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Abstract

Background: Protein-ligand binding is important for some proteins to perform their functions. Protein-ligand
binding sites are the residues of proteins that physically bind to ligands. Despite of the recent advances in
computational prediction for protein-ligand binding sites, the state-of-the-art methods search for similar, known
structures of the query and predict the binding sites based on the solved structures. However, such structural
information is not commonly available.

Results: In this paper, we propose a sequence-based approach to identify protein-ligand binding residues. We
propose a combination technique to reduce the effects of different sliding residue windows in the process of
encoding input feature vectors. Moreover, due to the highly imbalanced samples between the ligand-binding sites
and non ligand-binding sites, we construct several balanced data sets, for each of which a random forest (RF)-
based classifier is trained. The ensemble of these RF classifiers forms a sequence-based protein-ligand binding site
predictor.

Conclusions: Experimental results on CASP9 and CASP8 data sets demonstrate that our method compares
favorably with the state-of-the-art protein-ligand binding site prediction methods.

Background
Protein-ligand binding is important for some proteins to
perform their functions. Protein-ligand binding sites are
the residues of proteins that physically bind to ligands. A
ligand is a signal triggering molecule, binding to a site on
a target protein. In biochemistry, a ligand is a substance,
usually a small molecule, that forms a complex always
with a molecule to serve a biological purpose. For instance,
oxygen is poorly soluble in aqueous solutions and cannot
be perfectly carried to tissues if it is only dissolved in
blood serum. However, none of the amino acid side chains
in proteins is suited for the reversible binding of oxygen
molecules. The function is always fulfilled by certain

transition metals having a strong tendency to bind oxygen,
such as iron and copper. Most commonly iron is used for
the oxygen transportation. Myoglobin (PDB: 3RGK) is an
iron- and oxygen-binding protein to facilitate the oxygen
diffusion in muscles. It is a single polypeptide consisted of
153 or 154 amino acid residues, which is found in almost
all mammals, primarily in muscle tissue. Commonly, there
are several ligand categories: “metal ions” (e.g., Ca, Zn, Fe,
and Mg), “inorganic anions” (e.g., SO4 and PO4), “DNA/
RNA” for poly-ribonucleic acid binding sites, and “organic
ligands” for cofactors, substrates, and receptor agonists/
antagonists (e.g., NAD, FAD, ATP, SAM, CoA, and PLP)
[1], and so on.
A number of methods applied nuclear magnetic reso-

nance (NMR) spectroscopy [2-9] or X-ray [10] to deter-
mining protein structures. Such structural information is
essential to determine the ligand-binding sites. Pintacuda
et al. employed lanthanide ions for the determination of
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protein-ligand binding sites [2]. Ziarek et al. emphasized
a semi-automated throughput-focused method to identify
practical aspects of binding site characterization and
structure determination of protein-ligand complexes, by
automated and semi-automated NMR assignment meth-
ods [4]. Since experimental efforts to determine ligand-
binding sites are always time-consuming, computational
methods are needed that can assist in the identification
of such sites.
Most computational approaches searched for similar

or homologous structures of the query sequence to
determine its ligand-binding sites from the homologous
structures [1,11-13]. For instance, in the CASP9 compe-
tition, all top performing groups were based on the
structure-based approach. Although they yielded good
predictions (the average Matthews correlation coefficient
of 0.62 for the top 10 performing groups), such struc-
ture-based techniques are restricted by the limited num-
ber of available protein structures. Therefore, sequence-
based approaches are particulary useful when similar
structural information is not available. A number of
sequence-based methods have been developed to predict
ligand-binding states [14-16]. Passerini and co-workers
introduced a method for identifying histidines (in either
of two states: free or metal bound) and cysteines (in
either of three states: free, metal bound, or in disulfide
bridges) that participated in binding of several transition
metals and iron complexes [15]. Shu et al. developed a
method combining support vector machines (SVM) and
homology-based predictions to predict zinc-binding sites
(Cys, His, Asp and Glu) in proteins from their amino
acid sequences [16]. Moreover, some sequence-based
predictors attended the CASP9 competition [17].
However, the problem of whether ligand-binding sites

can be predicted from sequence information remains
open. Little progress has been made on the sequence-
based ligand-binding site prediction. Kauffman and Kary-
pis proposed a method that combined machine learning
and homology information for the sequence-based ligand-
binding site prediction [18]. However, the method did not
perform well. In this paper, we propose a sequence-based
approach, LigandRFs (Ligand binding site prediction by
the ensemble of Random Forest classifiers), to identify
protein-ligand binding residues based on the co-evolution-
ary context of amino acid residues. First, due to the imbal-
anced samples between ligand-binding sites and non-
binding sites, several data sets are constructed. Each of
them is composed of the binding site subset (positive sub-
set) and part of the non-binding site subset (negative sub-
sets). All the negative subsets are disjoint with each other.
Then a random forest (RF) classifier is learned on each
data set. Experiments on the CASP8 and CASP9 data sets
show that the consensus of these RF classifiers can yield
good prediction on ligand-binding sites.

Results
We first analyzed the amino acid preferences for ligand
binding sites and non-ligand binding sites. Figure 1
illustrates the preference comparison. It can be seen
that amino acids, Asp, Gly and His, frequently occur in
the ligand binding sites, while amino acids, Leu and Ala,
are often regarded as non-ligand binding sites. However,
it may not always be the case because our current data
set is relatively small. Despite of that, Asp and His are
considered as hydrophilic amino acids while Leu and
Ala as hydrophobic ones in literature [19], which is par-
tially in agreement with our statistics. In fact, hydrophi-
lic amino acids seem to be more likely to be ligand
binding sites.

Prediction results on CASP9
In this work, we first used CASP8 data set to train our
method and then test it on CASP9 protein ligand data set,
both of the two data sets involve the same definition of
protein ligand binding site. Also we use sliding window to
encode the input vector for each residue of the protein,
which is then inputted into a classifier to determine
whether or not it is a ligand binding site. By using the slid-
ing window with length seven, Table 1 shows the perfor-
mance comparison of the 15 RF classifiers and that of the
ensemble, on the prediction of all ligand binding sites that
was extended to include the entire biologically relevant
ligand. From Table 1 it can be seen that the ensemble of
the 15 RF classifiers with majority voting performs well. It
yields an MCC of 0.37 and an F1-score of 35.99%, which
outperforms any individual RF classifier, where the best
individual prediction, the 2nd classifier, achieves an MCC
of 0.35 and an F1 of 33.59%.
Moreover, other sliding windows for the input encod-

ing are conducted here. Table 2 shows prediction per-
formance on different sliding windows and two ligand
binding site groups: partial ligand sites including those
only being in contact with atoms of the partial ligands,
and all ligand sites including those being in contact with
all atoms of the partial and the extended ligands.
Among the different sliding windows in Table 2 window
7 performs the best in the case of the all ligand site
group, while window 17 performs the best for the partial
ligand site group. To reduce the effects of sliding win-
dow selection in encoding for input vectors, the combi-
nation technique (Eq. 1) is used and the performance is
listed at the last row of the Table 2 respectively for the
two binding site groups. It seems that the combination
technique can reduce the effects of sliding window
selection and achieves a little improvement.
We also output the prediction performance for each

target in CASP9 and the details are shown in Table 3.
The final prediction performance on CASP9 data set is
obtained by the average of all the targets. Our predictor
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yields different performances over the data set, some tar-
gets obtaining good predictions and some ones perform-
ing worse. Statistics from Table 3 protein targets bound
to metal ligands perform better than those bound to
non-metal ions. Experiments showed that template-based
prediction methods will perform much better than de
novo methods in the context [1]. However, for targets
T0604 and T0629, both of which are free modeling (FM)
targets, our prediction on T0629 performs much better

than that on T0604. The reason is seemingly that the tar-
get T0629 is bound to metal ligands while T0604 is
bound to non-metal ligands. It should be noted that the
ratio of the number of binding sites to the total number
of residues of the target is not a significant factor on the
prediction performance of our de novo method. It can be
seen that the average ratios for metal binding sites and
non-metal binding sites are 3.51% and 4.86%, respec-
tively, but our predictor on those metal binding targets

Figure 1 Amino acid preferences for ligand binding sites (colored in blue) and non-ligand binding sites (colored in green). The
corresponding ratio of the number of each amino acid in ligand binding to that in non-ligand binding is also illustrated here (in red). PLB and
nonPLB in the figure legend denote protein-ligand binding and non-protein ligand binding, respectively.

Table 1 Overall prediction performance of the 15 RF classifiers and that of the ensemble with different votes on the
CASP9 data set.

Individual Ensemble

No. Sen(%) MCC Prec(%) F1(%) No. Sen(%) MCC Prec(%) F1(%)

1 57.15 0.30 25.25 29.83 1 87.86 0.19 9.98 16.85

2 59.40 0.35 31.13 33.59 2 84.48 0.22 12.58 19.95

3 63.24 0.31 24.35 29.38 3 81.86 0.24 14.05 21.49

4 65.76 0.33 25.20 31.14 4 80.28 0.25 15.39 22.67

5 44.50 0.32 34.65 31.24 5 78.84 0.27 16.65 24.09

6 57.83 0.31 26.22 30.47 6 75.99 0.27 17.38 24.58

7 59.12 0.33 29.19 31.62 7 74.81 0.28 18.86 26.00

8 59.23 0.32 27.18 31.16 8 73.32 0.29 20.21 27.03

9 67.88 0.30 22.80 22.56 9 72.63 0.30 21.17 28.04

10 51.21 0.31 28.62 31.21 10 71.21 0.31 23.42 29.34

11 46.99 0.31 30.96 30.53 11 69.51 0.32 24.69 30.19

12 64.50 0.30 23.61 28.96 12 67.31 0.33 25.72 30.64

13 61.25 0.31 25.28 29.20 13 64.93 0.33 26.68 31.07

14 40.51 0.31 38.38 30.41 14 62.01 0.34 28.78 32.46

15 59.98 0.31 26.08 30.50 15 56.96 0.37 34.97 35.99

The left part shows the performance of each individual classifier, and the right shows the performance of the ensemble of the 15 classifiers with different votes,
i.e., the ensemble predicts a residue to be ligand binding site if a number of RF classifiers predict it to be a ligand binding site residue. Here the ensemble with
majority vote predicts a residue to be ligand binding site if all of the 15 RF classifiers predict it to be a binding residue.

The italic number denotes the best performance by the measure of MCC.
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Table 2 Prediction performance on different sliding windows for encoding input vectors on the CASP9 data set.

Window length All ligand sites Partial ligand sites

Sen (%) Spe (%) Acc (%) MCC Prec (%) F1 (%) Sen (%) Spe (%) Acc (%) MCC Prec (%) F1 (%)

5 52.97 93.82 91.76 0.36 36.24 34.85 58.32 93.05 91.73 0.32 24.86 29.40

7 56.96 93.21 91.31 0.37 34.97 35.99 54.80 93.38 91.99 0.32 27.80 30.45

9 56.43 92.66 90.76 0.35 32.31 34.66 49.93 95.42 93.69 0.32 28.75 29.95

11 58.40 91.67 89.94 0.35 31.05 33.85 50.95 95.10 93.46 0.32 28.20 30.41

17 62.44 91.35 89.72 0.36 29.61 34.42 47.37 96.95 94.95 0.34 32.39 33.09

27 46.66 95.85 93.34 0.34 34.13 34.93 49.75 96.37 94.51 0.33 29.11 32.04

37 45.48 96.53 93.90 0.36 37.37 36.00 56.00 94.58 93.00 0.32 25.74 30.95

47 48.55 96.17 93.67 0.37 37.63 36.95 55.15 95.12 93.44 0.33 26.82 31.42

57 41.75 96.93 94.18 0.35 39.69 35.81 44.24 96.47 94.42 0.31 30.30 29.78

Combine 42.07 97.91 95.06 0.40 47.85 38.93 48.34 97.02 95.07 0.34 32.80 33.18

It contains prediction performance on the all ligand site group and the partial ligand site group. The ensemble of all sliding windows is shown at the last row of
the table.

The italic number denotes the best performance on the measure of MCC.

Table 3 Performance and information on each of the CASP9 targets.

Target Target PDB id Number of residues Chemical Class Sen (%) Prec (%) MCC Ratio (%)§

T0518 3NMB 288 Metal 57.14 57.14 0.56 2.43

T0521 3MSE 179 33.33 33.33 0.30 5.03

T0529 3MWT 569 50.00 9.09 0.20 0.70

T0539 2L0B 81 37.50 50.00 0.38 9.88

T0548 3NNQ 106 100.00 66.67 0.81 3.77

T0582 3O14 222 100.00 66.67 0.81 1.80

T0585 3NE8 234 60.00 75.00 0.66 2.14

T0625 3ORU 233 66.67 22.22 0.37 1.29

T0629 2XGF 216 100.00 73.68 0.85 6.48

T0635 3N1U 191 100.00 33.33 0.57 1.57

Average 74.46 48.71 0.55 3.51

T0570 3NO3 258 Metal, Non-metal 50.00 44.44 0.45 3.10

T0607 3PFE 471 57.14 32.00 0.41 2.97

T0615 3NQW 179 26.67 44.44 0.30 8.38

Average 44.60 40.29 0.39 4.82

T0515 3MT1 365 Non-metal 50.00 20.69 0.29 3.29

T0516 3NO6 229 30.77 50.00 0.36 5.68

T0524 3MWX 325 53.85 77.78 0.64 4.00

T0526 3NRE 290 11.11 5.56 0.04 3.10

T0547 3NZP 611 58.82 26.32 0.37 2.78

T0565 3NPF 326 41.67 62.50 0.50 3.68

T0584 3NF2 352 23.08 25.00 0.21 3.69

T0591 3NRA 406 41.67 83.33 0.58 2.96

T0597 3NIE 429 31.58 37.50 0.32 4.43

T0599 3OS6 399 7.69 11.11 0.07 3.26

T0604 3NLC 549 9.09 16.67 0.08 6.01

T0609 3OS7 340 70.00 70.00 0.69 2.94

T0613 3OBI 287 26.67 44.44 0.32 5.23

T0622 3NKL 138 20.00 37.50 0.21 10.87

T0632 3NWZ 168 18.75 37.50 0.21 9.52

T0636 3P1T 336 23.53 66.67 0.38 5.06

T0641 3NYI 296 11.11 66.67 0.26 6.08

Average 31.14 43.48 0.32 4.86
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performs better than those non-metal ones, achieving an
improvement of 0.23 by MCC.

Prediction results on CASP8
We also apply our method to evaluate on the CASP8
data set by training on the CASP9 data set. In the same
way, we list the prediction performance on different
sliding windows for encoding input vectors and obtain
the average performance over those sliding windows.
Results also show that the combination of different slid-
ing windows yields better performance than any indivi-
dual sliding window in a robust way, for there is no rule
to determine the sliding window size in different data
sets. In this work the best one is window 7 in CASP9
while window 5 and 27 in CASP8 (see Table 4). In
Table 4 the combination technique yields an MCC of
0.44 while the best sliding window technique achieves
an MCC of 0.43.
Similar results of prediction performance on CASP8

data set can be shown in Table 5 comparing to that on the
CASP9 data set. The average performance by MCC on
those targets bound to metal ligands is better than that
bound to non-metal ligands, where the former achieves an
average MCC of 0.53 and the latter achieves an MCC of
0.32 only. In addition, although targets with metal ligands
contain less number of binding sites than those with non-
metal ligands, our method can identify them more accu-
rately, except for two targets, T0410 and T0487.

Comparison with other binding site prediction methods
Previous experiments showed that template-based predic-
tion methods will perform much better than de novo meth-
ods in the context [1], but our method provides a
comparative prediction on protein ligand binding sites,
especially for the CASP8 data set. Figures 2 and 3 illustrate
prediction comparison on CASP9 and CASP8 data sets,
respectively. Although our method performs worse than
most of template-based methods on the CASP9 data set, it
performs better than many methods on the CASP8 data
set.
It is difficult to compare our model with other similar

methods for there are seldom methods of predicting

ligand binding sites by using only sequence information.
Most of ligand binding site prediction methods applied
structural information of homologous proteins for the
prediction. In CASP9, FN0193 is a predictor using SVM
to identify protein binding sites. It basically used
sequence profile information, the results from the disor-
der prediction models as well as secondary structure
prediction models as additional features for the ligand-
binding prediction models. Another work using
sequence information was FN0132, which combined
sequence information and homology-based transfer to
identify protein binding sites. Our method yields an
MCC of 0.40, which outperforms the two methods.
Other two sequence-based methods in Table 6 per-
formed even worse, only achieving an MCC of 0.19 for
FN097 and 0.06 for FN240 in CASP9. Moreover, the
random predictor is also implemented here and ran 100
times. The average performance is appended at the last
row of Table 6. Results show that our method outper-
forms the random predictor by 36 times of the MCC
score and 6 times of the F1 score.

Case studies
Two targets in CASP9 were free modeling (FM) targets.
The first one was T0604 (PDB: 3nlc), which is a putative
FAD-dependent oxidoreductase with a bound FAD
molecule. Experiments from CASP9 showed that the
target was the most difficult one in the FN prediction in
CASP9, with a maximum MCC of 0.56 and an average
score of 0.29. Our sequence-based predictor yields an
MCC of 0.08. The prediction of our method on T0604
is shown in Figure 4(a). Although the prediction is not
good, our method can identify ligand binding sites par-
tially. In addition, some wrongly predicted binding sites
are around those true binding sites.
Another FM target was T0629 (PDB: 2xgf). It is formed

by three chains and binds seven FE ions. Each FE ion is
complexed by six histidine residues, where each two histi-
dine residues is from one chain. For the same structures of
the three chains, only prediction on chain A is illustrated in
Figure 4(c). Experiments in CASP9 showed that all predic-
tors in CASP9 can correctly identified a subset of the seven

Table 4 Prediction performance on different sliding windows for encoding input vectors on the CASP8 data set.

5 7 9 11 17 27 37 47 57 All

Sen(%) 48.00 51.06 63.30 51.43 53.74 45.27 49.24 58.53 51.25 52.11

Spe(%) 96.86 96.27 93.15 96.10 95.02 97.93 96.35 92.89 95.52 97.11

Acc(%) 93.93 93.46 90.97 93.31 92.37 94.65 93.41 90.59 92.73 94.19

MCC 0.42 0.43 0.42 0.42 0.39 0.43 0.39 0.37 0.38 0.44

Prec(%) 48.95 48.80 39.94 46.42 38.04 53.58 43.04 33.94 39.75 50.49

F1(%) 40.97 42.02 41.17 41.00 38.66 41.16 38.97 37.17 38.54 43.02

The ensemble of all sliding windows is shown at the last column of the table.

The italic numbers denote the best performance among different sliding windows on the measure of MCC, while the italic number in the last column is for the
combination of all sliding windows.
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Table 5 Performance and information on each of the CASP8 targets.

Target Target PDB id Number of residues Ligand Chemical Class Sen (%) Prec (%) MCC Ratio(%)§

T0391 3d89 157 FES Metal 44.44 80.00 0.58 5.73

T0406 3di5 167 NI 100.00 100.00 1.00 1.80

T0407 3e38 363 ZN ZN ZN 88.89 66.67 0.76 2.48

T0410 3d3l 541 FE 12.50 6.90 0.06 2.96

T0425 3czx 181 ZN 33.33 100.00 0.57 4.97

T0426 3da2 283 ZN 33.33 18.75 0.22 3.18

T0440 3dcp 275 FE ZN FE 100.00 42.86 0.64 3.27

T0444 2vux 326 FE 75.00 8.82 0.24 1.23

T0453 3ded 91 CA CA CA 25.00 33.33 0.26 4.40

T0457 3dev 320 MG 100.00 19.05 0.43 1.25

T0461 3dh1 189 ZN 100.00 27.27 0.51 1.59

T0470 3djb 223 MG 100.00 26.67 0.50 1.79

T0476 2k5c 108 ZN 100.00 100.00 1.00 3.70

T0478 3d19 283 MG FE 71.43 100.00 0.84 2.47

T0480 2k4x 55 ZN 75.00 75.00 0.73 7.27

T0487 3f73 685 MG 25.00 5.00 0.10 0.58

Average 61.50 50.65 2.79

T0394 3dcy 275 PO4 Non-metal 33.33 57.14 0.42 4.36

T0396 396 105 FAD 13.04 75.00 0.26 21.90

T0422 3d8b 357 ADP 41.18 38.89 0.37 4.76

T0430 3dlz 357 AMP 14.29 37.50 0.20 5.88

T0431 3dax 491 HEM 10.53 18.18 0.11 3.87

T0450 3da1 561 FAD 41.03 27.59 0.28 6.95

T0477 3dkp 242 ADP MG 60.00 50.00 0.53 4.13

T0483 3dls 335 ADP MG 39.13 42.86 0.37 6.87

T0485 3dlc 218 SAM 5.26 100.00 0.22 8.72

T0490 3dme 369 FAD 29.41 35.71 0.26 9.21

T0508 3dou 197 SAM 36.84 70.00 0.47 9.64

Average 29.46 50.26 7.84
§It stands for the ratio of the number of ligand sites to the total number of residues of the protein chain.

Figure 2 Performance comparison of different methods on the measure of MCC for the partial binding site group and the all binding
site group. The number above each bar denotes the number of protein targets the method was tested on, and the green eclipse shows our
predictor. Here we list all predictors in CASP9 including those tested on even one protein target.
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binding sites. Our method can cover all of the true binding
sites, and only contain five wrongly predicted binding sites
where two ones are close to true binding sites. Our method
yields an MCC up to 0.85 for the target, which outperforms
most of the methods in CASP9.
The last case is for the target T0570 (PDB: 3no3), which

binds GOL nonmetal ligand coordinated to the MG metal
ion. In target T0570, residues His30, Glu59, Glu123,
Ile156, Phe158, Leu178 and Trp222 are bound to the GOL
nonmetal ligand, while residues Glu59, Asp61 and Glu123
are bound to the MG metal ion. Our method can identify
four binding site residues: His30, Glu59, Asp61, Glu123,
some of which (His30, Glu59 and Glu123) bound to the
GOL ligand and some (Glu59, Asp61 and Glu123) bound
to the MG ion. Although our predictor performs worse
than some structure-based methods in CASP9, it can
cover half of the true binding sites and yield an MCC of
0.45 for the target T0570.

Discussion
Experimental results showed that structure-based predic-
tors yielded worse predictions on targets without local

homologues [1,12]. Target T0604 is a typical case. It
yielded a maximum MCC score of 0.56 for the best pre-
diction, and an average score of 0.29. Actually since the
target has only remote homologues, its sequence profile is
much sparser than other targets. The final encoding vec-
tors for expressing the residues of the target cannot reflect
the evolutionary context of binding sites. The following
Table 7 shows part of sequence profile for target T0604,
where most of the elements are zero. Therefore, other fea-
tures such as secondary structure information as well as
other physico-chemical characteristics of residues should
be addressed and incorporated as input features, and thus
might improve the prediction based on sequence features.
There is no evidence to show that binding sites to

metal ions are easier to be identified than that to nonme-
tal ligands for those structure-based methods [12,20],
although non-metal ligands are larger and more residues
will bind non-metal ligands than metal ligands. However,
in this work our sequence-based method yields good pre-
diction on targets bound to metal ions, and achieves an
MCC of 0.55 for the CASP9 data set and 0.53 for the
CASP8 data set; while predictions on targets bound to

Figure 3 Performance comparison of different methods on the measures of MCC and Z-score. The number above each bar denotes the
number of protein targets the method was tested on, and the green eclipse shows our predictor. Here we list all predictors in CASP8 including
those tested on even one protein target.

Table 6 Performance comparison of the six methods on the CASP9 data set.

Method Type # of targets Sen (%) MCC Prec (%) F1 (%)

LigandRFs Random Forest 30 42.07 0.40 47.85 38.93

FN0193 SVM 28 42.95 0.37 39.20 37.18

FN0132 SVM (LIBRUS) 30 57.37 0.33 25.46 33.55

FN097 Hydrophobicity-probability 5 15.28 0.19 28.57 19.00

FN240 Network centrality 6 14.91 0.06 8.53 10.11

Random Pre dictor 30 0.10 0.01 0.05 0.06

The third column denotes how many targets in CASP9 are tested in the evaluation of each method. The details for FN0193, FN1032, FN097, and FN240 can be
referred to [17].
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non-metal ligands are much worse. It might be that resi-
dues bound to metal ligands are more conserved in evo-
lutionary context than that bound to non-metal ligands,
and thus the former can be identified more accurate.

Moreover, prediction performance may be changed
with different sliding window sizes. To reduce the
effects, we took Eq. 1 to address the issue. Results on
both the CASP8 and the CASP9 data sets show the

Figure 4 Illustration of protein binding site prediction for Targets T0570 (a), T0604 (b), and T0629 (c). (a) Prediction on 3nlc (T0604); (b)
prediction on 3no3 (T0570); (c) prediction on 2xgf (T0629). Here the correctly predicted binding site residues are colored in red, the wrongly
predicted binding sites in green, and the wrongly predicted non-binding sites in blue.

Table 7 Part of the sequence profile for target T0604.

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

510 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

511 0.0 0.0 0.0 0.0 0.59 0.0 0.0 0.0 0.0 0.41 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

512 0.0 0.0 0.0 0.0 0.23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.77

513 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

514 0.96 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0

515 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

516 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

517 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

518 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

519 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

520 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

The first column is residue number in the target sequence, while columns 2 to 21 are acid/amide forms in proportion to their blasted database frequencies.
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success and are shown in Tables 4 and 2. The combina-
tion of sliding windows performs better than all of the
individual ones, it achieves an average MCC of 0.40
(0.37 for the best individual one) for the CASP9 data set
and an average MCC of 0.44 (0.43 for the best indivi-
dual one) for the CASP8 data set. Therefore the selec-
tion of the sliding window in different situations can be
avoided.

Conclusions
This paper proposes an ensemble of RF classifiers with
only sequence information to predict ligand binding
sites. In order to balance the ligand site data set, several
data sets are constructed and composed of the binding
site subset (positive subset) and one of the non-binding
site subsets (negative subsets), each of the negative sub-
sets is independent to the others. Then each data set is
inputted into a RF classifier. The ensemble of these RF
classifiers can yield good prediction on ligand-binding
sites. The encoding schema integrating those properties
and evolutionary information of amino acids is impor-
tant to obtain the evolutionary context of ligand binding
site residues and thus, the method yields good perfor-
mance on predicting ligand binding sites. Although
structure-based methods still outperform sequence-
based methods, our method provides a potentially alter-
native solution to the binding site prediction problem,
especially when similar structure information of the
query is not available.

Methods
Data sets
We took the targets in the CASP9 competition as our
ligand-binding site data set. As stated in CASP9, there
were 30 targets with bound ligands, out of which 10
were found in complex with metal ions (Ca, Fe, Mg,
Mn, Na, and Zn), 17 were in complex with non-metal
ligands (ANP, BES, COA, CSA, DST, EDO, FAD, GAL,
GAR, GLA, GOL, GPX, HSA, IMD, IPR, ISC, LLP, LYS,
NAD, NHS, PEG, PF1, PLP, SO4, STE, TLA), and three
were in complex with hybrid ligands. Moreover, ligand-
binding sites in most of the targets were located within
a monomer. However, in six targets, the ligand was
bound in the interface between multiple chains [1]. The
assignments of ligand-binding sites were carefully
checked and only the targets with unambiguous assign-
ment were retained.
In addition, we took another data set in the CASP8

meeting to validate our method. In CASP8, there were
27 targets bound to 37 ligands. Of the ligands, there are
26 metals in 18 targets (Mg, Zn, Fe, FeS, Ni, and Ca),
nine nucleotides (ADP, AMP) or derivates (FAD, SAM),
one metabolite (PO4) and the last target bound a heme
moiety [20].

Binding site definition
For each protein, all residues, at least one heavy atom
within a given distance from any heavy atom of the
ligand, were defined as ligand-binding site residues. In
fact, the definition of the distance cutoff was different in
literature. Kauffman and Karypis collected ligand-bind-
ing residues having at least one heavy atom within 5 Å
of a ligand [18]. While in CASP9, the distance cutoff
was defined as the sum of the van der Waals radii of
the involved atoms plus a tolerance of 0.5 Å. Different
distance cutoff leads to different ligand-binding site data
set, i.e., about 9% of residues are the ligand-binding resi-
dues for the former definition, while only 3.9% for the
latter. For the CASP9 definition, there are in total 355
ligand-binding residues and 8718 non-ligand binding
residues of the 30 proteins. For the CASP8, there are
335 ligand-binding residues in a total of 7718 residues
of the 27 protein targets. Figure 5 illustrates the binding
site residues to ligands for protein PDB: 3NO3, where
two ions, metal ion Mg and non-metal ion GOL, are
bound to the protein.

Feature vector representation of a residue
In the AAindex1 database [21], there are 544 amino acid
properties. Many of these properties are highly corre-
lated. We thus extracted relatively irrelevant properties
with a correlation coefficient (CC) of 0.5. For each of
the 544 properties, the CC to all the other properties
was calculated and the number of related properties was
counted. The 544 properties were thus ranked according
to their numbers of related properties. From the top
property, we removed from the list all the properties
that were related to it. This was repeatedly done until
no related pair existed in the list, which resulted in 34
properties.
For a residue i in a protein chain, the association

among the neighboring residues is considered in this
work. A sliding window that contains seven residues cen-
tered at the residue i is used to encode the features. An
encoding schema integrating amino acid properties and
sequence profile is used to represent the residue. The
sequence profile for one residue created by PSI-Blast
with default parameters [22] is then multiplied by each
amino acid property. For instance, the profile SPk, k =
1,..., 7 for residue k in the seven residue window and one
amino acid property scale, AAPj, are both vectors with

1 × 20 dimensions. Thereafter, MSKk
j = SPk × AAPj for

residue k represents the multiplication of the correspond-
ing sequence profile by the scale, where × represents the
element-wise product. In our previous work, we found

out that the standard deviation of MSKk
j reflected the

evolutionary variance of the residue k along with the
amino acid property AAPj [23-25].
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For the residue i and the amino acid property, AAPj,
therefore, it is represented by a 1 × 7 vector Vij for the
case of sliding window with 7 residues. For all of the 34
amino acid properties, the residue i is represented by a
1 × (7 * 34) = 1 × 238 vector; the corresponding target
value Ti is 1 or 0, denoting whether the residue is a
ligand-binding residue or not. Our goal is to learn the
relationship between the input vectors V and the corre-
sponding target array T.

Combine different sliding windows
In fact, each sliding window for encoding the input vec-
tor of each residue may cause deviation in investigating
the relationship between the residue property profile
and the ligand binding site. We use a combination tech-
nique to reduce the effects of sliding window selection.
Suppose there are N predictions, Predn, n = 1, . . ., N,
resulted from N sliding windows, a new prediction can
be obtained by

Predcomb = Pred−
√√√√ 1

N

N∑
n=1

(Predn − Pred)
2
,where Pred =

1
N

N∑
n=1

(Predn). (1)

The first term in the right part of Eq. 1 is the mean of
predictions resulted from N sliding windows and the
second one shows the standard deviation of them.

Ensemble of random forest classifiers
Machine learning techniques have played very important
roles in various protein-related problems, such as B-fac-
tors prediction [26], domain identification [27], function
annotation [28], membrane protein type prediction [29],
and protein retrieval [30]. Here we propose to use the
random forest model for the binding site prediction. A
random forest [31] consists of an ensemble of simple
tree predictors, each of which depends on a set of

random features selected independently. It is capable of
producing a response when presented by a set of predic-
tor values. Therefore, the generalization error of a ran-
dom forest depends not only on the individual trees but
also significantly on the correlation between them. For
the ligand-binding site prediction problem, the ensemble
of simple trees votes for the most popular ligand-bind-
ing site class. Previous results showed that using con-
sensus ideas can make significant improvement in
prediction accuracy [32-36].
Given a set of training data DN = {(Xi, Yi)}, i = 1,..., N,

let the number of training instances be N, the number
of features in the classifier be J, and the number of
trees to build be K. For each tree, a number of j fea-
tures are considered to determine the decision of the
tree, where j should be much less than J and set as 1 ≤
j ≤ int(log(J) + 1) by default. For the k − th tree, a ran-
dom vector ϑk is generated, which is independent and with
the same distribution of the previous ones, ϑ1,..., ϑk−1. The
k − th tree generated from the training set and ϑk results
in a classifier CFk (x; ϑk), where k = 1,..., K and x is a train-
ing instance.
After all of the trees are generated, they vote for the

most popular class and thus the prediction of the whole
forest is,

F (X) = majority vote{CFk (X)}Kk=1, (2)

where X is a query instance.
Since the binding site data set is highly imbalanced, i.

e., only 3.9% of all the instances are positive samples,
balancing the positive (binding site class) and the nega-
tive (non-binding site class) data is necessary to avoid
the overfitting of classifiers. Since protein chains contain
different ratios of binding sites to non-binding sites, 15
data sets are thus formed, Dn

N, n = 1,..., 15, each of

Figure 5 LIGPLOT 38 of binding site residues to ligands for PDB ID, 3NO3. (a) the binding site residues to metal ion Mg301 (colored in
cyan); (b) the structure of protein 3NO3 (GOL303 is colored in ruby and Mg301 in cyan); (c) The binding sites to non-metal ion GOL303 (colored
in ruby). In CASP9 experiment, only His30, Glu59, Asp61, Glu123, Ile156, Phe158, Leu178 and Trp222 are deemed as ligand binding site residues.
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which involves roughly the same number of the positive
and negative samples. That is, the 15 data sets share the
same positive samples, but have disjoint negative sam-
ples. A random forest classifier is trained for each of the
15 data sets. The final prediction is the majority voting
of the 15 random forests.

Evaluation criteria
In this work we adopted four evaluation measures to
evaluate the performance of our method, i.e., sensitivity
(Sen), precision (Prec), F-measure (F1), specificity (Spe),
accuracy (ACC), and Matthews correlation coefficient
(MCC) [23,37]. They are defined as follows:

Sen =
TP

TP + FN
,Prec =

TP
TP + FP

, F1 = 2× Prec× Sen
Prec + Sen

,

Sen =
TN

FP + TN
,Acc =

TN + TP
TN + FP + FN + TP

,

MCC =
TP× TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
,

(3)

where TP (True Positive) is the number of correctly
predicted binding sites; FP (False Positive) is the number
non-binding sites that are predicted to be binding sites;
TN (True Negative) is the number of correctly predicted
non-binding sites; and FN (False Negative) is the num-
ber of binding sites that are predicted to be non-binding
sites.
Besides, Z score is also used to evaluate the perfor-

mance of our method. It can be used to reduce the
effects of target difficulty on the ranking. The Z score of
the predictor P for a given target T is shows as:

ZP,T =
MCCP,T −MCCT

σT
, (4)

where MCCP,T is the raw MCC score for the target T
given by the predictor P, MCCT is the mean MCC score
for the target T, and sT is the standard deviation of
MCC scores for the target T. The final Z score for the
predictor P is the mean of Z scores over all targets.
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