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Abstract

Background: Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing
underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved
useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is
challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and
matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges,
in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and
higher-order tensors.

Results: While the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors
fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data
fusion model has the potential to automatically reveal shared and unshared components through modeling
constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of
identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical
composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic
Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals
in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in
terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with
the diffusion NMR data.

Conclusions: We have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous,
incomplete data sets with shared and unshared components and demonstrated its promising performance as well as
potential limitations on both simulated and real data.

Keywords: Data fusion, Coupled matrix and tensor factorizations, Optimization, Sparsity, NMR, DOSY, MS

Background
Data fusion, in other words, joint analysis of data from
multiple sources, has proved useful in many disciplines.
For instance, in bioinformatics, jointly analyzing multi-
ple data sets representing different organisms [1,2] or
different tissue types [3,4] improves the understand-
ing of the underlying biological processes. Similarly, in
metabolomics, biological fluids such as blood or urine, are
investigated using different analytical techniques, e.g., LC-
MS and NMR, and their fusion has the potential for more
accurate biomarker identification [5-7].
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An effective way of jointly analyzing data from multi-
ple sources is to represent data from different sources as
a collection of matrices, and then jointly analyze these
matrices using collective matrix factorization [8]. Matrix
factorization-based data fusion studies have been success-
fully applied in social network analysis [9,10], signal pro-
cessing [11,12] and bioinformatics [1,2,4,5,13]. Recently,
joint matrix factorization approaches have been extended
to joint analysis of heterogeneous data sets, i.e., data in
the form of matrices and higher-order tensors [14-17]. For
instance, mixtures studied by NMR spectroscopy (a.k.a.
DOSY - diffusion-ordered spectroscopy [18,19]) can be
represented as a third-order tensor with modes: mixtures,
chemical shift and gradient levels [20,21] while LC-MS
measurements of the same mixtures can be represented
using a mixtures by features matrix (see Figure 1). Joint
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Figure 1 A third-order tensor coupled with a matrix.

factorization of such heterogeneous data has been stud-
ied to analyze multi-relational data, particularly, in social
networks [15,22-24].
While there are many successful applications of joint

data analysis, the traditional formulation of joint factor-
ization of multiple data sets is based on modeling only
shared factors. However, data frommultiple sources often
have both shared and unshared components. If the goal
of data fusion is accurate data reconstruction, e.g., miss-
ing data estimation or link prediction, then identification
of shared/unshared factors is not a major concern. On the
other hand, in many applications, the goal of data fusion
is to extract and interpret the underlying factors. For
instance, inmetabolomics applications, underlying factors
need to be captured uniquely so that they can be used
further to understand the patterns corresponding to a
problem of interest, e.g., a specific type of diet or a disease.
Therefore, in this paper, we develop a novel unsupervised
data fusion model for joint factorization of heterogeneous
data sets, which is quite effective in terms of reveal-
ing shared and unshared components. Using numerical
experiments, we demonstrate that while the traditional
formulation, modeling only shared factors, fails to capture
the underlying structures in the presence of both shared
and unshared components, the proposed model achieves
accurate identification of shared and unshared compo-
nents. Furthermore, we study a set of mixtures of known
chemical composition by two analytical techniques, i.e.,
LC-MS and diffusion NMR. While NMR can capture
all chemicals, one of the chemicals is invisible to LC-
MS. We demonstrate the effectiveness of our model on
this prototypical example using real data, where coupled
data sets have both shared and unshared components.
This is an extended version of our work [25] where, we
have introduced our model briefly and discussed prelim-
inary findings in cancer metabolomics. Here, we study
the performance of the model in depth using both sim-
ulated and real data sets, where the underlying ground
truth is known. Several other studies have also previously

discussed methods revealing shared and unshared com-
ponents. However, these studies either focus on coupled
matrix factorizations [1,2,13,26-29] or assume that the
number of shared/unshared factors is pre-determined by
the user based on the performance of joint factorization in
the training set (when considered in a supervised setting)
[30]. Modeling shared and unshared components has also
been considered within the context of Canonical Corre-
lation Analysis [31-34] focusing only on joint analysis of
matrices.
We survey the related work further in Section “Related

work”. In Section “Methods”, we introduce our data
fusion model and the algorithmic approach. Section
“Results and discussion” demonstrates the performance of
the proposed approach on simulated and real data sets.
Section “Conclusions” concludes with future research
directions.

Related work
Data fusion has been studied for decades dating back to
the models aiming to capture the common variation in
two data sets, i.e., Canonical Correlation Analysis [35].
Earlier studies on data fusion have focused on joint fac-
torization of multiple matrices [1,4,8-12,36-38]. The cou-
pled matrix factorization problem is typically formulated
as

f (U,V,W) = ∥∥X − UVT
∥∥2 + ∥∥Y − UWT

∥∥2 , (1)

where X ∈ R
I×J and Y ∈ R

I×K are matrices coupled
in the first mode/dimension and the factor matrix corre-
sponding to the common mode, U ∈ R

I×R, is shared by
both factorizations. Here, R indicates the number of fac-
tors. This formulation extends to factorization of multiple
matrices coupled in different modes. In some applications
such as in metabolomics, sparsity-inducing penalty terms
are added to coupled matrix factorizations in order to
extract interpretable factors [5,39]. Recently, a convex for-
mulation of coupled matrix factorizations has also been
proposed [40]. Tensor factorizations [41-43] can also be
considered as one way of jointly analyzing multiple matri-
ces forming the slices of a third-order tensor; however,
neither coupled matrix factorization nor tensor factoriza-
tion methods can handle joint analysis of heterogeneous
data sets.
As an extension of Eq. (1), joint factorization of het-

erogeneous data, e.g., a third-order tensor X ∈ R
I×J×K ,

coupled with a matrix Y ∈ R
I×M, can be formulated

as

f (A,B,C,V) = ‖X−[[A,B,C]] ‖2+∥∥Y − AVT
∥∥2 , (2)

where tensor X and matrix Y are simultaneously factor-
ized through the minimization of the objective function
in Eq. (2), which fits a CANDECOMP/PARAFAC (CP)
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[44,45] model to X and factorizes Y in such a way that
the factor matrix corresponding the common mode, i.e.,
A ∈ R

I×R is the same. B ∈ R
J×R and C ∈ R

K×R are
factor matrices corresponding to the second and third
modes of X, respectively. We use the notation X =
[[A,B,C]] to denote the CP model. V ∈ R

M×R is the fac-
tor matrix that corresponds to the second mode of Y.
This formulation of coupled matrix and tensor factoriza-
tions (CMTF), dating back to the studies of Harshman
and Lundy [46] and Smilde et al. [16], has recently been a
topic of interest in many studies [3,14,47-50]. The model
has been extended to different loss functions [17,22,23],
and tensor factorizations other than CP [17,22,50,51].
It has also shown to be quite effective in addressing
missing data estimation [24,51,52] and link prediction
problems [22].

Methods
Model: structure-revealing coupled matrix and tensor
factorizations
The coupled matrix and tensor factorization model given
in Eq. (2) makes an implicit assumption that all columns
of factor matrix A, i.e., ar for r = 1, . . . ,R, are shared by
the matrix and the third-order tensor, where R indicates
the number of factors. When all factors are shared across
data sets, the model can accurately capture the underly-
ing factors [14]. However, in general, there are both shared
and unshared factors in coupled data sets. Therefore,
we reformulate the problem in such a way that through
modeling constraints, we let the model identify shared/
unshared components. We modify the objective func-
tion in Eq. (2) and rewrite the optimization problem as
follows:

min
λ,σ ,A,B,C,V

‖X−[[λ;A,B,C]] ‖2+ ‖Y− A�VT ‖2+ β ‖ λ ‖1
+ β ‖ σ ‖1

s.t. ‖ ar ‖ = ‖br ‖ = ‖ cr ‖ = ‖ vr ‖ = 1 for r = 1, . . . ,R,
(3)

where λ ∈ R
R×1 and σ ∈ R

R×1 correspond to the weights
of rank-one components in the third-order tensor and the
matrix, respectively (Figure 2). � ∈ R

R×R is a diago-
nal matrix with entries of σ on the diagonal. ‖ . ‖ denotes
the Frobenius norm for higher-order tensors/matrices and
the 2-norm for vectors while ‖ . ‖1 denotes the 1-norm
of a vector, i.e., ‖ x ‖1 = ∑R

r=1 |xr|. β ≥ 0 is a penalty
parameter. ar denotes the rth column of A. In this for-
mulation, our goal is to sparsify the weights λ and σ

using the 1-norm penalties so that unshared components
will have weights equal or close to 0 in one of the data
sets.
In order to solve this constrained optimization prob-

lem, we first convert it into a differentiable unconstrained
optimization problem and then use a first-order opti-
mization algorithm. Using the quadratic penalty method
[53], we convert the constraints into penalty terms. In
order to make the objective function differentiable, we
also replace the 1-norm terms with differentiable approx-
imations, e.g., for sufficiently small ε > 0,

√
x2i + ε = |xi|

[54]. Our objective function can be formulated as follows,
for α ≥ 0:

f (λ, σ ,A,B,C,V) = ‖X−[[λ;A,B,C]] ‖2 + ‖Y−A�VT ‖2

+ β

R∑
r=1

√
λ2r + ε + β

R∑
r=1

√
σ 2
r + ε

+ α

R∑
r=1

(‖ar‖−1)2+α

R∑
r=1

(‖br ‖−1)2

+ α

R∑
r=1

(‖ cr ‖−1)2+α

R∑
r=1

(‖vr‖−1)2

(4)

Missing data
The model in Eq. (4) extends to joint analysis of incom-
plete data sets, i.e., data sets with missing entries. Miss-
ing data is encountered in many applications due to

Figure 2 Illustration of a coupled factorization of a third-order tensor and amatrix.
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errors in the data collection process or costly experi-
ments. In the presence of missing entries, we can still
jointly analyze incomplete data sets by ignoring miss-
ing entries and modeling only the known data entries as
follows:

fw(λ, σ ,A,B,C,V) = ‖WX ∗ (X−[[λ;A,B,C]]) ‖2

+ ∥∥WY ∗ (Y − A�VT)
∥∥2

+ β

R∑
r=1

√
λ2r + ε + β

R∑
r=1

√
σ 2
r + ε

+ α

R∑
r=1

(‖ar‖−1)2+α

R∑
r=1

(‖br‖−1)2

+ α

R∑
r=1

(‖cr‖−1)2+α

R∑
r=1

(‖vr‖−1)2,

(5)

where ∗ denotes the Hadamard product and WX ∈
R
I×J×K indicates the missing entries of X ∈ R

I×J×K such
that

wijk =
{
1 if xijk is known,

0 if xijk is missing.

Similarly, WY ∈ R
I×M indicates the missing entries

in Y ∈ R
I×M. Modeling only the known data entries

has shown to be useful when fitting CP models in terms
of both missing data estimation performance [55,56] and
computational efficiency [56]. Recently, we have also stud-
ied the CMTF model in Eq. (2) in terms of missing data
estimation using a similar formulation [52]. Here, we only
show that the structure-revealing CMTF model can easily
handle missing data but we do not focus on the missing
data estimation problem in this paper.

Algorithm
Previously, we have studied the minimization of the objec-
tive for the original CMTF model in Eq. (2) [14] using an
all-at-once gradient-based optimization approach, which
solves the optimization problem for all factor matrices
simultaneously. Here, we extend that work to fit the
structure-revealing CMTF model and focus on the mini-
mization of the objective function in Eq. (4).
We first briefly discuss the computation of the gradi-

ent. The gradient can be computed by taking the partial
derivates of f with respect to the factor matrices and the
vectors λ and σ . The gradient ∇f of size R(I + J + K +
M + 2) can be formed by vectorizing the partials with
respect to the factor matrices and concatenating them

with the partials with respect to the vectors λ and σ as
follows:

∇f =
[
vec

(
∂f
∂A

)T
vec

(
∂f
∂B

)T

vec
(

∂f
∂C

)T

vec
(

∂f
∂V

)T
∂f
∂λ

T ∂f
∂σ

T
]T

Let T =[[λ;A,B,C]] and Z = A�VT. Assuming that
each term in f is multiplied by 1

2 for ease of computation,
the partial derivatives can be computed as
∂f
∂A

= (T(1)−X(1))(λ
T� C � B)+(Z − Y)V� + α(A−Ā)

∂f
∂B

= (T(2) − X(2))(λ
T � C � A) + α(B − B̄)

∂f
∂C

= (T(3) − X(3))(λ
T � B � A) + α(C − C̄)

∂f
∂V

= (Z − Y)TA� + α(V − V̄)

∂f
∂λ r

= (T − X) ×1 ar ×2 br ×3 cr + β

2
λr√

λr2 + ε

∂f
∂σr

= aTr (Z − Y)vr + β

2
σr√

σr2 + ε

where ×n denotes the tensor-vector product in the nth
mode; � denotes the Khatri-Rao product, and X(n)

denotes the tensorX unfolded in the nth mode. Unfolding
(or matricization) in the nth mode rearranges a higher-
order tensor as a matrix by using the mode-n fibers as the
columns of the resulting matrix (See [42,43] for details.) Ā
corresponds to A with columns divided by their 2-norms.
Here, ε is set to 10−8.
Once the gradient is computed, we use the Nonlinear

Conjugate Gradient (NCG) method [53] with the Moré-
Thuente line search as implemented in the Poblano Tool-
box [57] (for the convergence properties of NCG, we refer
interested readers to [53]). Any other first-order method
such as the other algorithms implemented in the Poblano
Toolbox can also be used to fit the model. Note that we
are solving a non-convex optimization problem and can-
not guarantee to reach the global minimum. Therefore, we
use random initializations and pick the solution with the
minimum function value in our experiments in the next
section. The computational cost per iteration depends on
the gradient computations, and in the case of a third-order
tensor of size N × N × N coupled with a matrix of size
N × N , the leading term in the gradient computation is
O(N3R) for an R-component model.

Results and discussion
In this section, we first compare the performance of
our model with the traditional CMTF model using
simulated coupled data sets in terms of identifying
shared/unshared components. We then use the proposed
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model to jointly analyze LC-MS and NMR measurements
of a set of mixtures with known chemical composition
and demonstrate that our model can successfully capture
the chemicals used in the mixtures, extract the relative
concentrations of the chemicals accurately and provide
promising results in terms of identifying shared/unshared
chemicals.

Simulations
We generate simulated coupled data sets with different
underlying structures and compare the original CMTF
formulation in Eq. (2) with the model in Eq. (4).

Experimental set-up
We generate factor matrices A ∈ R

I×R,B ∈ R
J×R,C ∈

R
K×R and V ∈ R

M×R with entries randomly drawn from
the standard normal distribution. The columns of fac-
tor matrices are normalized to unit norm. Here, we set
I = 50, J = 30,K = 40 and M = 20. The factor matrices
are used to construct a third-order tensorX =[[λ;A,B,C]]
coupled with matrix Y = A�VT, where λ and diagonal
entries of diagonal matrix �, i.e., σ of length R, corre-
spond to the weights of rank-one third-order tensors and
matrices, respectively. A small amount of Gaussian noise
is added to data sets. Using four sets of weights, we gen-
erate cases where R components are shared differently
among coupled data sets: (i) Case 1: One shared and one
unshared component in each data set, i.e., λ = [1 0 1]T
and σ = [1 1 0]T, where R = 3. (ii) Case 2: One
unshared component in the matrix, i.e., λ = [1 1 0]T and
σ = [1 1 1]T, where R = 3. (iii) Case 3: One unshared
component in the third-order tensor, i.e., λ = [1 1 1]T
and σ = [1 1 0]T, where R = 3. (iv) Case 4: One shared
and one unshared component in the third-order tensor
as well as two unshared components in the matrix, i.e.,
λ = [1 1 0 0]T and σ = [1 0 1 1]T, where R = 4.

Once coupled data sets are generated, they are jointly
factorized using the traditional CMTF model in Eq. (2)
and our proposed structure-revealing CMTF model in
Eq. (4) (referred to as Advanced CMTF (ACMTF)). As
described in Section “Methods”, we use a gradient-based
all-at-once optimization approach for fitting ACMTF,
which we call ACMTF-OPT. Similarly, for fitting the
model in Eq. (2), CMTF-OPT [14] is used and it is also
based on a gradient-based all-at-once approach. Both
CMTF-OPT and ACMTF-OPT are implemented in the
MATLAB CMTF Toolbox (available from http://www.
models.life.ku.dk). As stopping conditions, both methods
use the relative change in function value (set to 10−10)
and the 2-norm of the gradient divided by the number of
entries in the gradient (set to 10−10).

Numerical results
Experiments demonstrate the potential problem with the
CMTF model and how it fails to identify shared and
unshared components due to uniqueness issues. On the
other hand, our structure-revealing model can success-
fully identify shared/unshared components through the
use of sparsity penalties on the component weights.
Figures 3, 4, 5, and 6 demonstrate the weights, λ and
σ , estimated using both models for 100 runs returning
the same function valuea, i.e., multiple random starts are
used and the minimum function value is obtained 100
times. When we use CMTF, λ and σ are estimated by
normalizing the columns of the extracted factor matri-
ces. In Figure 3, we expect to recover λ = [1 0 1]T and
σ = [1 1 0]T; however, we observe that weights cap-
tured by CMTF vary hiding the true underlying structure
of the data sets. On the other hand, ACMTF reveals the
true structure indicating that there is one shared and one
unshared component in each data set. The order of orig-
inal and extracted components is different due to the

Figure 3 Case 1 - Weights λ and σ as well as the match score for factor matrix A captured by (a) CMTF (b) ACMTF.

http://www.models.life.ku.dk
http://www.models.life.ku.dk
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Figure 4 Case 2 - Weights λ and σ as well as the match score for factor matrix A captured by (a) CMTF (b) ACMTF.

permutation ambiguity in the models. Also, due to the
permutation ambiguity, all possible permutations of the
components for different runs returning the minimum
function value are compared and the results are reported
based on the best matching permutationb. Bottom plots in
Figure 3 show how well the extracted factors match with
the true columns of factor matrix A. Let âr be the rth col-
umn of the factor matrix Â extracted from the common
mode. The match score corresponds to âTr ar‖ âr ‖‖ ar ‖ after
finding the best matching permutation of the columns.
These plots show that not only the weights can indicate
shared/unshared components but also factor vectors can
be estimated well using ACMTF. Similarly, in Figure 4, we
expect to see three non-zero weights for the matrix and
two non-zero weights for the tensor. However, there is
variation for the same function value particularly in σ hid-
ing the structure of the data sets and preventing recovery
of the factor vectors accurately when data sets are mod-
eled using CMTF. ACMTF, on the other hand, can identify
shared and unshared components accurately. Unlike Case

1 and 2, CMTF performs well for Case 3, where the tensor
has all three components and two of them are shared with
the matrix (Figure 5).
While ACMTF performs well for all three cases, we

should note that uniqueness properties of the model need
to be better understood. For instance, in Case 4, there are
two unshared components in the matrix and, in Figure 6,
match scores for ACMTF indicate that underlying
factors can no longer be perfectly recovered. That is
mainly because the model is no longer unique. Two
unshared components in the matrix span the same sub-
space in different runs returning the same function value
but components from different runs can no longer be
compared using the match score.
We also show how effective the penalty method is in

terms of satisfying the unit-norm constraints in Figure 7.
Figure 7 illustrates the 2-norm of each column of the
factor matrix in each mode as the algorithm runs. We
observe that while norms of the columns fluctuate ini-
tially, when the algorithm stops, they are all close to 1.

Figure 5 Case 3 - Weights λ and σ as well as the match score for factor matrix A captured by (a) CMTF (b) ACMTF.
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Figure 6 Case 4 - Weights λ and σ as well as the match score for factor matrix A captured by (a) CMTF (b) ACMTF.

This indicates that even though we solve the constrained
optimization problem in (3) using the quadratic penalty
method, we can still satisfy the constraints. The param-
eter α is set to α = 1 for all modes since we want the
quadratic penalty terms to have the same weight as the
first two terms in the objective in Eq. (4). Note that before
fitting the model, each data set, i.e., tensor X and matrix
Y, is divided by its Frobenius norm. Therefore, by select-
ing α = 1, we give equal importance to every term in

the objective except the sparsity-inducing penalties. We
use β = 10−3 as the sparsity penalty parameter in our
experiments.
In order to assess the sensivity of ACMTF to the selec-

tion of the β value, we show the performance of the
model for Case 1 using different β values, i.e, β ∈
{0, 10−5, 10−4, 10−3, 10−2, 10−1} in Figure 8. We observe
that except for β = 0, shared and unshared factors can
be correctly identified for all other β values. However,

Figure 7 2-norm of each column of the factor matrix in each mode.
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for higher values of β , i.e., β = 10−2 and β = 10−1, it
becomes difficult to get the true solution, i.e., out of 1000
random starts, only few runs return the true solution for
high β values while the true solution is reached by approx-
imately 50%–75% of the random starts for β = 10−4 or
β = 10−5c.
Finally, we discuss how we interpret the extracted

weights. For instance, for Case 1, while the true nonzero
weights are set to 1 in λ and σ when generating the data
sets, the estimated values of the nonzero weights by the
ACMTFmodel are approximately 0.70 in Figure 3(b). That
is due to the fact that models are fitted to data sets divided

by their Frobenius norms, which are approximately 1.42.
In order to find the actual weights in each data set, we
would multiply the captured weights by the norm of each
data set. However, in joint data analysis, we are looking
for weights that can show the relative significance of a fac-
tor in one data set with respect to the other data sets,
rather than absolute weights in each data set. For instance,
if we generate coupled data sets using λ = [100 0 100]T
and σ = [1 1 0]T, the ACMTF model still reveals the
weights given in Figure 3(b). Furthermore, if a factor has
different contributions to the data sets, that will also be
revealed by the weights. For instance, in Case 2, data sets

Figure 8 Sensitivity of ACMTF with respect to β.
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are generated using λ = [1 1 0]T and σ = [1 1 1]T,
where the shared component contributes more toX com-
pared toY. That is revealed by the weights extracted by the
ACMTF model in Figure 4(b), where λ̂ = [0.70 0.70 0]T
and σ̂ = [0.57 0.56 0.57]T.

Extension tomultiple data sets
Our experiments so far have focused on joint analysis
of two data sets. Here, we also demonstrate that the
proposed model has a promising performance in terms of
identifying shared/unshared factors when more than two
data sets are jointly analyzed.We use the coupled data sets
given in Figure 9(a) as an illustrative example.
In order to construct the data sets in Figure 9(a), fac-

tor matrices A ∈ R
I×R,B ∈ R

J×R,C ∈ R
K×R, V ∈

R
M×R and S ∈ R

L×R are generated as described in the
Experimental set-up section. Here, we set I = 50, J =
30,K = 40, M = 20, L = 40, and R = 4. Factor
matrices are then used to construct a third-order tensor
X = [[λ;A,B,C]] coupled with Y = A�VT and Z = A	ST
in the first mode, where λ, diagonal entries of the diago-
nal matrix �, i.e., σ , and diagonal entries of the diagonal
matrix 	, i.e., γ , correspond to the weights of the com-
ponents. Figure 9(b) demonstrates the performance of the
ACMTF model in terms of identifying shared/unshared
components when each data set has one shared and one
unshared component; in other words, data sets are gener-
ated using the weights λ = [1 1 0 0]T, σ = [1 0 1 0]T,
and γ = [1 0 0 1]T. We observe that the extracted
weights reveal that there is one component shared by all
three data sets and one unshared component in each data
set.

Real data
In this section, the structure-revealing CMTF model
is used to jointly analyze diffusion NMR and LC-
MS measurements of 29 mixtures prepared using five
chemicals. We first describe the sample preparation and

the measurements, and then demonstrate the perfor-
mance of our model in terms of capturing the signa-
tures/patterns related to chemicals used to prepare the
mixtures.

Sample preparation andmeasurements
Five chemicals with different relative sizes, hence, differ-
ent diffusion, were selected: two peptides, a single amino
acid, a sugar and an alcohol, i.e., Valine-Tyrosine-Valine
(Val-Tyr-Val), Tryptophan-Glycine (Trp-Gly), Phenylala-
nine (Phe), Maltoheptaose (Malto) and Propanol. 29 sam-
ples were prepared with varying concentrations according
to a predetermined design (see Additional file 1) in a
phosphate buffer (pH 7.4). The buffer was prepared with
deuterated water according to a protocol for biological
samples [58] but with a 10-fold increase in the con-
centration of TSP (sodium 3-(trimethylsilyl)-propionate-
2,2,3,3-d4) in order to ensure sufficient signal intensity for
reference deconvolution [59]. The 10-fold increase in the
concentration of TSP did not affect the pH of the buffer.
All chemicals were purchased from Sigma Aldrich and
used without further purification. Samples were stored at
5°C until they were measured.
NMR spectra of the samples were recorded on a

Bruker DRX 500 spectrometer (Bruker Biospin Gmbh,
Rheinstetten, Germany) operating at a proton frequency
of 500.13 MHz. For each spectrum, 32768 complex points
were acquired in 64 scans with a recycle delay of 2 seconds
at a nominal temperature of 298 K. The spectrometer
was equipped with a 5 mm BBI probe and spectra were
recorded using the Oneshot45 sequence [60] with 8 gra-
dient levels ranging from 3.4 to 26.9 G cm−1 with equal
steps in gradient squared in nominal gradient amplitude.
The diffusion time was 100 ms and the gradient encod-
ing time was 1 ms. All processing of the data, includ-
ing phase correction, apodization, Fourier transformation,
baseline correction, referencing to TSP signal, and ref-
erence deconvolution, was performed using the DOSY

Figure 9Modeling of more than two data sets using ACMTF. (a) A third-order tensorX coupled with matrices Y and Z in the first mode,
(b)Weights λ, σ and γ captured by ACMTF as well as the match score for factor matrix A.
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Toolbox [61]. In order to correct for instrument instabil-
ities, reference deconvolution was performed using the
TSP methyl signal as a reference, using a target lineshape
of 4.5 Hz [59,62]. The MATLAB code for the DOSY tool-
box is freely available via http://dosytoolbox.chemistry.
manchester.ac.uk/. NMR measurements for each mixture
correspond to a set of spectra recorded at different gradi-
ent levels. Since we have several mixtures, NMR data can
be arranged as a third-order tensor with modes: mixtures,
chemical shift and gradient levels (Figure 1). The chemical
shift (i.e., the conventional scale for a 1H NMR spectrum)
is related to the chemical environment of the protons, and
the gradient levels encode the diffusion property of the
various molecular species.
Prior to LC-MSmeasurements, 29 samples were diluted

to 10 ppm in water and subsequently analyzed with
ultra-performance liquid chromatography (UPLC) sys-
tem coupled to quadruple time-of-flight (Premier QTOF)
mass spectrometer (Waters Corporation, Manchester,
UK). Each sample (10μL) was injected into the UPLC
equipped with a 1.7μm C18 BEH column (Waters) oper-
ated with a 6-min linear gradient from 0.1% formic acid
in water to 0.1% formic acid in 20% acetone: 80% ace-
tonitrile. The data were acquired on the positive electro-
spray ionization (ESI) mode with the following settings:
capillary probe voltage was set to 2.8 keV, desolva-
tion gas temperature was at 400°C, cone voltage was
40 V, with the Ar collision gas energy of 10 V. The
centroided raw data were converted to an intermediate
netCDF format with the DataBridgeTM utility provided
with the MassLynx software. Automatic peak detection
and integration were performed using the XCMS pack-
age [63]. Since individual chemical compounds give rise
to more than one fragment ion upon ionization, these
ion-features, generated by XCMS, were grouped together
using the CAMERA package [64]. The final LC-MS
data set is in form of a mixtures by features matrix
(Figure 1).

Analysis
Before discussing joint analysis of the third-order ten-
sor X representing diffusion NMR measurements and
the matrix Y representing LC-MS data (Figure 1), we
briefly discuss the analysis of the NMR data individually.
X has an underlying CP structure [20,21,65-68] and can be
modeled using a CP model, i.e.,X ≈ [[A,B,C]]. Here, A,B
and C correspond to the factor matrices in the mixtures,
chemical shift and gradient levels modes, respectively.
When we model X using a 5-component CP model, we
observe that each CP component corresponds to one of
the chemicals used in the mixtures. The signatures in the
chemical shift mode (the NMR spectra), i.e., the columns
of matrix B, as well as the exponential decay signatures
represented by the columns of matrix C can be used to

identify these chemicals. Figure 10 shows the NMR sig-
natures extracted by the CP model (Signatures in the
chemical shift mode (spectra) of pure chemicals are given
in Additional file 2 as a reference). Matrix A captures
the relative concentrations of the extracted components
in the mixtures and we observe that A matches well with
the design used in sample preparation in Figure 11. Matrix
Y representing LC-MS measurements can be analyzed
individually using matrix factorizations. However, matrix
factorizations without any constraints on the factors have
a rotational freedom; therefore, capturing the patterns
corresponding to each chemical using only LC-MS data is
challenging. One potential approach may be to use sparse
principal component analysis [69]; however, even with
careful fine-tuning of the sparsity parameter, the underly-
ing design cannot be captured as well as in Figure 11 due
to unavoidable experimental noise in LC-MS (results not
shown).
Analysis of the diffusion NMR data not only reveals

the underlying structures in the chemical mixtures but
can also be used to extract the relevant patterns corre-
sponding to the same chemicals from data sets, which
are much harder to analyze, e.g., LC-MS measurements.
LC-MS data are often noisy and contain many irrelevant
features due to the sensitivity of the analytical technique.
Next, we jointly analyze NMR and LC-MS measurements
using the structure-revealing CMTF model and demon-
strate the benefits of joint analysis of these data sets. As
a preprocessing step, LC-MS features are scaled by their
standard deviations and both NMR and LC-MS data sets
are scaled by their respective Frobenius norms. We jointly
analyze the data sets using (i) Model 1: ACMTF model
with no sparsity penalty, i.e., β = 0, and (ii) Model 2:
ACMTF model with sparsity penalties on the weights of
rank-one components, where β = 10−3. For both models,
the number of components is set to R = 6. Since there are
five chemicals in the samples and we expect to have some
experimental noise, we use R = 6 components. We dis-
cuss the choice of the number of components further in
the Discussion section.
Model 1 is equivalent to the traditional CMTF model in

the sense that it does not impose sparsity on the weights
of rank-one components. Similar to our observations on
simulated data sets, we observe that weights captured
by Model 1 (Figure 12(a)) for the runs returning the
same function value suggest that the model fails to give
a unique solution. Model 2, on the other hand, captures
the weights given in Figure 12(b) for the runs return-
ing the same function value, which suggests uniqueness,
and extracts the components illustrated in Figure 13. The
model is able to capture the underlying chemicals and, as
shown in Figure 14, it is also effective in terms of cap-
turing the underlying design used in sample preparation.
In Figure 14, we plot the columns of the factor matrix

http://dosytoolbox.chemistry.manchester.ac.uk/
http://dosytoolbox.chemistry.manchester.ac.uk/
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Figure 10 Columns of factor matrix B corresponding to the chemical shift (ppm) mode (i.e., NMR spectra). The figure in the bottom-right
corner shows the columns of factor matrix C corresponding to the gradient levels mode. These are the factor matrices captured by the CP model of
NMR data.

Figure 11 Columns of factor matrix A corresponding to the mixtures mode extracted by the CPmodel of NMR data. Red lines show the
columns of A while the blue line shows the original relative concentrations of the chemicals used in sample preparation, i.e., normalized columns of
the matrix given in Additional file 1.
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Figure 12Weights λ and σ captured by (a) Model 1 (β = 0) and
(b) Model 2 (β = 10−3).

A for all (98) runs returning the same function value
in red and the true design is plotted in blue. This fur-
ther illustrates the suggested uniqueness of the model. In
order to understand how components are shared among
data sets, we look at the weights of rank-one components
in Figure 12(b). While the components corresponding to
Val-Tyr-Val, Trp-Gly, Phe and Malto are shared by both
data sets, the component corresponding to propanol has a
very small weight (< 0.1) in LC-MS. Since propanol is not
retained in the liquid chromatography column and eluted
with the solvent front, it does not show up in LC-MSmea-
surements; therefore, having a small weight for propanol
in LC-MS is promising. Similarly, one of the components
in LC-MS is modeling noise (which could be both struc-
tured and random) and barely shows up in NMR. That
is also expected since this LC-MS data set is very noisy
compared to the NMR data.
By individually analyzing NMR data, we have been able

to capture NMR signatures of the chemicals. The benefit
of jointly analyzing NMR and LC-MS, on the other hand,
is two-fold: (i) In addition to the NMR signatures, we also
extract the factor vectors corresponding to the LC-MS

featuremode for each chemical as shown in Figure 13. The
features with high coefficients (in terms of absolute value)
in each factor reveal the features relevant to the chemical
modeled by that component (see Additional file 3 for LC-
MS features captured by the model for each component).
(ii) Weights of rank-one components in each data set give
an indication of the chemicals visible to each analytical
technique.

Discussion
Even though the main motivation for a structure-
revealing coupled factorization model is to identify
shared/unshared components automatically through
modeling constraints, there are still several parameters
to be determined: (i) number of components (R) and
(ii) sparsity penalty parameter (β). In order to see the
sensivity of joint factorization of NMR and LC-MS to
these parameters, we have fit the model using different
β values, i.e., β ∈ {10−4, 10−3, 10−2, 10−1}, for different
number of components, i.e., R ∈ {5, 6, 7, 8}. If we use
β = 10−4 or β = 10−2, there are small variations in
the weights captured by the runs returning the same
function value even though the weights are close to what
we have obtained in Model 2 using β = 10−3. Using a
much higher β value, i.e., β = 10−1, on the other hand,
sparsifies the weights introducing many zeros and fails to
capture the underlying chemicals. In terms of the number
of components, while the three-way NMR data set has 5
components, fitting a 5-component coupled model can-
not find the underlying components accurately due to the
additional structured/random noise in LC-MS. The sin-
gular values of the centered-scaled LC-MS data suggest
that there are 6 significant components. Model 2, we have
discussed so far, is a 6-component model but since we
have not centered LC-MS data, we have also tried 7 and
8-component models. Using a 7-component model, true
chemicals can still be captured but the additional compo-
nent does not look meaningful and slightly distorts the
true components. Using an 8-component model, we have
similar observations except that the 8th component has
a very small weight (< 0.1) in both data sets indicating
that we may be overfactoring the data. We plan to study
and improve the robustness of the model to overfactor-
ing, which can make it easier to choose the number of
components.
In our analysis, we have downsampled the NMR spec-

tra by a factor of 10 because we use many random
starts to find the “true” solution and it is more effi-
cient to work with downsampled NMR data. However,
for better interpretability of NMR spectra, high dig-
itization is needed. When we jointly analyze LC-MS
data with the original NMR data, which have not
been downsampled, using the same model parame-
ters used for Model 2, the model reveals almost
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Figure 13Model 2 - Components extracted by coupled factorization of NMR and LC-MS using ACMTF, where β = 10−3. Columns of factor
matrices B, C and V are plotted.

exactly the same components and weights, showing that
the model is not sensitive to minor changes in the
data.
While the model is promising, we should note that it is

not perfect even for simple mixtures like we have analyzed
here. One of the issues is that columns of factor matrix

V corresponding to the LC-MS features mode are dense
and not easily-interpretable. The rth column of V con-
tains features corresponding to the chemical which has
its NMR signatures as the rth column of matrix B and C;
however, in addition to the relevant features, it also con-
tains irrelevant features regarded as false-positives (see
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Figure 14Model 2 - Scores. Columns of factor matrix A corresponding to the mixtures mode captured by coupled factorization of NMR and
LC-MS data using ACMTF, where β = 10−3. Red lines show the columns of A while the blue line shows the original relative concentrations of the
chemicals in mixtures, i.e., normalized columns of the matrix given in Additional file 1.

Additional file 3). Another issue is that it would be
more useful to get zero weights instead of small
weights for unshared components (as in simulated data
sets). As pointed out in Section “Background”, several
methods have been proposed for the identification of
shared/unshared components within the context of joint
analysis of matrices, and the performance comparison of
those methods with the structure-revealing CMTF model
is a topic of future research. However, note that since these
methods focus on joint analysis of matrices, there are
identifiability issues and the identifiability of the models
are achieved using constraints on the components, such as
orthogonality in CCA-based approaches [34] and GSVD-
basedmethods [1]. The structure-revealing CMTFmodel,
on the other hand, does not impose any constraints on the
components (other than the unit norm constraints). The
structure-revealing CMTF model has such an advantange
over joint matrix factorization methods because the CP
model used to model the higher-order tensor is capable of
uniquely capturing the underlying factors. The CP model
is unique under mild conditions up to permutation and
scaling (for a review of uniqueness studies, see [43]). Fur-
thermore, while we have seen that the structure-revealing
CMTF model extends to multiple data sets, some of these
joint matrix factorization methods have only been pro-
posed for two data sets [34].

Potential biological applications of interest
In this section, we have illustrated how the structure-
revealing CMTF model can be used to capture chemicals
in mixtures measured using different analytical methods.
In order to study both the strengths and the limita-
tions of the model, we have used prototypical experi-
mental coupled data sets, where the underlying ground
truth is known. In many biological applications, we come
across with such heterogeneous coupled data sets. For
instance, the potential of fluorescence spectroscopic mea-
surements of human plasma samples in cancer diagnostics
has recently been demonstrated, and based on the prior
chemical knowledge, the fluorescence measurements are
expected to follow a CP model [70]. In fluorescence spec-
troscopy, measurements for each sample are represented
as an excitation-emission matrix, and multiple samples
form a third-order tensor with modes: samples, excita-
tion and emission wavelengths. Plasma samples can also
be measured using LC-MS and NMR, which are com-
monly used in metabolomics studies [6]. Measurements
from LC-MS and NMR are usually arranged as samples by
features matrices. In a recent study [25], we have jointly
analyzed fluorescence and NMRmeasurements of plasma
samples of a group of verified colorectal cancer patients
and a group of controls with nonmalignant findings using
the structure-revealing CMTF model. The preliminary
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results demonstrate that there are shared/unshared com-
ponents, and two of the shared components achieve
around 71.4% accuracy (with 63.6% sensitivity and 78.1%
specificity) in terms of separating the two groups. Even
though the number of chemicals that can be detected by
fluorescence spectropscopy is limited compared to the
chemicals detectable by NMR, the components extracted
from the fluorescence data are easily interpretable,
and this can make the identification of biomarkers
easier.
Such heterogeneous coupled data sets are also encoun-

tered in biomedical signal processing. In order to have a
better understanding of brain activities, it is highly desir-
able to jointly analyze EEG (electroencephalogram) and
fMRI (functional Magnetic Resonance Imaging) signals
because EEG has a high temporal resolution while fMRI
provides a better spatial resolution. Current data fusion
approaches for EEG and fMRI rely on joint analysis of
fMRI data with signals from a single EEG channel or con-
catenated signals from multiple channels [71,72]. On the
other hand, it may be possible to arrange multi-channel
EEG signals as a third-order tensor and jointly factorize
the tensor with the matrix representing the fMRI data
using the structure-revealing CMTF model [72].

Conclusions
Joint analysis of data sets from multiple sources has the
potential to enhance knowledge discovery. However, we
are still lacking the data mining tools for data fusion and
need a better understanding of the available models in
order to improve them to address the challenges in data
fusion. In this paper, we have introduced an unsupervised
data fusion model that can jointly analyze heterogeneous,
incomplete data sets with shared/unshared components
by formulating data fusion as a coupled matrix and
tensor factorization problem with sparsity penalties on
the weights of rank-one components. Using numerical
experiments, we have demonstrated that the proposed
model outperforms the traditional coupled factorization
model commonly used in the literature in terms of iden-
tifying shared/unshared components. Furthermore, we
have measured a set of mixtures with known chemical
composition using two different analytical techniques
(LC-MS and NMR) and assessed the performance of
the proposed model in terms of capturing the underly-
ing chemicals, true design and shared/unshared compo-
nents. The model provides promising performance and
reveals the ground truth in these mixtures. In addition
to the strengths of the proposed model, we have also
discussed the potential drawbacks using this illustrative
example.
While the structure-revealing CMTF model inherits

uniqueness properties from the CP model, the overall
uniqueness properties of the structure-revealing CMTF

model need to be understood better, as it has been done
for coupled CP factorizations in a recent study [73].
We intend to extend our studies in several directions:

(i) In order to extract easily-interpretable patterns with
less false-positives from LC-MS features mode, we plan
to impose sparsity constraints on the factors. Our pre-
liminary studies show that we can decrease the number
of false-positives; however, the model distorts the NMR
signatures. (ii) Our algorithmic approach based on uncon-
strained optimization is accurate but not flexible enough
to impose constraints. The feasibility of a more flexible
modeling framework for data fusionmaking use of general
purpose optimization solvers will be explored in future
studies [74].

Endnotes
aFunction values are considered the same if they have

all digits the same up to the sixth decimal place.
bWhen we fit the models and obtain the same function

value multiple times, the ith coupled component
(ai,bi, ci, vi) in one run may be the jth coupled
component (aj,bj, cj, vj) in another run. Therefore, all
possible permutations of the coupled components for
different runs are compared to find the best matching
components across different runs.

cThis is valid when function values are considered to be
the same when the difference between them is less than
10−6.
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