.

The learned annotation scheme is stored in the TEES
model file and is available for the other program compo-
nents which use it to enforce task-specific constraints in
the machine learning steps. The most important use for
the learned annotation scheme is in the edge and unmer-
ging detectors where the rules can greatly reduce the
number of examples that need to be classified. Especially
the unmerging step would become computationally
unfeasible without such filtering.

The impact of the learned annotation scheme on the TEES
pipeline

In edge detection, the learned annotation scheme is used
to limit edge example generation for the pairs of nodes
between which a valid edge (either an event argument
or a binary relation) can exist. This filtering greatly
reduces the number of negative examples, for example
in the 2013 GENIA task training set, edge example fil-
tering removed 18,962 negative examples out of a total
25,802. With only 3,278 positive examples in the train-
ing set, this filtering produces a more balanced class dis-
tribution and greatly speeds up the machine learning by
removing most of the examples that can ever only be
negative.

In the unmerging step, each candidate event example is
validated using the learned annotation scheme, removing
all candidates that are not structurally valid events. The
type of the trigger node, as well as the types and numbers
of outgoing edges are considered, allowing the
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Table 1. The BioNLP’13 GE task annotation scheme, automatically learned from the corresponding corpus

Type Name Arguments
ENTITY Anaphora
ENTITY Entity
ENTITY Protein
EVENT Acetylation [2,2] Site {Theme} [1,1] Entity / Theme [1,1] Protein
EVENT Binding [1,4] Site {Theme} [0,2] Entity / Theme [1,2] Protein
EVENT Deacetylation [2,2] ~ Cause [0,1] Protein / Site {Theme} [0,1] Entity / Theme [1,1] Protein
EVENT Gene expression Theme [1,1] Protein
[1.1]
EVENT Localization [1,2] Theme [1,1] Protein / ToLoc [0,1] Entity
EVENT Negative regulation Cause [0,1] Acetylation, Binding, Gene expression, Negative regulation, Phosphorylation, Positive regulation, Protein,
[1,3] Protein catabolism, Regulation, Ubiquitination / Site {Cause,Theme} [0,1] Entity / Theme [1,1] Binding, Gene
expression, Localization, Negative regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Regulation, Transcription, Ubiquitination
EVENT Phosphorylation Cause [0,1] Protein / Site {Theme} [0,1] Entity / Theme [1,1] Protein
[1.3]
EVENT Positive regulation  Cause [0,1] Acetylation, Binding, Gene expression, Negative regulation, Phosphorylation, Positive regulation, Protein,
[1,3] Protein catabolism, Regulation, Ubiquitination / Site {Cause,Theme} [0,1] Entity / Theme [1,1] Binding, Deacetylation,
Gene expression, Localization, Negative regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism,
Protein modification, Regulation, Transcription, Ubiquitination
EVENT Protein catabolism  Theme [1,1] Protein
[1.1]
EVENT Protein Theme [1,1] Protein
modification [1,1]
EVENT Regulation [1,3] Cause [0,1] Binding, Gene expression, Localization, Negative regulation, Phosphorylation, Positive regulation, Protein,
Protein modification, Regulation / Site {Cause,Theme} [0,1] Entity / Theme [1,1] Binding, Gene expression,
Localization, Negative regulation, Phosphorylation, Positive regulation, Protein, Protein catabolism, Protein
modification, Regulation, Transcription
EVENT Transcription [1,1] Theme [1,1] Protein
EVENT Ubiquitination [1,2]  Cause [0,1] Protein / Site {Theme} [0,1] Entity / Theme [1,1] Protein
RELATION Coreference, Subject(Anaphora) / Object(Anaphora, Entity, Protein)
directed
RELATION  SiteParent, directed  Arg1(Entity) / Arg2(Protein)
MODIFIER negation Binding, Gene expression, Localization, Negative regulation, Phosphorylation, Positive regulation, Protein catabolism,

Regulation, Transcription

MODIFIER  speculation
Regulation,
Transcription, Ubiquitination

Binding, Gene expression, Localization, Negative regulation, Phosphorylation, Positive regulation, Protein catabolism,

TARGET  ENTITY

Acetylation, Anaphora, Binding, Deacetylation, Entity, Gene expression, Localization, Negative regulation,

Phosphorylation, Positive regulation, Protein catabolism, Protein modification, Regulation, Transcription,

Ubiquitination

TARGET  INTERACTION

Cause, Coreference, Site, SiteParent, Theme, TolLoc

The entities form the nodes of the graph. The events and relations connect the nodes together and are defined by a type and a specific, limited set of arguments.
Both event and relation arguments have specified valid target node types. Site-argument primary argument types are shown in wavy brackets. Event arguments
have also a minimum and maximum amount of each argument allowed per event, and the event itself has a minimum and maximum number of arguments.

The relations must always have two arguments and can optionally be directed. Modifiers are binary attributes that can be applied to a limited set of node types.

The targets define the types of nodes and edges to be automatically extracted.

unmerging step to only predict as positives structurally
valid events.

Before automated annotation scheme learning, these
limits had to be manually written in the program code.
This was reasonably doable for edge limits, as only lists
of valid node pairs needed to be defined. However, the
complexity of the event rules required in the unmerging
step meant that the TEES system could only construct
valid events for the small number of corpora for which
these extensive rules had been written in the code. With

the automated annotation scheme learning system not
only the system can be transparently applied to any event
corpus, but also no extension of the system through addi-
tional programming is needed. Thus, the automated
annotation scheme learning for the first time enables the
TEES system to be easily utilized on novel corpora out-
side the BioNLP Shared Tasks.

TEES 2.2 annotation scheme learning extensions

The automated annotation scheme learning system was
developed to quickly adapt TEES to the new corpora
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introduced in the BioNLP’13 Shared Task. It mostly
achieved this goal, but the learned scheme had a few
limitations that on occasion resulted in incorrect output.
In this paper, we address these limitations and enhance
the annotation scheme learning to fully grasp all the
details of the BioNLP event corpora.

In the CG13 Task the Glycolysis event never takes any
arguments. As Glycolysis-nodes never had outgoing
edges, the TEES 2.1 learning system defined Glycolysis as
an entity, which caused issues when converted back to
the Shared Task format. In TEES 2.2, all BioNLP Shared
Task event trigger nodes have the “event” attribute,
enabling the system to correctly learn that Glycolysis is
an event even if it never has arguments.

In the TEES 2.1 version, used in the BioNLP’13 Shared
Task, event definitions had a minimum and maximum
number for each valid argument type, but no overall
argument count limitations. After the Shared Task we
speculated that errors could result from events with
optional arguments of which at least one is required [11].
To overcome this limitation, the TEES 2.2 annotation
scheme learning system defines also overall argument
limitations for an event, so that for example an event that
takes 0-1 arguments of type A and 0-1 arguments of type
B can still be required to have at least one argument,
total. In practice however such situations do not appear
in the BioNLP’13 corpora, with all events that have only
optional arguments also allowing events with no
arguments.

A more important source of errors, resolved in the
TEES 2.2 version, is issues related to Site-arguments,
described in the next section.

Unified Site-argument representation

The Site-arguments are one of the more complex parts of
the BioNLP Shared Task annotation. These arguments
add detail to other arguments, and by connecting a sepa-
rate Site-entity to the primary argument define the sub-
structure of the gene or protein that is the ultimate target
of the argument. When straightforwardly converted to a
graph representation a Site-argument would be an edge
connected to another edge, a structure not possible to
implement without the target edge being split in two by a
redundant central node to which the site-argument could
connect. Such an approach would necessitate a multi-
stage edge detection system, as site-arguments could only
be predicted when the primary arguments to which they
connect have already been predicted.

In developing the TEES system, several approaches
have been tried to address the detection of site-argu-
ments as part of general edge detection. In TEES 2.0
site arguments were defined as edges connecting a site
entity to its parent protein (See Figure 2A) or to the
trigger node (See Figure 2B). The second case (used in

Page 6 of 20

the 2011 EPI task [5]) was more straightforward and
possibly closer to the syntactic structure, but could only
be used for events that had a single primary argument
and thus an unambiguous connection between the pri-
mary and the site argument. However, some ambiguity
remains also in the first case (Figure 2A), because even
when the connection between the protein and its site is
clear, there may be multiple events only some of which
refer to the site in addition to the protein. This inconsis-
tency means that the automated annotation scheme
learning system introduced in TEES 2.1 cannot learn
the valid site argument constraints for events from such
a graph.

Therefore, in TEES 2.1 a unified representation for
site arguments (See Figure 2C) is used, where site argu-
ments are linked to the trigger node regardless of task,
allowing straightforward processing of learned event
argument limitation rules. Separated SiteParent edges
are added, connecting the site entity to its protein.

The TEES 2.1 Site argument representation still had a
few limitations, which became apparent after the shared
task. In the current 2.2 version Site argument processing
is further refined, finally covering all the intricacies of
the BioNLP Shared Task annotation scheme.

TEES 2.2 Site-argument processing

In the graph representation it is possible for one event
to get two Site-arguments, both of which connect to dif-
ferent site-entities, which in turn connect to the same
protein through SiteParent-relations. As the protein is
the target of the primary argument, when the graph was
interpreted as Shared Task events, both of the sites
referred to the same primary argument. This situation
was resolved by discarding further Site arguments if the
primary argument already had one.

In another case, SiteParent-relations were predicted so
that a single site-entity had multiple Protein entities as
parents. When different primary arguments linked to
these Proteins, a single Site argument could be mapped
to multiple primary arguments, and due to an error in
the program, caused a duplication of these primary argu-
ments. This issue has been resolved by preventing a Site-
argument from being mapped to more than one primary
argument.

These solutions can lead to removal of Site-arguments,
which in turn can lead to formation of an event which is
identical to another, existing event. To remove such
duplicates, considered invalid in the BioNLP Shared
Task, a final filtering phase is added when converting to
the Shared Task format, recursively removing duplicates
until none exist.

Site-arguments and TEES 2.2 automated annotation scheme
learning

The solutions in the previous sections resolved almost
all the structural issues in predicted BioNLP Shared
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Figure 2 Multiple approaches (A and B) were used in the BioNLP’11 Shared Task for representing site-arguments in the TEES graph
format. In TEES 2.0 these representations have been merged into the unified representation (C), allowing site-arguments to be processed like
any other event arguments.

Task events. One issue could not be fixed without
updating the graph format: In the PC13 task there exist
Phosphorylation events where both the Cause and the
Theme refer to the same protein, describing self-

phosphorylation events such as “PDK1 can phosphory-
late itself at Ser-241”.

When the site “Ser-241” is further linked through a Site-
argument, the SiteParent-edge connecting the site-entity
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to “PDK1” cannot differentiate between Cause and Theme.
In PC13 however, only Theme can have a Site-argument.

To solve these cases, the edge elements in the TEES
2.2 graph format can now have a “siteOf” attribute
which unambiguously identifies the primary argument
of the Site-argument. This information can of course
only be included in known, annotated data, but it is
enough to allow the automated annotation scheme
learning system to learn that e.g. a PC13 Phosphoryla-
tion event’s Site-argument can only have a Theme argu-
ment as the primary argument, thus preventing the
error on predicted events of this scheme.

The automatically learned annotation scheme is
extended with known primary argument types for all
Site-arguments, resolving this remaining issue and pro-
viding fully structurally correct BioNLP Shared Task
predictions (See Table 1).

Validating TEES 2.1 BioNLP’13 predictions

The TEES 2.2 system described in this paper addresses
most of the shortcomings of the TEES 2.1 system
applied in the BioNLP’13 Shared Task. As the Shared
Task test set evaluation servers will reject the whole
submission when any structurally invalid events are pre-
sent, the errors resulting from the limitations of the 2.1
system had to be resolved manually when participating
in the Shared Task. However, such errors could not be
fixed by looking at the test set and then correcting the
events that prevented the acceptance of the submission,
as that would result in a de facto manual annotation of
the test set and thus an information leak.

To solve this problem we therefore never looked at
the document triggering the error, and used a simple,
consistent approach to resolve invalid events rejected by
the server. In cases where the server reported both an
invalid argument as well as a missing argument in the
same event, the invalid argument type was replaced with
the missing one’s type. If the server only reported an
invalid argument, the argument was removed, and if this
did not resolve the error, the entire event was removed.
After these steps, all events pointing to removed events
were also recursively removed.

In the current 2.2 version of TEES the issues causing
these errors have been fixed in various stages of the
pipeline, and the automated annotation scheme learning
system has been extended to be able to fully depict all
aspects of the BioNLP Shared Task annotation scheme,
as discussed in the previous sections. TEES 2.2 predic-
tions for all BioNLP’13 tasks were accepted by the test
set evaluation server without errors.

Public dataset
By the summer 2012 the TEES 2.0 system had been
developed to the point where it could be potentially
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useful for other participants of the BioNLP 2013 Shared
Task. However, since the program itself had to be
extended with additional code for each new corpus,
application for the 2013 corpora was no small task. To
finally solve this limitation the automated annotation
scheme learning system was developed, following the
generalization approaches developed for the 2011 task
and making them consistently usable for all the new
corpora.

Even then, training the TEES system remained a com-
putationally intensive and potentially error-prone task
for people not familiar with the program. To ensure
easy application of TEES for the 2013 task, predictions
for the new corpora were published during the system
development period. The analyses for the development
sets were made available on February 26th, followed by
publication of test set analyses on April 13th (during the
test period). These datasets did not enjoy wide popular-
ity and were downloaded only a few times.

Due to the complexity of the BioNLP Shared Task
efficiently utilizing a separate set of predictions in
another system may likely have been too time consum-
ing to experiment with. Similar precalculated TEES pre-
dictions were published also for the DDIExtraction 2013
Shared Task, where the datasets were used more, quite
possible because such analyses could more easily be
integrated into the more straightforward binary relation
extraction task [15,18].

Event Visualization

The BioNLP Shared Task events can form complex,
nested structures. Neither the original Shared Task for-
mat nor the TEES graph representation are that easy to
read, especially when complex nesting leads to long
chains of linked events. Understanding the predicted
graphs is often instrumental in analyzing system errors
and devising better event extraction approaches. There-
fore, in TEES 2.2, an integrated visualization system is
provided with the program.

The TEES 2.2 visualizer relies on the open source graph
drawing software GraphViz and its dot layout engine [19].
By giving a corpus file and the id of a sentence, the user
can get an immediate visualization of the semantic annota-
tions and syntactic parse of that sentence (See Figure 3).

The visualization is generated as a GraphViz dot lan-
guage file, and rendered as a PDF file using the Graph-
Viz program. By relying on the advanced graph layout
algorithms of GraphViz, the TEES visualization tool
remains simple but produces illustrative examples for
even complex annotation graphs. The tool is intended
to aid in system development and debugging, and if
more consistent and higher quality visual representa-
tions are needed, a dedicated annotation visualization
tool such as BRAT should rather be used [20].
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Figure 3 The visualizer provided with TEES 2.2 can be used to display both the event annotation as well as the parse of a sentence. This
figure shows sentence GE13.d216.50, taken from the BioNLP 2013 GENIA development corpus document PMC-3333881-20-Caption-Figure 3,
demonstrating a nested event structure consisting of two Negative regulation events.

Integrating scikit-learn

Since the BioNLP 2009 Shared Task TEES has relied on
the SVM"“/#class program for all classification tasks. In
TEES 2.2 the interface to the classifier is generalized,
allowing different classifiers to be plugged into the
system.

Scikit-learn is an increasingly popular Python library
for all kinds of machine learning tasks and provides also
a wide selection of classifiers [21]. TEES 2.2 includes an
interface for using scikit-learn, and in the results we
introduce several examples of using different classifiers
from this package. Scikit-learn classifier parameters can
be defined through the TEES command line interface,
and even simple Python structures, such as class weight
dictionaries, can be passed to the system this way.

In addition to the Scikit-learn integration TEES 2.2
includes a dummy classifier, which simply returns the
correct output for examples whose annotated class is
known. This classifier can help in analyzing system per-
formance on various tasks, and in this paper we use it
to give an overview into the relative performance impact
of the various learning components in the TEES
pipeline.

Results

BioNLP’13 Shared Task

Due to the automated annotation scheme learning, it was
possible to apply TEES 2.1 to almost all the 2013 tasks with

task specific development no longer required. Only the sub-
task 1 of the Bacteria Biotopes task, concerning boundary
detection and labeling of entities with concepts from a
large ontology, fell outside the scope of the TEES system.
In the end, TEES 2.1 was the system that participated in
most tasks and demonstrated generally good performance.
These results confirmed the validity of abstracting away
task-specific details in developing the system. The official
results for the tasks of the BioNLP 2013 Shared Task are
listed in Table 2 and the performance of the TEES 2.1 sys-
tem relative to other entries is displayed in Figure 4.
GENIA (GE13)
Of all tasks in the BioNLP Shared Task the original
GENIA task remains central and has been organized in
all three iterations. This task has also been the most
popular among participants and could therefore be
viewed as the main platform for competitive evaluation
of diverse event extraction approaches. While the 2009
and 2011 GENIA tasks were very similar, in 2013 the
GENIA task annotation has been considerably extended
and the co-reference annotation (a separate task in
2011) has been integrated in the GENIA corpus [22].
The advantage here is that supporting information like
co-references is more likely to be utilized, but on the
other hand direct comparability with the earlier itera-
tions of the task is lost.

The GENIA task corpus is a good example of the ben-
efits of automated learning of an event annotation
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Table 2. Official BioNLP 2013 Shared Task results for the
TEES system showing performance on the hidden test
sets

Task # R P F SER
GE13 2/10 46.17 56.32 50.74

CG13 1/6 4876 64.17 5541

PC13 2/2 4715 55.78 51.10

GRO13 N1 15.22 36.58 2150

GRN13 3/5 33 78 46 0.86
BB13 T1 0/4

BB13 T2 1/4 28 82 42

BB13 T3 1/2 12 18 14

The performance is defined by the (F)-score, composed of (R)ecall and (P)
recision. The SER metric is used for the the GRN task. The BB task 1 is
outside the scope of the TEES system. Placement among other systems is
indicated by #.

scheme. The corpus is quite diverse, having 11 separate
event types, a pairwise binary co-reference relation
scheme and a modality annotation for negated and spec-
ulative events. In earlier TEES versions this whole
scheme would have been encoded in the functionality of
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its example generation code, but the TEES 2.1 system
can learn these rules automatically from the corpus data
itself and store them in a re-usable, generalized struc-
ture information resource file. The automatically learned
annotation scheme for the 2013 GENIA task is shown
in Table 1. Such a scheme has been “reverse engineered”
from the corpus, so it must be noted that it may not
always correspond perfectly to the official annotation
rules of a corpus. In particular, the Binding event can
officially have one or more Theme arguments, but from
looking only at the examples in the corpus itself, the
automated system learns that two is the maximum
number of Theme arguments.

For a subset of the co-reference relations in the
GENIA corpus (45 out of 338 in train and devel data)
one or both of its annotated endpoints are event trigger
words. Such relations could be linked to the event trig-
ger nodes in the TEES graph representation, but as this
graph has no distinction between the trigger and the
whole event, the system would connect these relations
to the event annotation when converting back to the
Shared Task format, so these relations were skipped.

A: TEES 2.0 main representation

<Theme

<Site —— |

Protein

|[Entity] [Phosphorylation]

STAT3

Ser(727)

B: TEES 2.0 EPI representation

<Theme
l —

phosphorylation

<Site

Protein [Entity] [Phosphorylation]

STAT3 Ser(727) phosphorylation

C: TEES 2.1 Unified representation
<Theme

<SiteParent <Site
T :::::l

Protein

|[Entity| (Phosphorylation]

STAT3

Ser(727)

Figure 4 The performance of systems that took part in the BioNLP'13 Shared Task. The TEES results are shown with black crosses. Please
note that in tasks GRN and BBT1 the metric is SER*100 where a smaller score is better.

phosphorylation
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In this 2013 GENIA task TEES reached second place
at 50.74% F-score, with the first place achieved by team
EVEX [23], who utilized the publicly available TEES 2.1
program. These good results show the benefits of utiliz-
ing available existing systems as part of new solutions
and the value of open sourcing scientific code.

The third ranked system in the GE13 task with an
E-score of 50.68% was the BioSEM by Bui et al. [24].
The BioSEM system uses shallow parsing and automati-
cally learned syntactic event patterns that are matched
against this parse. BioSEM is highly computationally
efficient, reaching processing speeds of 3.4 ms per sen-
tence whereas TEES and the 2011 Shared Task winning
UMass system use 1040 and 1400 ms, respectively.
Cancer Genetics (CG13)

The CG task presents an event corpus developed for
text mining related to cancer [25,26]. This corpus intro-
duces a large variety of events and entities. Such diver-
sity results in very many small classes in the TEES
multi-class approach, but despite this potential issue,
TEES 2.1 reached an F-score of 55.41% and a first place
in the CG task. It is interesting to note that on some
event categories TEES reached unusually high perfor-
mance, for example an F-score of 77.20% for Anatomy-
group events. It is interesting to speculate that the
detailed annotation scheme of the CG corpus may have
resulted in a very consistent annotation, allowing high
machine-learning performance in this task.

Pathway Curation (PC13)

The PC task follows the database focus of the BioNLP’13
Shared Task, presenting a corpus of events designed to
be applicable for pathway curation [27]. The PC events
are based on known pathway annotation models and
ontologies such as the Systems Biology Ontology (SBO).
The PC corpus has only a few entity types but a large
number of event types.

The TEES 2.1 system placed second in this task, 1.74

percentage points behind the NaCTeM team [28]. On
the CG task team NaCTeM placed second, 3.32 percen-
tage behind TEES 2.1. Thus, even when there were only
two participants in the PC task, and these participants
being very close in performance, we speculate that the
PC corpus is of similar complexity with the CG corpus.
Gene Regulation Ontology (GRO13)
The aim of the GRO task is to evaluate the automatic
annotation of texts with Gene Regulation Ontology (GRO)
concepts [29]. For a BioNLP Shared Task task, the annota-
tion is unusually detailed, consisting of 145 entity and 81
event types. This presents an extremely difficult situation
for a classifier-based approach, with very many classes that
have only a few examples each. Unsurprisingly, TEES
could not detect most of the small classes and in general
exhibited better performance the larger the class.
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The 2011 EPI task had a number of small “reverse”
event classes (such as Dephosphorylation for Phosphory-
lation). In many cases the reverse class could be com-
bined to or separated from the main class with only a
few simple rules, and this approach was successfully
used in the TEES entry to make many small classes
detectable. A similar approach could potentially be used
with the GRO corpus but finding classes to combine
and determining the rules for this would be no small
task.

TEES 2.1 was unfortunately the only system to partici-
pate in the GRO task. The performance of 21.50%
F-score is quite low, but with no points of comparison,
not many conclusions can be drawn from it. Still, TEES
did perform decently on the larger classes, so it is con-
ceivable that with a larger training corpus the perfor-
mance could be increased to similar levels as seen in
other tasks such as GE, CG or PC.

Gene Regulation Network (GRN13)

The GRN task takes the most direct approach for mea-
suring the applicability of extracted events [30]. The
events and relations produced in this task are automati-
cally converted to a regulation network, and it is even
possible to compete by ignoring the event stage and
directly producing this network. Either way, the quality
of this network is the GRN task’s performance metric,
with the Slot Error Rate (SER) [31] used as the measure,
where lower is better and a value of less than one is
expected for decent predictions.

The GRN corpus itself is slightly different from the
more event-focused corpora in other tasks. Its annota-
tion scheme defines 11 entity types, 12 binary relation
types and only a single event of type Action.

TEES 2.1 was used for producing the events, which
were then converted by the organizers to the final regula-
tion network. A SER of 0.86 was achieved, placing TEES
in the middle of the five participating teams. All of the
teams had an SER of less than one, indicating predictions
of useful quality. The best result of 0.73 was achieved by
the team from the University of Ljubljana who used lin-
ear chain conditional random fields combined with rule-
based detection of events and relations [32].

The GRN task organizers also provided their down-
loadable evaluator program early enough in the develop-
ment period that it could be integrated to the TEES 2.1
system, allowing optimization against the official metric
of the task. As the SER metric had not been used in the
context of TEES event extraction, we decided to use the
relaxed F-score as the optimization metric, on the basis
that it had been shown before to predict well the perfor-
mance on the hidden test set. During the development
phase we however observed that generally the optimal
SER score correlated with the optimal relaxed F-score.



Bjorne and Salakoski BMC Bioinformatics 2015, 16(Suppl 16):54
http://www.biomedcentral.com/1471-2105/16/S16/54

Bacteria Biotopes (BB13)

The BB task, introduced in 2011, is the only task apart
from GENIA to continue from an earlier BioNLP Shared
Task. The goal in the BB task is to detect statements
concerning bacteria habitats and their environmental
properties. The BB task is divided into three separate
subtasks [33].

The goal in task 1 is detection of bacteria habitat
entity boundaries. Further, each detected entity must be
assigned one or more terms from the 1700 concepts of
the OntoBiotope ontology. The BB task 1 is the only
task for which the TEES 2.1 system was not applied.
While TEES has been extended to detect multi-token
entities (in the 2011 CO task) it is not optimized for
this type of classification. More importantly, assignment
of the 1700 concepts is a challenge not easily approach-
able with the classification-centric approaches in the
TEES system, and as our focus was on developing a gen-
eralized event extraction system, we considered the
completely different approaches required for the BB task
1 to fall outside the scope of our current system.

On the other hand the BB tasks 2 and 3 form a direct
continuation for the BB task of 2011. In these tasks the
goal is to detect bacteria, habitat and geographical place
entities and the relations between them. The annotation
is very concise, consisting of only three entity and two
relation types. In task 2 the competitors are provided all
entities, resulting in a straightforward relation detection
task, but in task 3 also the entities must be predicted.

Of all the BioNLP’13 tasks, the BB tasks were the only
ones in which limited task specific resources were used
to enhance TEES performance, mostly because the
TEES 2.0 resources from the 2011 BB task were directly
applicable also for the current ones. As in 2011, a dic-
tionary of bacteria name tokens derived from the List of
Prokaryotic names with Standing in Nomenclature
(http://www.bacterio.cict.fr/) [34] was used to improve
entity detection performance, but unlike the 2011 task,
the WordNet features were not used this time.

The TEES 2.1 system achieved first places in both the
BB tasks 2 and 3. Despite this, the performances of 42%
and 14% of F-score (for tasks 2 and 3 respectively) are
still relatively low, demonstrating the complexity of
these tasks.

TEES 2.2 performance

The TEES system has been developed since the 2009
BioNLP Shared Task, and has participated in all three
BioNLP Shared Tasks. While the basic pipeline design
has remained the same, the system has also changed
with improvements such as the introduction of the
automated annotation scheme learning system. To mea-
sure how the current system compares to the versions
used in the shared tasks, we show in Table 3 current
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performance and the results from the various tasks. The
comparison shows that the current performance differs
little from the results of the tasks, some having now a
slightly higher and some a slightly lower performance.
The larger changes in the EPI11 and ID11 tasks result
from work following the 2011 Shared Task, discussed in
[5]. Generally, it can be said the TEES system has
mostly evolved in scope: While the original 2009 system
was only capable of processing the 2009 corpus, and
even then only as a series of manually managed inde-
pendent programs, the current TEES 2.2 version can be
applied to any of the Shared Task corpora, can be used
by other research groups, and with the automated anno-
tation scheme learning system can process also corpora
outside the BioNLP Shared Tasks.

A disturbing aspect of the evaluation is that many of
the online test set evaluation services are no longer avail-
able. Five years after the original BioNLP'09 Shared Task
the test set of that task can no longer be evaluated, and
three years after the BioNLP’11 Shared Task only three
out of the eight task test set evaluation services remain
available.

System component performance

By replacing one or several of the TEES pipeline compo-
nents with an “always correct” dummy classifier that sim-
ply gives the examples the known, correct class, the
performance of the components relative to the overall
system can be evaluated. By replacing a single component
with the “always correct” classifier, we can get an esti-
mate of how much there could be to gain from focusing
development on this component. By replacing all classi-
fiers in the pipeline until a certain step with the “always
correct” classifier, we can get an estimate of how much of
the system error is due to this step. This evaluation
resembles the one performed on an earlier version of
TEES used in the BioNLP’09 Shared Task [4]. We per-
form this evaluation on the GENIA 2011 corpus, as it is a
representative corpus for the BioNLP Shared Tasks and
has a downloadable evaluator available.

The results are shown in Table 4. Using correct
results for all steps gives an estimate of theoretical max-
imum system performance. At 95.99% F-score this indi-
cates the impact of ignoring sentence boundary crossing
interactions.

Replacing a single classifier at a time, the use of all cor-
rect results for the entity detection step achieves the
highest improvement on simple (single-argument) event
detection. This indicates that the detection of such events
is mostly dependent on the correct trigger. Somewhat
surprisingly, all correct results for the unmerging step
give a considerably large improvement to Binding event
extraction performance, indicating that the entity and
edge detection steps do correctly detect Binding event
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Table 3. Turku Event Extraction System in the BioNLP Shared Tasks

Task Name devel / test devel 2.2 / test 2.2
GE09 1 GENIA Event Extraction -/ 5195 4911/
GE09 2 Protein Site Arguments -/- -/

GE09 3 Negation & Speculation -/- -/

GE11 1 GENIA Event Extraction 55.78 / 53.30 5391 /5403
GE11 2 Protein Site Arguments 5339 /5197 byb

GE11 3 Negation & Speculation 3834/ 26.86 3792/ 31.85
EPIN Epigenetics and PTM:s 5641/ 53.33 60.03 / 56.22
D11 Infectious Diseases 4492 / 4257 50.56 / 49.96
BB11 Bacteria Biotopes 2701/ 26 3087 / -

BIT1 Bacteria Gene Interactions 7724177 7681 /-2
CO11 Protein/Gene Coreference 36.22 / 2377 3011/
REL11 Entity Relations 6599 / 57.7 -/

RENT1 Bacteria Gene Renaming 84.62 / 87.0 8504 / -°
GE13 GENIA Event Extraction 5143* / 50.74 50.13% / 49.18
CG13 Cancer Genetics 61.82% / 5541 63.50% / 54.99
PC13 Pathway Curation 57.63* / 51.10 59.74% / 49.90
GRO13 Gene Regulation Ontology 47.18% 7/ 21.50 4742% /=2
GRN13 Gene Regulation Network -/ 086 SER - /085 SER
BB13 1 NER and Categorization -/~ -/~

BB13 2 Bacteria Localization 11.81* /42 13.71* / 4220
BB13 3 Bacteria Entities & Relations 64.67* / 14 63.34* / 14.24

The first results column shows the official competition results from each BioNLP Shared Task in which TEES participated, reflective of the system’s performance at
that point in its development. The second column shows the performance of the current TEES 2.2 system. The development set results are evaluated using an
official downloadable evaluator or the TEES internal evaluator (the latter shown with a star). The test set results are the results from the shared task (first column)
or evaluated with the official online evaluation service (second column). The superscript (a) indicates that the online evaluation service is no longer available, (b)
that that competition metric is not provided by the online evaluation service and (c) that the downloadable evaluator failed to process the predicted events.

components, but these are not always correctly combined
into full events.

By replacing both entity and edge predictions with
correct results, system performance is at 93.32%, only
2.67 percentage points below the result with also
unmerging predictions correct. This shows that only a
minority of events depend on the unmerging step, but
as seen from the result with Binding events mentioned

Table 4. System component performance in F-score
evaluated by replacing individual processing steps with
an “All Correct” classifier that always returns the correct
result

All Correct Simple Binding Regulation All

None 76.87 5044 42.87 55.99
Entity 93.17 65.72 65.37 75.32
Edge 89.70 7163 7246 7862
Unmerging 86.53 77.30 61.07 72.76
Entity + Edge 9840 77.99 93.38 9332
All 9840 94.63 94.75 95.99

The left column shows the step or steps replaced. The other columns show
performance for GE11 event subsets, where Simple refers to the five single-
argument event types and Regulation to the three regulation types.
Performance is evaluated for task 1 on the development set with the
downloadable GE11 evaluator.

in the previous paragraph, the unmerging step can also
compensate for errors made by earlier steps.

Using scikit-learn classifiers

The new generalized classifier system allows using exter-
nal classifiers, such as those of the scikit-learn system
with TEES. While technically any scikit-learn classifier
could be used, in practice only those supporting sparse
feature matrices can be used, due to the large number
of features and examples TEES produces.

To give a short overview of the variety of new classi-
fiers available through scikit-learn, we show in Table 5
the impact of replacing the SVM™“/*!45 classifier with
various scikit-learn classifiers. The LibSVM (SVC) and
LibLinear (LinearSVC) classifiers used through scikit-
learn unsurprisingly demonstrate good performance.
With SVC, the default RBF kernel was used. With Line-
arSVC the decision function method was used to deter-
mine classification confidence scores. As the SVC
classifier uses a one-vs-one classification, per-class confi-
dence scores are not directly available, so class member-
ship probability estimates are used instead [35]. Both
the LinearSVC and SVC classifiers show a slight
increase in performance (1.43 pp and 1.04 pp) over the
SYM™ulticlass classifier.
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Table 5. GE11 event extraction with scikit-learn classifiers
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Classifier Parameters Recall Precision F-score
BernoulliNB alpha = 0.001,0.01,0.1,1,10,100,1000 5341 14.93 2334
Perceptron default 38.82 61.73 4767
SVC C=[10, 10°], probability=True 47.06 66.05 5496
LinearSVC C=[107, 10° 46.65 68.02 5535
ExtraTrees n_estimators = 10,50,100 2797 78.58 4125
RandomForest n_estimators = 10,50,100,500 2492 78.65 37.84
Symuticlass C=[1,109] 54.98 52.89 53.92

The SYM™U/itass ysed in all TEES BioNLP Shared Task results is shown for reference. Performance is evaluated for task 1 on the development set with the

downloadable GE11 evaluator.

The simple Naive Bayes classifier for multivariate Ber-
noulli models (BernoulliNB) has low overall perfor-
mance, but decent recall. The linear Perceptron
classifier has somewhat better performance, but reaches
good precision at the cost of recall.

With scikit-learn version 16 tree-based systems support
also sparse matrices. We tested the Random Forest and
Extra Trees ensemble methods which have generally good
performance on a variety of tasks. However, in this task
performance was considerably lower than with an SVM
and despite the classifiers’ ability to handle the sparse data-
sets, the memory consumption and processing times were
excessive. However, these ensemble methods provide an
internal ranking of feature importances, providing the
opportunity to analyze the huge feature sets used by TEES
in more detail (see Section Analyzing TEES features).

Not too many conclusions can be drawn from the eval-
uated scikit-learn classifiers. The good performance of
the various SVMs is to be expected, and while the sim-
pler methods also have unsurprisingly moderate perfor-
mance, it has to be remembered that the current TEES
system has been tuned for use with an SVM classifier
since 2009. The most important result of integrating sci-
kit-learn is that with an actively developed machine
learning library, the suitability of new classifiers for event
extraction can quickly be tested as they become available.

Analyzing TEES features
The scikit-learn ensemble methods provide an estimate
of features importances, with relative weights given for
all features used by the system. These classifiers imple-
ment a measure known as “gini importance” or “mean
decrease impurity”, defined as the total decrease in node
impurity averaged over all trees of the ensemble [36]. We
use the ExtraTreesClassifier as the ensemble method for
determining the feature importances. Even if its classifi-
cation performance is not on par with the SVM the
TEES system was developed with, it still uses the exact
same feature sets which are the topic of this analysis.

The TEES features are produced by two primary fea-
ture generation systems. The entity example builder

generates features describing a single word and its con-
text in the sentence. The edge example builder gener-
ates features from the shortest path of dependencies
connecting two entities and their context in the sen-
tence. The output of these generators can be further
divided into groups, such as the dependency context of a
node or n-grams built from the shortest path. These
entity and edge example builders are used in various
combinations to build the feature sets for the four clas-
sification steps (trigger, edge, unmerging and modifier)
used in TEES. Examples of the features and feature
groups used in TEES are shown in Figure 5. For a
detailed discussion of the TEES feature representations
we refer to Chapter 3 of [13]. For an analysis of the fea-
ture sets of the original TEES 1.0 system please see the
analysis using the accumulated effect evaluation (AEE)
algorithm of Xia et al. [37].

Feature Groups

Figure 6 shows the distribution of the feature impor-
tances for major feature types. Generally, no single fea-
ture group dominates the results, and all of the most
important features are outliers. This indicates that even
if feature selection can be used to increase performance,
it is unlikely that the system could be optimized by
removal of any of the feature groups, as important fea-
tures exist in all groups. On a general level, Xia et al.
report similar findings in their AEE feature selection
experiment, although interestingly they also demonstrate
a gain of 0.13 pp for TEES 1.0 trigger detection when
discarding the dependency context features [37].

It is not surprising that sentence features are important
for trigger detection, as these contain information about
the presence of named entities and an overall picture of
the content of the sentence. As such they could conceiva-
bly work as a very strong “on/off” switch when classifying
the words of a sentence. However, it is surprising to see
this same sentence feature group rank highly also among
the edge detection features, which one would assume are
more focused on the dependencies linking the two candi-
date entities. Predictably the path group, describing the
overall structure of the shortest path has many important



Bjorne and Salakoski BMC Bioinformatics 2015, 16(Suppl 16):54
http://www.biomedcentral.com/1471-2105/16/516/54

Page 15 of 20

2

Parse: 1

dobj>

1
. . <nsubj
z ( <32ux:|: : ?
i —appos> dobj> conj_and>
{—— j r— J—T— )2
MD VB

NN NN NN NN cC
STAT3  Ser(727) phosphorylation may involve Vav and
-2 -1 0 1 2 3 4
Event: ) : = _ . = V - - = : V . . V' V V
Protein [Entity] [Phosphorylation] [Regulation] Protein
B - —J

<Theme Cause>

<Theme —— |Regulation| —— Cause>

Token features: txt MASK txt Ser(727) ixt_phosphorylation txt_may txt_involve xt_ MASK txt_and txt MASK

TOK(x) POS_NN  POS_NN POS_NN POS_MD POS_VB POS_NN  POS_CC POS_NN
ann_Protein ann_Entity ~ ann_Phosphorylation spec ann_Regulation ann_Protein
E Given entity count: given_count_3
% Sentence bag-of-words with counts: STAT3=1, given_STAT3=1, Ser(727)=1, phosphorylation=1, may=1,
A involve=1, Vav=1, given_Vav=1, and=1, Rac-1=1, given_Rac-1=1
Entity counts (edge only): n_Protein=3, n_Entity=1, n_Phosphorylation=1, n_Regulation=1
Token features: TOK(phosphorylation)
- Porter Stemmer features: stem_phosphoryl, tail_ation
g .5:: Normalized text (remove -, /, ,, \, and whitespace) features: nor_phosphorylation, norstem_phosphoryl, nortail_ation
:9 E Substring (split at '-') features: sub_phosphorylation, substem_phosphorylat
# " Content features: upper_case_start=0, upper_case_middle=0, has_digits=0, has_hyphenated_digit=0, has_hyphen=0,
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F Linear order features in range [-3,-1] and [1.3]: TOK(STAT3)_L-2, TOK(Entity) L-1, TOK(may) L1, TOK(involve) L2,
2 TOK(Vav)_L3
= Linear N-grams in range [-2, 0]: MASK_ser(727)_phosphorylation, ser(727)_phosphorylation
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*
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Figure 5 Examples for the feature groups in Figure 6 and Table 6. The numbered dependencies and tokens indicate the linear and
dependency context for the token “phosphorylation”. The dotted Theme edge and its corresponding dependency indicate the shortest path of
an event argument edge. The example features correspond to the “phosphorylation” entity and the dotted edge. The token features TOK(x) are

incorporated into the more complex features. (Figure adapted from [13].)
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features for edge detection. The n-grams being generally
less important than path features could be considered to
result from them often describing longer structures and
as such being less generally applicable.

The unmerging features consist of different combina-
tions of the edge and trigger features. As such they are
grouped according to this higher level of division. The
args and context features describe the dependency paths
corresponding to and outside of the event’s arguments,
respectively. The trigger group encompasses the feature
groups of the event’s trigger node and the bow group is
a bag-of-words defined for the linear span of the event.
The unmerging feature groups are rather equal in
importance, with the exception of the context group
containing very unimportant features, as is likely for the
areas of the parse outside the candidate event.

The modifier detector uses an adapted version of the
trigger feature builder. Its most important distinction is
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the spec group of features based on a manually curated
set of known speculation-related words. That the depen-
dency context deps ranks so highly for modifier detec-
tion can be explained by the fact that speculation and
negation are largely expressed by modifiers connected to
the trigger word token (e.g. “not phosphorylated” or
“potentially regulates”).

After this overall analysis of of the TEES feature
groups we look in more detail at the individual, impor-
tant features.

Top Features

As the feature group analysis (Figure 6) shows, impor-
tant features can come from almost any feature group,
regardless of the overall importance of said group. In
Table 6 we list the features ranked as the most impor-
tant for the four classification steps in TEES.

The trigger feature with the highest weight is unsur-
prisingly the VB part-of-speech label, as after all, trigger

trigger

token I-I —————— ‘— - —‘ ————— ‘|:|:"m< "

subtokenf |- - ------ oo - E — 11 |
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markers. See Figure 5 for feature group details.

Figure 6 The distribution of feature importances for feature groups, for each of the four classification steps (trigger, edge, unmerging
and modifier ). The deps group refers to dependencies. In the box plots the boxes contain the features from the lower to upper quartiles, with a
red line at the median. The dotted-line whiskers extend to 1.5 times the interquartile range and the outlier points are shown as individual
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Table 6. Most important features as determined by the scikit-learn ExtraTreesClassifier

step # weight feature group
trigger 1 0.0087 POS VB token
2 0.0078 linear_3_txt_| linear
3 0.0066 stem_induct subtoken
4 0.006 dt_on subtoken
5 0.0054 linear_3_txt_we linear
6 0.0054 linear_3_txt_was linear
7 0.0041 linear_-1_txt_inhibits linear
8 0.0041 dt_si subtoken
9 0.0038 dist_3_annType_Protein dependencies
10 0.0034 dt_xp subtoken
edge 1 0.009 e2_txt_ld1 entity
2 0.0042 tok_FFtxt_phosphorylation path
3 0.0039 dep_Reverse_dobj path
4 0.0036 tokenPath_Positive_regulation_e1_Positive_regulation_ path
5 0.0035 GENIA_target_protein entity
6 0.0034 POS_VBZ path
7 0.0034 tok_RFFFtxt_mRNA path
8 0.0028 tok_RFFtxt_phosphorylation path
9 0.0025 tok_RRtxt_Id2 path
10 0.0025 txt_block path
unmerging 1 0.0064 argTheme_dep_Reverse_prep_of args
2 0.0062 argTheme_POS_NN args
3 0.006 argTheme_txt_expression args
4 0.0048 trg_dt_up trigger
5 0.0047 trg_chain_dist_dist_2-rev_appos-rev_punct trigger
6 0.0045 trg_dt_xp trigger
7 0.0043 trg_tt_ssi trigger
8 0.0041 argTheme_txt_affected args
9 0.0041 trg_dt_ex trigger
10 0.0041 argThemetrg_dep_dist_dist_3dep args
modifier 1 0.013 t1HOut_neg_RB dependencies
2 0.013 t1HOut_neg dependencies
3 0011 t1HOut_nsubjpass_NAMED_ENT dependencies
4 0.0089 dep_dist_dist_3neg dependencies
5 0.0074 tTHOut_not dependencies
6 0.0072 dist_3_txt_not dependencies
7 0.0053 dist_3_txt_significantly dependencies
8 0.0048 chain_dist_dist_1-rev_nsubjpass-frw_conj_and-rev_dep dependencies
9 0.0044 linear_-2_txt_was linear
10 0.0032 t1HOut_advmod dependencies

See Figure 5 for feature group details.
The weights are relative for each classification step.

words are generally verbs. Subtoken features are also
important, such as the common “induction” trigger word
and the two-letter duplet “xp” most likely correlating with
various forms of the word “expression”. Trigger words are
most often linked to named entities, so the presence of a
dependency context feature “dist 3 annType Protein” is to
be expected. Less clear are the high weights given to linear
context features but words like “we” and “was” might

indicate statements where experimental work is described
(as in “we analyzed the phosphorylation. . . “).

While the edge feature groups show no clear winner,
the top 10 features are unambiguous: The entities and
the dependency path of the candidate edge are the most
important features. The most important path features
consist largely of individual words and their relative
positions on the shortest path.
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The unmerging features with the highest weights
come from two groups: The trigger features of the
event’s trigger node and the edge features corresponding
to the predicted arguments of the candidate event.
Features for the dependency context outside the event
itself are not among the highest weighted ones, suggest-
ing that the entity itself, not its context in the sentence,
is the most important basis for classification at this
stage.

The most highly ranked modifier features confirm our
speculation from the feature group analysis: The most
important features for modifier detection are indeed the
dependency types and words that describe a modifica-
tion of the primary trigger word. While the modifier
detection system detects both negation and speculation,
among the top 10 features only one, the feature “dist 3
txt significantly”, is related to a speculative context.

Conclusions

TEES 2.1 in the BioNLP’13 Shared Task

The TEES 2.1 system was successfully utilized in the
BioNLP 2013 Shared Task. The automated annotation
scheme learning system simplified considerably the
application of the system to the diverse corpora, while
still resulting in good general performance, reaching
multiple first places.

The GRO task brought to light the limitations of the
TEES approach when the annotation contains very
many small classes. A similar situation made it unfeasi-
ble to apply the system to the BB task 1. Even with
these limitations, the fact that the TEES system could
be applied to most tasks with good results demonstrates
that a basic stepwise SVM approach remains very much
state-of-the-art in terms of predictive performance.
However, such a generalized machine learning approach
relying on massive feature sets is also computationally
intensive, and it is refreshing to see novel, more specia-
lized systems such as the BioSEM in the GE task
demonstrating both computational performance and
good prediction quality [24].

We continued our commitment to open source devel-
opment by making the TEES 2.1 system publicly avail-
able already during the BioNLP’13 Shared Task’s
development phase, and provided precalculated analyses
to all participants. While it is unfortunate that not many
participants utilized these resources, the good results in
the GE task, and also the performance demonstrated by
system combination in the earlier BioNLP Shared Tasks
[38,8] are convincing demonstrations of the value of
merging together the areas of strength from several
diverse systems.

TEES 2.1 demonstrated good performance on many of
the BioNLP’13 Shared Tasks, but it must be considered
that as a system that has participated also in the 2009
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and 2011 tasks it had already the capacity to handle
much of the basic work required to get started in event
extraction. A particular advantage may have been the
TEES internal micro-averaged F-score evaluation which
provides a good approximation of the official metrics of
many tasks. It is unfortunate that in the BioNLP’13
tasks official evaluator programs were often not available
or published so late in the development period that they
were unlikely to have much impact in guiding the teams
towards the correct optimization goals. We consider it
to be highly important that in shared tasks like this the
official evaluation metric is clearly known well ahead of
time, and also that the evaluation programs are made
publicly available in order to avoid critical errors arising
from multiple teams re-implementing the often complex
evaluation methodology on their own.

The future of past BioNLP Shared Tasks

A worrying aspect of the evaluation of current TEES 2.2
performance on older BioNLP Shared Task corpora was
that so many of the test set evaluation services were no
longer available online. Some are down due to moving
servers, and while no doubt they will eventually be
restored, the current shortage highlights an important
concern about the long-term availability of scientific
web services. The limits of web services have been ana-
lyzed e.g. by Schultheiss et al. [39].

The test sets of BioNLP Shared Tasks have been kept
hidden to enable objective evaluation of new systems on
older corpora. As one cannot expect the evaluation ser-
vers to be maintained indefinitely, it would perhaps be
good if the older test set annotations were made publicly
available, even if the latest round is kept as a hidden,
objective resource. A public dataset can be distributed
through different venues, ensuring its preservation even
after the original source may be gone.

The BioNLP corpora represent some of the largest,
most thoroughly annotated corpora in the field and it
would be unfortunate if some of them would be lost to
history.

TEES 2.2 improvements

The automated annotation scheme learning system,
introduced in TEES 2.1, has now been improved to pro-
duce fully structurally correct events for all BioNLP
Shared Task corpora. These improvements should also
make the TEES system more robust when applied to
other, novel corpora.

The Site-arguments, which modify primary arguments,
have been the subject of extensive system development
when applying TEES to the BioNLP Shared Tasks.

One can wonder whether solving such a minor techni-
cal issue has been worth the efforts dedicated to it, con-
sidering how rare the ambiguous cases are. However, in
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the BioNLP 2013 Shared Task structural correctness of
predicted events has been given extreme importance, to
the extent that the evaluation servers refuse to provide any
results unless all predictions are perfectly correct structu-
rally. As manually resolving such errors is extremely
tedious, complying with these structural requirements is a
necessary step in ensuring further development on these
corpora can proceed efficiently.

We introduced a new, general system for using different
classifier tools within the TEES processing pipeline. The
integration of the scikit-learn library provides access to
numerous cutting edge classifiers, allowing the latest
machine learning advances to be quickly applied to event
extraction. The high dimensionality of text mining features
still presents some challenges when selecting classifiers, but
as the scikit-learn project evolves, more and more solutions
are likely to become available also for event extraction.

As an example of the new directions enabled by the
scikit-learn integration we performed a detailed analysis
of the feature importances of the TEES system. This is
the first time we have analyzed the huge TEES feature
spaces outside trial-and-error system development. It is
interesting to see assumptions made during the system
development both supported and contradicted by the
experimental analysis. The results of feature group ana-
lysis indicate that no single feature type is more impor-
tant than the others, and that important features can
arise from each group. This supports our experience
that large, diverse feature sets provide a good basis for
classification in event extraction.

Program availability

The TEES system is a free and open source project. As
with previous versions the current 2.2 series is publicly
available from the repository (http://jbjorne.github.io/
TEES/).
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