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Abstract

Background: The production of multiple transcript isoforms from one gene is a major source of transcriptome
complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution
and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and
errors resulting in incorrect splicing calls occur in every experiment.

Results: We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to
known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense
stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and
qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila
melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences
between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative
splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these
tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki.

Conclusions: Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alter-
native splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference
from this new technology. The splice-junction centric approach that this software enables will provide more accurate

estimates of differentially regulated splicing than current tools.

Background

Alternative splicing generates different RNA molecules
from identical primary transcripts, affecting protein diver-
sity by creating diverse mRNA isoforms and modulating
regulatory information in non-coding and untranslated re-
gions in mRNAs [1]. The advance of next-generation se-
quencing technologies has allowed the high-throughput
analysis of whole transcriptomes by RNA-Seq. In a typical
RNA-Seq experiment, Poly-A" transcripts are enriched
from a pool of RNA, from which ¢cDNA is generated,
amplified, and sequenced [2]. Analysis of RNA-Seq data
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entails inferring the transcript molecule corresponding to
each read, along with estimation of relative abundances of
transcribed and processed features [2,3]. Thus, RNA-Seq
experiments have the potential to produce novel discover-
ies and facilitate tremendous progress on understanding
mRNA diversity generated by splicing.

Despite the promise, there are important sources of
ambiguity, bias, and noise in RNA-Seq data that have
made accurate estimation of splicing differences difficult
in practice. These problems arise at multiple steps in an
RNA-Seq experiment. At the library preparation stage,
sequence-dependent variation in amplification generates
heterogeneous coverage artifacts [4,5] that lead to differ-
ences in exon read counts even in constitutively spliced
genes. At the sequencing stage, cluster generation allows
sequencing of only a portion of the library, leading to sam-
pling biases and variation between technical replicates [6].
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At the alignment stage, reads with sequencing errors de-
rived from paralogs and low sequence complexity regions
confound abundance differences due to the preference for
alignability over gap introduction [7]. These problems
have complicated the analysis of splicing by RNA-Seq.
While performing simulations of RNA-Seq data gener-
ation is a common approach to benchmarking tool per-
formance and characterizing errors, and several tools exist
that perform simulations (BEERS [8], maq (Heng Li,
http://magq.sourceforge.net/), Flux Simulator [9], and ART
[10]), these tools do not provide reporting that can easily
be used to understand how aligner error affects down-
stream inferences on splicing, limiting utility.

Current strategies for quantifying splicing differences
from RNA-Seq data employ isoform abundance estima-
tions (Cuffdiff [11]), exon counts (DEXSeq [12]), and
counts to pre-defined local regions (MISO [13]). Intron-
centric splicing quantification has been proposed [14],
and splice junctions alone have been shown to accur-
ately quantify alternative splicing in cassette exons [15].
In addition to this variety of measurements, there are
multiple units of comparison used to identify splicing
differences. Classification of splicing differences between
isoforms is non-trivial for complex gene models, and in-
complete identification of these differences leads to as-
certainment bias.

We developed a suite of tools called the Splicing Ana-
lysis Kit (Spanki) to model, analyze, and improve junc-
tion detection, and to enable a complete splice-junction
centric analysis of RNA-Seq data (Table 1). This software
is available at http://www.cbcb.umd.edu/software/spanki
and https://github.com/dsturg/Spanki.

Spanki analyzes and mitigates error profiles, based on
simulations that closely mimic real data. Uniquely, the
Spanki read simulator combines robust empirical model-
ing with detailed reporting that is geared toward evaluating
splicing detection performance. This allows the production
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of simulations that approximate real experimental error
profiles; and that, which can be applied to help develop an
analysis pipeline or to generate a custom error profile for
every sample. Our modeling based on real RNA-Seq se-
quencing errors, coupled with simulations, reveals mul-
tiple sources of false positive junctions. Spanki calculates
and reports junction alignment diagnostics for post hoc
alignment filtering methods to ensure accurate junction
quantification.

We show that splice junctions provide a more direct
and less ambiguous measurement of splicing than exon
read counts of full length isoform abundance measure-
ments. To address the problem of splicing event classifica-
tion, we apply standardized and exhaustive splicing event
ontologies with AStalavista [16] and show that mutually
exclusive splicing differences are effectively interrogated
using junctions. The Spanki software therefore demon-
strates a complete set of routines for splice-junction cen-
tric analysis of RNA-Seq data.

As a test case, we examined splicing in Drosophila
melanogaster female and male heads. We chose these
samples for two reasons. First, the central nervous sys-
tem of many species is highly complex in architecture
and is a rich source of alternative transcripts [17]. Add-
itionally, the Drosophila sex determination hierarchy is a
classical model of regulated alternative splicing [18].
Three members of this hierarchy, Sex-lethal (Sxl), trans-
former (tra), and male specific lethal 2 (msl-2) encode
broadly expressed alternatively spliced mRNAs. The two
terminal members of the hierarchy doublesex (dsx) and
fruitless (fru) are also alternatively spliced and are
expressed in a restricted set of neurons, in addition to
other non-neuronal tissues. We demonstrate that our ap-
proach produces alternative splicing measurements that
are consistent with the literature and quantitative PCR
(qPCR) results, and provides superior detection of sex-
differential splicing than other methods. In benchmarking

Table 1 Comparison of features among RNA-Seq analysis tools

Feature Spanki Tophat Cufflinks MISO DEXSeq RUM Flux capacitor Maq
Simulation tools X X X X
Empirical error modeling X X X
Custom simulated transcript coverages X

Junction alignment curation X X'

Gene assignment for junctions X 2

Qualitative junction analysis X

Junction-level comparisons X

Event-level comparisons X 3 X x*

PSI metric reporting X X

"Tophat offers criteria for filtering what is reported after the alignment stage. Spanki provides additional criteria that can be applied after reporting.

2Cufflinks assembles transcripts and merges with annotated genes.

3Cuffdiff reports differential splicing by TSS group, without specifiying the differential splicing event.

“DEXSeq provides results for exon-level abundance differences.
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tests with a null dataset, we show a lower false positive
rate for differential splicing calls than commonly used
tools and a moderate false negative rate.

Results and discussion

Analysis overview

Analysis of alternative splicing with RNA-Seq data in-
volves multiple interdependent components including
mapping reads, identifying pairwise splicing differences,
and quantifying alternative splicing. A variety of tools
perform individual tasks, and null models are critical
tools for evaluating how well these tools perform. We
built a suite of tools called the Splicing Analysis Kit
(Spanki) to generate null models from simulations,
evaluate aligner performance, and quantify splicing dif-
ferences. This toolkit is modular in design and can be
used as a complete analysis pipeline, to evaluate exisiting
pipelines, or to make informed decisions on parameters
(Table 1).

We used these methods to show that reads that dir-
ectly detect intron removal (junction spanning reads)
provide a basis for a complete analysis of splicing with
advantages in specificity and low type I and type II error
rates. We demonstrated these advantages with simulated
datasets and real biological data.

Approach to error modeling

A common approach to examining splicing is to deter-
mine read coverage of alternative exons, assemble full
length isoform models, and generate probabilistic abun-
dance estimates of the alternative forms [7]. The inher-
ent problem with this type of approach is that reads
mapping to exon space may originate from multiple alter-
native exons with different exon boundaries (Figure 1A)
[2]. Additionally, both read coverage heterogeneity and in-
tron retention makes calling alternative splicing from exon
counts problematic. In contrast, reads that span splice
junctions derive from a true splicing event and unambigu-
ously join exons, making this a much more useful meas-
urement [8]. However, mapping these reads is more
difficult than alignment to a contiguous genomic refer-
ence, making high quality junction alignments critical for
downstream analyses [8]. Since junction detection is the
foundation of our analysis, we undertook simulations to
quantitatively assess splice junction detection performance
so that we could characterize and then filter out dubious
junctions. We built simulated datasets in two steps: mod-
eling and read generation (Figure 1B).

The first step in the analysis of junction-based splicing
detection is to identify and quantify the junction span-
ning reads (where part of the read aligns to one exon
and another part to another exon Figure 1A). We per-
formed this analysis using an annotation (Figure 1C) or
without. We then merged junction coverage data and
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estimated the relative abundance of the alternative forms
(Figure 1D). In the next step we classified splicing events
from annotated transcript models to obtain sets of junc-
tions that define mutually exclusive “paths” (Inclusion
and Exclusion) that interrogate each path specifically.
This allows us quantify alternative splicing using the Per-
cent Spliced In (PSI) metric [20], which is simply the
abundance of the inclusion form divided by the sum of
the inclusion and exclusion forms. To find the number
of genes alternatively spliced, we selected events for
which junction coverage was detected over the inclusion
path in either sample, and over the exclusion path in ei-
ther sample and performed statistical testing (Figure 1E).

Error models and simulations

We aligned RNA-Seq reads with permissive parameters
(quality aware alignment, with no fixed mismatch cutoff)
using Bowtie [19] in order to estimate total mismatch
profiles along the full length of the reads. As has been
previously reported, we observed increased mismatch
rates extending through the 3" end of the read and a
slight increase in mismatch rates in the first 5 bases
[4,21,22] (Figure 2A). We determined nucleotide mis-
match frequencies by position in the read and by substi-
tution type. These frequencies are used by the Spanki
read simulator as weights in a weighted-random selec-
tion, to choose the total number of mismatches in a
read, mismatch positions, and base substitution. We
supplied these error models to the Spanki read simulator
to generate a defined known input sample generated in
silico from annotated transcript models, with error pro-
files matching these empirical models.

To generate simulated reads, we extracted transcript
sequence from each D. melanogaster annotated gene
model and generated 13 pools of simulated 76 bp
paired-end reads at 1-30X coverage where the error pro-
files matched our real data. This produced pools where
transcript coverage is equalized, allowing us to examine
the coverage-dependent effects on detection. To model
retained introns, due to either regulation or incomplete
processing, we generated 20% of the reads from transcript
models with introns included. We applied this elevated
rate of intron retention (empirical estimate is 6.9 - 7.2%,
unpublished) intentionally to increase aligner error. Mod-
eled error frequencies were applied as weights for mis-
match number, position, and substitution. To enable the
tracking of aligner errors, we incorporated the genomic
coordinates of origin for each read into a unique read
identifier. We then uniquely aligned the reads using
TopHat [23], and compared alignment results to the
known input to explore splice site detection parameters.
This two-step process generated a simulated data set that
mirrors the experimental dataset, except that the true
input was known, providing us a platform for testing
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Figure 1 Rationale and overview of analysis approach. (A) Cartoon of a hypothetical locus encoding alternatively spliced transcripts, illustrating
how junction spanning reads map unambiguously to specific introns. Read 1 could have originated from the 2" exon of isoform A or B, or the intron
of isoform C; while read 2 could only have originated from isoform A and the indicated splice junction. (B-E) Flowcharts of analysis steps performed in
Spanki. Input data listed at the top, format in parentheses, and calls to external programs indicated (bold). (B) Flowchart of simulation methods. A two
step process begins with modeling error profiles based on a permissive Bowtie [19] alignment. These error models are used by the simulator to
generate reads. (C-E) Flowcharts of quantification and comparison methods. The first step is junction quantification (C), where alignments are
performed, junction alignments are curated, and junction coverages are calculated. Splicing event quantification (D), where a set of transcript models
(from annotation or computed using a program such as Cufflinks [11]), are used to characterize pairwise splicing differences (“splicing events”). These
events are merged with junction coverage data to quantify the mutually exclusive paths defined for each event. Splicing event comparison (E) uses

inclusion and exclusion junction counts.

these tabulated event-level quantifications to compare between replicates, and between pooled results for each sample, by Fisher's Exact Test on

RNA-Seq junction alignment. Results that follow provide
evaluation results for the TopHat aligner [23], although
the same approach can be applied to any aligner output.
We compared junction coverage with known input
abundance for all junctions in the 10x transcript cover-
age pool (Figure 2B). Since multiple transcripts at a
locus may share a given junction, individual junction
coverage was 1-400x (median 8x, 4.2 million read pairs)
reflecting both the random sampling of read positions
and overlapping D. melanogaster transcript models at a
given locus. Our junction coverage measurements had

high concordance with simulated input (Pearson’s r=
0.89) demonstrating that junction coverage closely tracks
known input.

Junction spanning reads are a small portion of the
total reads in an RNA-Seq experiment (9.4-12.6% in the
six samples used in this study) raising the possibility that
sufficient coverage for calling junctions would be prob-
lematic. To test for the effects of read depth on the false
negative rate, we generated pools of simulated reads for
each annotated reference transcript at multiple fixed
coverage levels (1-10x, 15x, 20x, and 30x) and aligned



Sturgill et al. BMC Bioinformatics 2013, 14:320 Page 5 of 18
http://www.biomedcentral.com/1471-2105/14/320

>
vy)
(@)

4
Females Males 25 100
(>)~ ¥ Rep.1la ¥ Rep.la %,\ ~ r=0.89
c 3| O Rep.1b O Rep.1b 55 & . 804
g i A Rep.2a A Rep.2a 3 ,,,2'0 B o ﬁ X
g °t¢ 2 T 60—
‘:92_ _581.5-0 cf %E
g 6 E g g a0 c B 40 De novo
= i @ —_—
T 391.0 E g2 Annotation guided
514 go |8 EEESep €8 ~T-TC
§ g \_8:05 i g Dz;}mlﬂt?or o -
D - O O O OOOCOIHRIIIENNNEEEENCD O_
0 : : | | 0 T T T T T T T T T I T |
0 20 40 60 0 05 1.0 15 20 25 0 5 10 15 20 25 30
Position in read Input junction coverage Transcript coverage

(log10 read counts + 1)

O
m
a1

40 8 ) < 054 Before filtering
2 New detections, cov >0 o New detections, cov>6x | ¢ & —_—
5 _— 2 _— 2 o 0.4 4 Afterfiltering
B 8 30+ New detections, cov > 10 = goe | =m=m==-=-
5 ¢ T 2 3 © o 0.3
=3 False positives S c .2
883204\ ~=-=—-- £ 3 5@
© £ o3 28 0.2
£= 3£ Sg
o 104 £= 32 01
-0-0 o LPNPUPSI o S o
0 _e--?- | T T 0 T T T T T 0.0 5 T T T T T 1
20 40 60 80 100 20 40 60 80 100 0 5 10 15 20 25 30
Read depth (millions) Read depth (millions) Transcript coverage
G H
~ 1001 ~ 100+ Coverage > 1
e e De novo
S © 80, Coverage > 1 -5 © 80, . .
g § De novo g E Annotation guided
$ 2 601  Annotation guided 32 60y| § Friopy>2
c® c® o —_—
S & 40- e 4044 Annotation guided
g c 8 c l ______
38 o0 38 o0
) s 20 ) s 20
(i o
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Transcript coverage Transcript coverage

Figure 2 Simulation results and junction detection. (A) Actual mismatch frequency by read position. Replicates (technical and biological) of
female (red) and male samples (blue) are indicated. (B) Accuracy of annotated junction detection. Recovered junction coverage (y-axis) compared to
actual coverage (x-axis) in simulated input. Read counts (+1) in log10 scale. (C) Sensitivity of junction detection (1 - false negative rate). Receiver
operator characteristic (ROC) curve of splice junction detection displays sensitivity as it relates to sequencing depth. Results represent TopHat mapping
with annotation (dashed line), and without annotation (solid line). (D) Junction detection in subsamples of real data in read pools of increasing
sequencing depth (10-100 million reads in increments of 10 million). Junctions detected with at least one read (black line), or with 210 reads (green
line) are indicated. For each pool, the additional junctions detected relative to the previous pool are indicated. Total cumulative false positive junction
detections in each pool (dashed line). (E) Transcript coverage in subsamples of real data. Annotated transcripts detected with at least 6x coverage
(black line) in each subsampled pool of real data. (F) Junction detection false positive rate in simulated data pre- (solid line) and post-filtering (dashed
line). False positive rate is in percent of all annotated junctions with simulated reads, and is not cumulative. (G) False negative rate of junction detection
due to alignment failure (i.e, not due to sampling), when at least one junction spanning read is generated from simulated transcripts. (H) False nega-
tive rate of junction detection due to sampling. Rates are for detecting at least one junction spanning read (coverage 2 1, purple lines), or for detecting
an entropy score = 2 (orange lines).

these simulated reads with a reference annotation (Anno-  detected >90% of junctions with 3x simulated transcript
tation guided’) or without (‘De novo’), and compared de-  coverage when we provided an annotation. Without the
tection results with known input (Figure 2C). We  benefit of annotation, we found that 6x coverage was
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required to reach this level of sensitivity. Reaching this
level of coverage for each annotated transcript (63 million
bp of transcript sequence) required 2.5 million read pairs
(5 million total reads). To put this in context of experi-
mental data, we typically detect > 8,000 transcripts at > 6x
coverage with 5 million mapped reads in Drosophila
RNA-Seq experiments.

We simulated sequencing depths by sampling in 10
million read increments from one high-depth experi-
ment by random selection (without replacement), and
evaluated the relationship of read depth, detection of
junctions, and detection of annotated transcripts in each
pool. This enables us to evaluate detection in which rela-
tive transcript abundances match the biological sample.
In this analysis, we define “new” detections as features
that are not detected in a lower-depth pool. We found
that > 40,000 junctions (> 65%) were detected in the first
10 million reads and that a 10-fold greater read depth
added ~20,000 more junctions (Figure 2D). At depths
of > 50 million mapped reads, the number of cumulative
false positive detections exceeded the cumulative num-
ber of new junction detections (Figure 2D), as well as
the number of new junctions detected robustly (=10
reads), and the number of new annotated transcripts
detected with at least 6x coverage began to level off
(Figure 2E). Additionally, the contribution to detected
isoform complexity diminished with added depth, as new
detections were increasingly from single exon and con-
stitutively spliced genes. We did not observe over-
representation of any splicing event type with increased
depth. We generated normalized transcript abundance es-
timates in units of fragments per kilobase per million
mapped reads (FPKM), and found that we obtained 6x
coverage of 95% of the transcripts reliably detected at
FPKM > 1 in the full dataset (200 million mapped reads).
We examined the false positive rate at multiple transcript
coverage levels (Figure 2F) and found that the rate in-
creased with greater transcript coverage due to cumulative
errors in alignment. These data indicate that greater read
depth provides more opportunities to call false positives.
However, the majority of the false positives can be filtered
post hoc (Figure 2F) as we explain later.

False negative junction detection

Junction detection is a function of sampling within a se-
quenced transcript, aligner performance, and multiple
isoforms sharing a junction (Figure 2C). To separate
these factors, we analyzed junction detection false nega-
tive rates in constitutively spliced genes (where a junc-
tion is only present in one isoform).

We removed the effect of sampling by analyzing detec-
tion when at least one junction spanning read is gener-
ated in the simulation. This effectively gives us the false
negative rate of generating an alignment when at least
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one junction spanning read is present (Figure 2G).
When the aligner was provided with the annotation, the
false negative rate of alignment was 1% at 1x transcript
coverage. Without an annotation, the false negative rate
was 40%, but declined to < 10% at 7x coverage. These re-
sults show that coverage requirements are modest when
working with genomes with well-defined transcript
models. Without an annotation, islands of read density
are required to generate a reference of putative junc-
tions; so false negative rates at low coverage are high. At
high transcript coverage, the false negative rate of junc-
tion alignment was modest. We estimated the false
negative rate of alignment using the detection deficit at
30x transcript coverage observed in Figure 2B. We di-
vided total detected junction spanning reads by total
simulated input, and obtained a false negative rate of
3.6%. We also examined junctions that differ in a small
number of nucleotides from other junctions (<10 bp
apart). We found higher false negative rates for this class
of junctions (6.6%). These overlapping junctions pose
more difficulty for the aligner to detect, but they repre-
sent a small fraction of annotated donors (1.1%) and ac-
ceptors (1.6%).

When we removed the requirement that a junction
spanning read was generated, we found false negative
rates to be driven primarily by sampling (Figure 2H).
False negative rates were 48%-68% at 1x transcript
coverage. If we apply the entropy cutoff criterion, we
find much higher false negative rates, since at least four
unique alignment offsets are required to meet this en-
tropy > 2 threshold. False negative rates did not decline
below 50% until 6x transcript coverage, illustrating that
quantitative filtering is overly stringent for the detection
of rare variants.

The qualitative criteria we described are not sequencing-
depth dependent, and hence have no relationship to tran-
script coverage. One criterion (sequence repetitiveness)
can be applied without an annotation, and we estimate the
false negative rate of applying this criterion at the 80%
threshold is 0.33% (180 annotated junctions have > 80%
repetitiveness).

False positive junctions

RNA-Seq experiments can reveal splice junctions that
are not yet annotated. Distinguishing novel detection
from experimental error in this class of junctions is
a major challenge. Even though the false positive rate
was < 0.5%, with tens of thousands of junctions detected,
even these low error rates generated hundreds of false
positives that would be counted as novel splice junctions
in experimental data sets. Junction detection errors have
far-reaching downstream effects such as calls incorrectly
supporting gene merges, antisense transcripts, and alter-
native splicing events.
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While there are multiple sources of error in junction
calling (Table 2), the dominant error source was due to
the aligner introducing junctions to reduce mismatch
rates. This can be illustrated by examining extended mo-
tifs in introns. The most common donor/acceptor motif
pattern is GT-AG, and these major forms have add-
itional well-defined motifs within the intron sequence
whether they are from annotated or un-annotated junc-
tions (Figure 3A, B). However, in low sequence complex-
ity regions with either very high or very low % GC
(>70% or <10%), mismatches induced a more optimal
alignment when the read was split and joined to another
segment up or downstream. This type of error can be
clearly seen by the absence of an extended motif (branch
sites and polypyrimidine tracts), and over representation
of the motif “AGGT” on both ends of the junction
(Figure 3C, D). We performed additional simulations con-
sisting only of contiguous genomic sequence to estimate
the frequency of this error class. 10 million simulated
reads from contiguous genome sequence resulted in 310
false positive junctions. Thus, in an RNA-Seq experiment
with, for example, contamination from genomic DNA,
repeat-induced errors will be generated at a rate of 1 per
36,000 contaminating reads. Given that an intron is often
used as evidence for a transcript and not contaminating
DNA [24], these errors can lead to false calls of intergenic
transcription when accompanied with artifactual coverage
islands in intergenic space. Confidence in junction calls in
intergenic space is therefore critical in resolving the exist-
ence of pervasive transcription [25].

To lower the false positive rate, it is important to
understand the nature of the errors. We examined sources
of alignment error leading to false positives at 30x cover-
age and classified them (Table 2, Figure 3E). One major
source of error was false detection of junctions from rare
“minor-form” (AT-AC and GC-AQ) introns, which repre-
sent a small fraction of introns in D. melanogaster anno-
tation [26], and less than 0.5% of introns across metazoan
lineages [27]. Although AT-AC introns are > 100X rarer
than GT-AG introns in the annotation (0.027% of

Table 2 Sources of false positive junction detection
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junctions), TopHat chose the more optimal alignment,
resulting in the false placement of a GT-AG spliced align-
ment on a proximal AT-AC site because of an alignment
with fewer mismatches at a proximal AT-AC site than to
the correct GT-AG site. Introns with the AT-AC dinucleo-
tide are similarly rare in other species (0.10% of human in-
trons, 0.09% of mouse introns, and 0.02% of Arabidopsis
introns [26]). The preference for optimal alignment with
fewer mismatches also led to false positive alignments on
incorrect strands. In RNA-Seq data from non-strand-
specific protocols, the strand is inferred from the sequence
of the interior donor/acceptor motif. For example, a shift
in the 3" end of the alignment causes a (+) strand GT-AG
intron to be read as a (-) strand minor form GT-AT in-
tron. If uncorrected, errors of this type lead to the false
prediction of antisense transcripts. Mismatches resulted in
alignment to the wrong site in the gene model. Within this
class of errors, 33% correctly place one end of the align-
ment (the donor or the acceptor), 12% of them incorrectly
join annotated donors and acceptors from different tran-
scripts of the same gene, and the remainder place neither
donor or acceptor correctly. These pernicious errors result
in the false appearance of alternative isoforms. Similarly,
the joining of paralog exons, which reside proximally in
the genome, occurred when a splice junction originating
from one paralog was aligned as a join between separate
paralogous genes, falsely merging distinct genes into a sin-
gle model. This class of error may be more prominent with
aligners that allow indels or gene fusions. For example, we
found paralog joining in 24% of false positives called by
TopHat2 [28].

Filters

After characterizing error sources, we sought to remove
as many as reasonably achievable (Table 2). We first ex-
amined the effectiveness of a simple quantitative cutoff
on the alignment Shannon’s entropy score [29], a metric
that quantifies alignment complexity based on diversity
of alignment offsets. Requiring an entropy score > 2 for
each junction removed 75.9% of false positives. However,

Type of error False positives Qualitative filtering strategy Removed by Removed by
qualitative filtering’ quantitative filtering®

False alignment to minor form 36.4% Remove novel minor forms 36.4% 30.7%

Incorrect strand 31.6% Inconsistency with gene model 31.6% 28.8%

Shifted on same strand 13.8% None 0% 12.2%

Paralog joining 8.5% Inconsistency with gene model 8.5% 7.7%

Repeat sequence induced 77% Exon-intron sequence similarity 7.7% 6.5%

Unidentified error 2% None 0% 0%

Total defined errors: 100% Total removed errors: 84.2% 75.9%

'False positives removed by Spanki's qualitative filtering.

2False positives removed by filtering on entropy score (> 2), calculated by Spanki.
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since quantitative filtering criteria are overly stringent in ~ donor and acceptor based on genomic overlap and
the case of rare transcripts, we developed a series of strand, and required agreement. Junctions were flagged
qualitative criteria that removed 84.2% of false positives as “ambiguous” if each edge was assigned to a different
while allowing analysis of low abundance junctions. gene or if either end was assigned to no gene, allowing

To prevent strand switches and gene merges at para- us to filter them out. We found that filtering on this
logs, we identified the most likely gene of origin of each  simple criterion was effective in removing all false
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positive junctions in simulated data where a junction
was called on the wrong strand or if paralogs were in-
correctly joined (40.1% of false positives, Table 2).

To filter repeat sequence induced errors, we used the
edit distance between exon shoulder sequence and in-
tron sequence. For each junction, Spanki compared
10 bp upstream of the donor to 10 bp upstream of the
acceptor, and 10 bp downstream of the donor to 10 bp
downstream of the acceptor, and reported the percent
identity. Using a threshold of 80%, this comparison re-
vealed cases where similarity between putative exon and
intron sequence generated false gapped alignments. We
found that filtering junctions where introns were > 80%
identical to up or downstream exon sequence removed all
these errors (7.7% of false positives, Table 2). To remove
cases where mismatches induced alignment to a minor
form intron, we removed introns of this minor class when
they were not annotated (36.4% of false positives, Table 2).

Applying the qualitative filtering criteria above re-
moved 84.2% of false positive junctions in our simulated
data. The remaining 15.8% of false positives were quali-
tatively identical to true positives and could not be fil-
tered. These false positives are consistent with the
strand of the gene model and are adjacent to canonical
donor and acceptor dinucleotides. While we do not
evaluate them here, machine learning methods that
evaluate extended sequence motifs [30] hold promise for
filtering these errors. Nevertheless, qualitative criteria re-
moved 8.4% more false positives than using entropy
scores alone. Importantly, we achieved this reduction in
false positives without requiring junctions to be detected
with high coverage. Our abundance independent qualita-
tive filtering led to an overall false positive rate of <
0.04% across all simulated read depths.

Junction filtering is critical for accurately defining the
splicing event landscape of the transcriptome, as each
false positive can incorrectly define alternative donors,
acceptors, and cassettes. Studies in organisms with incom-
pletely annotated genomes rely heavily on empirically
detected junctions. Spanki’s design allows the flexible ap-
plication of these filters, which is critical to accommodate
different sample types and alignment strategies. For ex-
ample, aberrant splicing may be a feature of interest in
mutant or cancer samples, rather than an artifact to filter
out [31]. Although we present results using the first gener-
ation TopHat aligner, other tools allow searching for fu-
sion transcripts (TopHat2, [28]), or non-canonical splicing
variants (MapSplice, [32]). In these cases, simulation al-
lows for assessment of error rates and selective application
of filters.

Differential splicing detection
To identify cases of differential splicing between sam-
ples, it is essential to find where splicing patterns diverge
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to define a unit of comparison. Basic categories of alter-
native splicing incompletely describe complex splicing
patterns, which can lead to under-reporting of differ-
ences. We applied standardized and exhaustive splicing
event ontologies with AStalavista [16] to ensure that
pairwise splicing differences are interrogated completely.
Spanki parses AStalavista output to obtain sets of junc-
tions that define mutually exclusive “paths” (Inclusion
and Exclusion), to identify junctions that interrogate
each path specifically. We use the detection of coverage
over these junctions to calculate PSI.

To analyze false positive calls of differential splicing,
we generated a Spanki null model for splicing differences
by simulating four read pools, each of which contained
reads from all annotated transcripts in equal abundances
of 300 Reads Per Kilobase (RPK). We then analyzed this
null dataset, applying junction filtering and Spanki
junction-based event definitions, and also compared
technical and biological replicates of real RNA-Seq data
to each other. We performed a systematic categorization
of all pairwise relationships using AStalavista [16], which
constructs graphs from transcript models and outputs
complete and non-redundant sets of splicing differences
identified through graph alignment (see Methods). We
used these pairwise definitions to make comparisons on
the PSI metric calculated by Spanki. We found minor
variation due to sampling alone and technical replication
(Figure 4A, B), but biological replication was a much
greater source of variability (Figure 4C). Low total abun-
dance events showed the most disagreement between
replicates (< 10 average coverage per site in either path).

Next we compared the number of differential splicing
calls made in our simulated null dataset by Spanki and
by several other methods. Spanki correctly called zero
events differentially spliced in this dataset (Figure 4D).
We counted reads that map within exons using the
script provided with DEXSeq [12], and performed an
exon-level differential analysis. DEXSeq also called zero
exons differentially expressed, however, with a reduced
sensitivity to real alternative events in other data sets
(not shown). Next we performed an isoform-centric ana-
lysis using MISO [13], which called differential splicing
in transcripts of 222 genes. Analysis with Cuffdiff [11],
with default parameters except for specifying upper
quartile normalization, called 183 loci as differentially
spliced, and 267 isoforms were called differentially
expressed in our null input dataset with no true differ-
ences in splicing.

To analyze the false negative rate of differential spli-
cing detection, we generated two simulated datasets with
a known PSI splicing difference. To prevent cross-talk,
we selected splicing events where both the inclusion and
exclusion forms were composed of transcripts that were
not part of any other splicing event (N = 1644 events),
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and simulated one pool so that PSI=0.25 for all events,
and a second pool with 0.75 PSI for all events, so that
comparing the two would yield —0.50APSI. After pro-
cessing these data with Spanki, the APSI values clustered
at —0.50APSI (median -0.46) (Figure 4E). Spanki failed
to call significant differences in 315 events (19%) with
FDR correction (Figure 4F). Cufflinks with the Jensen-
Shannon Divergence (JSD) metric had a 29% false nega-
tive rate, but performed better when comparing isoform
abundances, failing to find differential isoform expres-
sion in only 5% of isoforms where an abundance differ-
ence was simulated. At the exon level, DEXSeq had a
false negative rate of 19%, but with false positive differ-
ences in 116 genes. MISO performed the best at this
task, which did not detect a splicing difference in 115
genes (7% false negative rate). These results show that
this simulation was a challenge for these tools and

produced high false negative rates, but Spanki performed
comparably to other tools at the same task.

This junction-based calculation of splicing differences
is a more balanced and less biased measure than exon
counts. Although exon counts yield more data, ambigu-
ity of assignment (Figure 1A), coverage heterogeneity
[4], and unprocessed transcripts [33] make these data
unreliable. Exon counts are also a more imbalanced
measurement of alternative forms. For example, in the
case of skipped exons, the cassette inclusion form can
be interrogated by reads within the cassette, but the ex-
clusion form has zero exonic space that can be uniquely
interrogated. This imbalance can be extreme, as in the
case of multiple large coordinate cassette exons. This
means that exon counts provide an inaccurate measure-
ment, and to only one side of a comparison of propor-
tions, further compounding the bias.
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Splicing detection in D. melanogaster heads

To test the performance of post hoc filtering and alterna-
tive splicing detection, we generated RNA-Seq data on
sexed D. melanogaster heads (Additional file 1: Table S1).
Spanki quantified 70,827 filtered junctions arising from
5,329 genes in our D. melanogaster head RNA-Seq data
(Additional file 2: Table S2). To analyze the full repertoire
of splicing complexity, we analyzed all pairwise relation-
ships defined by AStalavista [16]. This analysis yielded
13,790 pairwise-defined alternative splicing events
(Figure 5A). Of these, 9,201 were internal events (not in-
volving the first or last exons) and the remaining 4,589
were alternative promoter events. While alternative pro-
moter use is not alternative splicing per se, we included
these in our analysis since isoforms from alternative
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promoters are biologically relevant. Our method discrimi-
nates alternative first exons that differ in their splicing,
and excludes overlapping first exons that differ only in
their five-prime ends. The majority of splicing events were
cassette exons, mutually exclusive exons, alternative do-
nors, alternative acceptors, alternative first and last exons,
and retained introns. However, 1,306 internal events
(14%) did not fit into the seven basic categories. Of this
class, “Skip two exons” (200 events) was the largest cat-
egory, followed by “Alternative donor and acceptor” (two
variants, 142 and 137 events, respectively). This latter cat-
egory is an example of a structure overlooked by classifi-
cations into basic categories [1]. An additional 827 events
(125 unique structures) are termed “Unclassified” because
they have no concise verbal description, but these do
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receive a code describing the graph pattern. The top five
occurring structures in the “Unclassified” category com-
prise 41.5% of these events, each of which represent a vari-
ant of a skipped exon event.

We then used Spanki to merge junction coverage data
and estimate the relative abundance of the alternative
forms. We found that 7,894 splicing events in transcripts
from 2,441 genes were alternatively spliced in head sam-
ples (5,450 internal events in 1,852 genes) (Figure 5B). We
found 182 events with significant differences between fe-
male and male heads (adjusted p-value < 0.01, Benjamini
and Hochberg, Additional file 3: Table S3). To conserva-
tively adjust the sex-biased expression calls for rare events
and biological variability as outlined previously, we
demanded >10 junction reads in each path, and that the
unadjusted p-value for the between-sexes comparison was
less than the unadjusted p-value between biological repli-
cates. In light of the variance we observed in our null
dataset (Figure 4A) and between biological replicates
(Figure 4C), we also set a conservative threshold on the
difference between samples at>0.20 PSI This filtering

Table 3 Genes sex-differentially spliced
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yielded 22 events in 17 genes significantly different
between the sexes (Table 3), including members of the
sex-determination cascade. Strikingly, the genes showing
sex-biased transcription profiles at the gene level are not
the same genes that show sex-biased splicing (Figure 5B)
suggesting that targets for sexually dimorphic expression
are regulated by transcriptional or post-transcriptional
mechanisms, but less so by both. Like sex-biased splicing,
we find that sex-biased gene expression is modest in heads
(19 genes), compared with the large amount of differential
expression in the whole adults with gonad tissue [34].
These splicing events were validated by quantiative PCR
in independent biological samples (Figure 5C). We found
stronger agreement when either the inclusion or exclusion
forms were dominant, than when proportions were more
equal (PSI~0.5, Figure 5C). This suggests that much
more extensive biological replication is needed to resolve
any regulated small differences in splicing from biological
noise.

Many of the sex-biased splicing events we observed may
be important for sexual behavior based on known gene

Gene ID Gene name Chromosome Event type APSI' Adj. p-value? GO annotation®
FBgn0004652 fru 3R altdonor -1 5.87E-08 Male courtship behavior
FBgn0003659 Sxl X exonskip 0974 5.87E-08 Sex determination
FBgn0000504 dsx 3R AltLE 0.939 5.87E-08 Sex determination,

male courtship behavior
FBgn0004652 fru 3R exonskip —0.906 9.90E-08 Male courtship behavior
FBgn0028341 1(1)G0232 X AltFE 0.802 2.98E-08 Protein tyrosine phosphatase activity
FBgn0086675 fne altdonor —-0.656 6.76E-08 Regulation of RNA metabolism
FBgn0005616 msl-2 2L retintron 0.565 1.38E-03 Dosage compensation
FBgn0259923 Sep4 AltFE -0.524 4.79E-04 GTPase activity
FBgn0259923 Sep4 X altdonor —-0.469 5.87E-08
FBgn0053113 Rtnl1 2L AltFE -0464 6.39E-08 Inter-male aggressive behavior,
FBgN0053113 Renl1 L AItFE ~0444 587E-08 olfactory behavior
FBgn0053113 Rtnl1 2L AltFE 0426 5.87E-08
FBgn0004852 Ac76E 3L exonskip -0.382 5.87E-08 Intracellular signal transduction
FBgn0086674 Tango13 X altdonor 0372 6.61E-08 Sulfotransferase activity
FBgn0003741 tra 3L altacceptor -0.371 5.87E-08 Sex determination,

male courtship behavior
FBgn0260660 mp 3L skip2exons -0.252 7.93E-03 Motor axon guidance
FBgn0259682 CG42351 2R exonskip —0.242 9.21E-08 none
FBgn0259214 PMCA 4 mutexcl 0.232 5.87E-08 Calcium transporting ATPase activity
FBgn0259214 PMCA 4 exonskip -0.229 5.87E-08
FBgn0037297 CG1116 3R retintron 0.229 1.39E-03 none
FBgn0010482 12)01289 2R Un-classified 022 2.98E-08 Protein disulfide isomerase activity
FBgn0036194 CG11652 3L AltFE 0.208 8.26E-03 Phagocytosis

'PSI in females — PSI in males. Table is sorted by APSI absolute value.
2p-value from Fisher's Exact Test, FDR corrected by Benjamini-Hochberg.

3Selected terms (not a complete list), extracted from the “Summary information” section of each gene’s FlyBase entry [35].



Sturgill et al. BMC Bioinformatics 2013, 14:320
http://www.biomedcentral.com/1471-2105/14/320

functions. Reticulon-like 1 had significant differences at
several pairwise defined alternative first exons. Rtnll en-
codes a membrane protein localized to the endoplasmic
reticulum [36] and has a role in inter-male aggressive be-
havior [37], olfactory response [38], and motor axon devel-
opment [39]. Another gene with sex-differential skipped
exons, multiplexin, is involved in motor axon guidance
[40], although without a known link to behavior. We de-
tected sex-differential regulation in transcripts encoded by
the found in neurons (fne) gene, which encodes a member
of the embryonic- lethal abnormal vision (ELAV) gene
family of RNA-binding proteins [41,42]. Wildtype fue is
required for robust male courtship behavior [43].

Our splicing calls for the sex determination transcripts
were more sex-biased than in previous RNA-Seq experi-
ments [29] on whole adult flies. To help determine if
this was due to methodology, we also quantified splicing
events using measurements of exon coverage and nor-
malized isoform abundance estimates (in FPKM), to see
if these approaches yielded similar results. These metrics
predicted results that were much less sex-specific; for
example in the case of dsx sex- specificity was 62.9-
67.4% by exon counts or FPKM, and 95.6-99.4% by
Spanki (Figure 6A). There are possible technical explana-
tions for the non-sex-specific exon read results, including
the sequencing of transcripts that are polyadenylated be-
fore splicing is complete (more prevalent on the 3-prime
end in dsx). Inefficient poly-A selection due to oligo (dT)
priming in unprocessed transcripts may also play a role
[33]. Our measurements using splice junctions better re-
flect processed transcriptional output. These results show
that using junction coverage with Spanki results in more
switch-like splicing difference calls. Similarly, we found
highly sex-biased splicing of other members of the sex de-
termination cascade, except for the fra locus where in-
complete splicing to the female form is known to occur
[44] (Figure 6B). None of the other splice detection
methods called sex-biased splicing for each of the sex de-
termination gene transcripts (Figure 6C), clearly highlight-
ing the improvements made with filtered Spanki output.

As expected for any expression study based on sam-
pling, we did see greater variability at low abundance,
but when abundance was high, results were stable. At
high simulation coverage, PSI quantification was also ac-
curate (Figure 4E). The results for dsx and the other sex
determination targets greatly exceeded the 10 junction
counts threshold. Although higher counts do indeed give
more stable measures of proportions, the effect we are
observing in this case is sex-specificity, for which junc-
tion counts are a superior measurement.

Conclusions
Junction-based splice calling is an important method for
analysis of alternative splicing. Our results highlight
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many of the junction-read errors that can occur in these
RNA-Seq datasets and outline simulation strategies for
modeling these errors, either while developing an ana-
lysis pipeline, or tailored for each experiment. We have
implemented tuneable filters in Spanki to remove false
positives without sacrificing specificity, and clearly show
that developing error models from real RNA-Seq data
and applying these post hoc filters improves splicing de-
tection in D. melanogaster heads. Failing to filter for se-
quencer and aligner error, to account for mapping
ambiguity in transcriptome space, and to under-estimate
the null distribution of splicing differences, results in in-
accurate estimation of splicing differences in RNA-Seq
studies.

Methods

Molecular biology

RNA samples were prepared from white'*®, Canton-S (B)
isogenic stock adult D. melanogaster heads [45,46]. 7 days
post-eclosion flies were grown at low density, allowed to
mate ad libitum, flash frozen on dry ice, and beheaded in
biological duplicates. Sample descriptions and detailed
methods are provided in Gene Expression Omnibus
(GEO) accessions (GSM928376, GSM928377, GSM928383,
GSM928384, GSM928392, and GSM928393). We added
exogenous controls (1% final) from the External RNA Con-
trol Consortium (ERCC, pool 15) prior to library construc-
tion [4]. Paired-end sequencing was performed on GAII or
HiSeq instruments (Illumina, San Diego, CA, USA) for
76 cycles for each read mate.

For quantitative real-time RT-PCR, 1 pg of total RNA
was subjected to DNase treatment (Promega, Madison,
WI, USA) followed by reverse transcription, using the
random primer of the Transcriptor First Strand cDNA
Synthesis Kit (Roche Applied Science, Indianapolis, IN,
USA). PCR was performed in biological duplicates, with
duplicate quantification of each biological duplicate.
¢DNA from 12.5 ng of total RNA was amplified with Fast
SYBR Green Master Mix (Applied Biosystems, Carlsbad,
CA, USA) in a StepOne Real-Time PCR machine (Applied
Biosystems, Carlsbad, CA, USA). Initial activation was
performed at 95°C for 20 seconds followed by 40 cycles.
Cycles were 95°C for 3 seconds followed by 60°C for
30 seconds. Then the melting curve was generated ran-
ging from 60°C to 95°C with an increment of 0.5°C each
5 seconds. Act5c (Actin 5C) was used as a control. Primers
were designed with the web interface of the NCBI Primer-
Blast software [47]. All amplification products were ana-
lyzed by agarose gel electrophoresis and produced single
fragments of predicted sizes. The relative transcript level
was calculated using the cycle threshold value (Ct) by the
method of 272, where ACt= Ctiranscript - Ctacsse. QPCR
data are provided for each primer pair, after normalization
to junction coverage of the mutually exclusive isoform.
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Figure 6 Resolution of splicing differences in the sex determination pathway. Detection and visualization of sex-differential splicing in sex
determination pathway components by different methods. (A) Analysis of the regulated alternative last exons splicing event in dsx, showing the
splicing difference between the female isoform (top, red) and male isoform (bottom, blue). Mosaic plots display female isoform (red) and the male
isoform (blue) abundances in each sex for: splice junctions counts, gPCR, counts of reads within exons, and full length isoform abundance esti-
mates (FPKM). (B) Splicing analysis for other components of the sex determination pathway, along with sex-differential splicing results obtained: Sx/,
skipped exon; msl-2, retained intron, tra, alternative acceptor, and fru, alternative donor. Significance measures from Spanki (Benjamini-Hochberg
adjusted p-value) are shown beneath each mosaic plot. (C) Performance of other RNA-Seq analysis tools in detecting sex determination pathway com-
ponents. DEXSeq [12], which relies only on exon-level counts, detected significant differences in fru, SxI, and dsx, but not in msl-2 or tra. Similarly, a
Bayesian analysis with MISO [13] failed to detect differential splicing of ms/-2 transcripts. For Cuffdiff [11], we examined results for the splicing difference
test (Jensen-Shannon Divergence metric), and also for isoform abundance differences.

supplied in GTF format with the -G option. We made a
minor modification in the annotation to remove the anti-
sense transcripts of modifier of mdg4 (FBgn0002781),
since these transcripts caused fatal errors in downstream
analysis tools.

Read mapping

We used reads that passed Chastity (score > 0.6) base-
calling filtering (Illumina CASAVA pipeline 1.6.47.1) and
mapped using TopHat v1.4.1 [11], with Bowtie v0.12.7
[19], and samtools 0.1.12a [48], and parameters “-g 1 —
solexal.3-quals, -i 42.” We used D. melanogaster genome
release 5 [49,50], as obtained from the UCSC genome
browser (excluding “chrUextra”) [51], for mapping. We

Gene expression quantification and comparison
To produce estimates of gene and transcript level abun-

also appended sequence for 96 exogenous controls to the
genomic reference [4]. A reference annotation (Ensembl
release 67, corresponding to Flybase 5.39) was also

dance, we quantified based on both full-length transcript
assemblies and on discrete counts within annotated gen-
omic boundaries, as each approach has different strengths
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[11,52]. We used Cufflinks [11] (v.2.0.2) to generate abun-
dance estimates of full-length isoforms, expressed in units
of expected fragments per kilobase of transcript per mil-
lion mapped reads (FPKM). We determined relative abun-
dance differences using Cuffdiff v.2.0.2 [11], using upper
quartile normalization, and setting “max-bundle-frags”
very high (50E06), to ensure that very highly expressed
features were not excluded. To provide alternative quanti-
fications and comparisons, we used HTSeq [52] to gener-
ate counts of reads that fall within discrete features. The
“htseq-count” program in HTseq v.0.5.3, with the conser-
vative “union” mode and default parameters, was used to
generate counts. We used the R package DESeq (v.1.8.3)
to test for differential expression [52]. “Variance outliers”
were identified as contrasts where the maximum residual
variance is > 15. This value was exceeded in ~2% of all
genes, which we removed from our final differential ex-
pression calls.

Simulation and splicing analysis

Simulations of junction reads, along with quantification
of junctions and alternative splicing, was performed in
the open-source python package: Splicing Analysis Kit
(Spanki). A summary of Spanki’s features is provided in
Table 1. Spanki is available at http://www.cbcb.umd.edu/
software/spanki and http://github.com/dsturg/Spanki.

Error models were built by performing quality-aware
mapping on our reads with Bowtie v0.12.7 [19], and sup-
plying the map file to the program spankisim_models.
These models are incorporated into the Spanki reposi-
tory, so that they can be applied to simulations by
choosing the “flyheads” error model.

For generating simulated reads, we used the spanki-
sim_transcripts command, supplying a reference annota-
tion (Ensembl release 67, corresponding to Flybase 5.39),
using the default parameters for intron retention (-ir =
0.20) and fragment size (-frag =200 bp). The coverage
to simulate was specified as either coverage values with
the —cov parameter (for the simulations in Figure 2), or
as reads per kilobase with the —rpk (for the simulations
in Figure 4). We used the “flyheads” error model, which
was built as described above, and is included in the
program. The simulated reads in this study are avail-
able here: http://www.cbcb.umd.edu/software/spanki/
simulations.html.

We also compared our detection performance to other
tools, including Cuffdiff, MISO, and DEXSeq. We used
the results reported in the “splicing.diff” file from Cuffdiff
v.2.0.2 [11]. We used MISO with event definitions for D.
melanogaster from the MISO website, supplemented with
additional custom definitions, and applied a Bayes factor
cutoff > 40 for the false positive analysis, and > 10 for the
false negative analysis [13]. For simulated null datasets, we
performed isoform centric analysis using Ensembl
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annotation. For DEXSeq, we counted reads that map
within exons using the script provided with the package
[12], and performed an exon-level differential analysis.

Spanki program design (Simulator)

Spanki estimates error model parameters from a first
pass alignment of real RNA-Seq reads using permissive
quality aware mapping with Bowtie [19]. The error mod-
eling function within Spanki parses the alignments in
Bowtie’s map format, and produces probability weight
matrices for mismatches by position in the read and by
base substitution type, and for quality scores by position.
The read simulator uses these models to introduce
mismatches.

Spanki’s RNA-Seq simulator function generates simu-
lated reads with errors incorporated. The user sets the
transcripts to simulate (e.g. transcripts expressed in the
biological sample under study), a depth of coverage (e.g.
matching the experimental sequence depth), and mis-
matches are then introduced according to the specified
model. If a user does not want to build new error
models, pre-built error models from D. melanogaster
head RNA-Seq described in this work are included,
along with models based on a sample from the modEN-
CODE developmental timecourse [29], and a simple
weighted-random model. The Spanki simulator takes
transcript models in GTF format, and extracts transcript
sequence from a genomic reference and chooses random
positions in the designated transcript sequence to ex-
tract reads. For paired-end reads, fragment sizes are
drawn from a normal distribution of mean 200 bp and
standard deviation 20 bp. This is user tunable. For ex-
ample, to simulate intron retention, Spanki generates a
specified fraction of simulated reads from complete tran-
script sequence where introns are retained. Depth of
coverage is specified in units of transcript coverage or
reads-per-kilobase (RPK). Reads can be generated for
transcripts in fixed proportions, creating a null model
for splicing differences between samples. Alternatively,
Spanki accepts a text file where the user can list individ-
ual transcripts to simulate at different coverages, which
allows simulating fixed quantitative splicing differences
between alternative isoforms, or the user can specify a
custom model built on the user’s own data.

Modeled error frequencies are applied as weights for
mismatch number, position, and substitution. Weight
matrices of quality scores are used to create a consensus
quality value across all positions - one for matched posi-
tions, and one for mismatched positions, which are
concatenated to create a quality string for the read.
Spanki reports information that facilitates analysis of
alignment and detection. Coverage generated by the
simulation for each splice junction is reported, along
with read counts for each transcript. To enable the
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tracking of aligner errors, the genomic coordinates of
origin for each read are incorporated into a unique read
identifier. The true origin of simulated reads is also re-
ported in a SAM file that represents a perfect alignment,
which can be fed to an assembler such as Cufflinks [11]
to allow the evaluation of error in transcript abundance
estimates due to assembly separately from errors in
alignment.

Spanki program design (Junction filtering quantification)
For maximum flexibility, Spanki decouples the align-
ment and filtering steps, with a tool that applies post-
hoc analyses of alignment files. This allows alignments
to be performed on multiple data sets, with consistent
filtering applied later, and allows changing the filtering
criteria without re-aligning. Spanki streams through a
BAM file produced by any aligner, using the Pysam mod-
ule (Andreas Hager, http://code.google.com/p/pysam/)
and calculates junction coverage along with alignment
diagnostic measurements. These measurements include
the number of alignment offsets, alignment entropy [29],
and Minimum Match on Either Side (MMES) [53]. Quali-
tative diagnostic results are also reported, such as repeti-
tiveness of exon anchor and intronic sequence. Two
values are calculated, the edit distance of 5-prime exon se-
quence and 3-prime intron sequence, and the edit dis-
tance of 3-prime exon sequence and 5-prime intron
sequence. This operation is performed on 10 bp segments,
but the user can specify other sizes. Gene assignments for
junctions are reported to identify possible paralog joining
errors. Gene assignments are made for each donor and ac-
ceptor site by genomic overlap with annotated gene
models, and the consensus of both is used as the junction
gene assignment. When the gene assignments for each
end of a junction do not agree, they are reported as
ambiguous.

In addition to alignment diagnostic values, Spanki gen-
erates calculations that are informative of splicing regu-
lation. For example, Spanki estimates intron retention
for each junction, regardless of the presence of an anno-
tated retained intron isoform, by quantifying “intron
read-through.” These are read alignments that span the
exon/intron boundary without gaps on either side. To
ensure comparability, Spanki enforces an overhang re-
quirement, which is user-tunable, and is applied to both
intron read-through and junction calling.

Spanki program design (Splicing event definition

and quantification)

While there are only a few major splicing type events, the
full diversity of possible splice forms is much more com-
plex. Spanki provides utilities for parsing essentially any
splicing event using definitions produced by AStalavista
[16]. The AStalavista algorithm begins by decomposing
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transcript models into “sites,” which are exon boundaries.
Graphs are built for each gene, where splice sites are
nodes and intron or exon edges connect them. Splicing
events are subgraphs with identical nodes on ends, but no
common interior nodes. This process finds regions of the
parent transcript where the donor/acceptor sites of two al-
ternatives are present on a parent transcript, but utilized
mutually exclusively in processed transcripts. Spanki uses
these event definitions to build mutually exclusive “paths”
composed of disjoint junction sets that interrogate each
event specifically.

Uniquely, Spanki reports coverage from joins to exons
that are outside of the event being considered. This is
because many gene models are complex, and splicing
events cannot always be assayed independently. For
events with multiple exons in the inclusion or exclusion
paths, there may be up- and down-stream connections
to other exons that confound results. To adjust for this,
Spanki calculates and reports the junction coverage for
first-order neighbors of all interior exons that extend to
exons outside the local splicing event. This coverage
may lead to over-or under-counting of inclusion or ex-
clusion joins within the splicing event. Since our model
focuses on discrete and specific measurements, we use
this information to indicate the presence of potentially
confounding coverage for each event.

Since splicing analysis is a comparison of two alterna-
tive events, it is convenient to compare using propor-
tions. The PSI metric that Spanki uses to express
proportions has been applied elsewhere to splicing mi-
croarrays and RNA-Seq [20,54,55]. Using only junctions
yields more consistent comparisons between events than
including exon reads, since the number of positions is
constant for events of the same type. Since different spli-
cing paths may be composed of a different number of
junctions (for example, in the case of skipped exons),
the PSI metric is calculated as the number of reads per
junction in the inclusion path divided by the number of
reads per junction in the inclusion path plus the reads
per junction in the exclusion path.

Assessing the significance of differences between sam-
ples requires accounting for differences in transcription
and sequencing depth. The Fisher’s Exact Test (FET) is
well suited to this task, since testing proportions accounts
for differences in sample totals due to depth or transcrip-
tion. Spanki constructs 2 x 2 contingency matrices from
junction counts for each splicing event, to test the null hy-
pothesis that the two samples have equal inclusion/exclu-
sion proportions. The two cells of the first row of the
matrix are the total read counts of the inclusion and ex-
clusion junctions, respectively, for one sample. The second
row contains the same data for the second sample. The
test as constructed uses integer counts, as required for the
Fisher’s exact test. Each defined pairwise event is tested,
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and each gene may have multiple events. The test is per-
formed using the fisher python package v.0.1.4 (Brent
Pederson, http://pypi.python.org/pypi/fisher/). FDR correc-
tion is performed by the Benjamini-Hochberg method im-
plemented in the StatsModels package (Skipper Seabold,
Josef Perktold, http://statsmodels.sourceforge.net/).

To help visualize splicing differences, Spanki includes
R scripts to produce mosaic plots, where the relative size
of each cell is proportional to real (non-normalized) cell
counts. Code is also included to produce fourfold plots,
which provide a visual test of the null hypothesis of the
FET. This provides an effective simultaneous visualiza-
tion of normalized proportions and significance. These
plots are implemented in the “vcd” package for R [56].
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