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Abstract
Background: Existing methods for analyzing bacterial CGH data from two-color arrays are based
on log-ratios only, a paradigm inherited from expression studies. We propose an alternative
approach, where microarray signals are used in a different way and sequence identity is predicted
using a supervised learning approach.

Results: A data set containing 32 hybridizations of sequenced versus sequenced genomes have
been used to test and compare methods. A ROC-analysis has been performed to illustrate the
ability to rank probes with respect to Present/Absent calls. Classification into Present and Absent
is compared with that of a gaussian mixture model.

Conclusion: The results indicate our proposed method is an improvement of existing methods
with respect to ranking and classification of probes, especially for multi-genome arrays.

Background
Microarray based comparative genomic hybridizations
(CGH) is a tool for rapid investigation of the genetic con-
tent of bacteria. The technique is used for comparative
genomic studies as well as screening for virulence factors
or other genomic features of interest in a population [1-3].
The basic idea behind the technology is to construct
microarrays from sequenced and annotated genomes, and
then hybridize genomic DNA from other sources to these
arrays to detect similarities and differences in genomic
content. For two-color arrays DNA from some sampled
genome is labeled and hybridized against labeled DNA

from a reference. This reference is typically genomic DNA
from one or several fully sequenced genomes, usually
those from which the array was constructed.

The results obtained from such experiments can be seen as
projections of the genomes in question onto the sequence
space spanned by the microarray probe sequences. This
probe space may vary in size, representing only a set of
selected genomic features all the way up to pan-genomes.
Probes may be short or long oligonucleotides, or PCR
products, and we will in this paper only consider cases
where the probe sequences are known exactly.
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The data from these experiments are qualitatively different
from those obtained in gene expression studies, where sig-
nal intensities must be seen as a continuum due to the
dynamic abundance of mRNA. In bacterial CGH (bCGH)
differences in signal intensities are predominately due to
differences in sequence composition, copy number abber-
ations are few and give smaller signal fluctuations. For this
reason bCGH signals tend to behave more like a categori-
cal variable with two possible outcomes, usually denoted
Present and Absent. A strong signal, corresponding to
Present, means the corresponding probe sequence is
found, with sufficient similarity to yield hybridization, in
the investigated genome. A weak signal means a too small
part of the probe sequence is found in the genome to give
hybridization, and the probe is called Absent.

Some methods to analyze bCGH data of this type have
been proposed, and some of them are reviewed and tested
in a recent publication by [4]. Most of these methods base
their results on the log-ratio of signals, which is a standard
adopted from the analysis of expression data. We will in
this paper propose a new strategy for analyzing bCGH
data, that does not rely on log-ratios, which we believe is
a misleading paradigm for this type of data. Also, some
previously proposed methods utilizing more than just
log-ratios, like [5-7], are all unsupervised methods, not
taking into account the sequence information from the
reference genomes. In our approach this information is
also included to aid the analysis. In the analysis of two-
color microarray data demonstrated in this paper, we treat
the array signals separately, almost as two single-color
arrays, hence the method could easily be used for data
from this technology as well. We test our method on data
from S. aureus and E. faecalis, and compare our results to
those achieved by other effective methods.

Methods
Sequence identity
Any bCGH experiment starts by performing alignments of
every array probe sequence against the fully sequenced
reference genomes to establish which probes are present
and absent in these genomes. We use the term R-genome
for a reference genome. We define the identity between
probe and an R-genome as the number of identical bases
in the best local alignment between them divided by the
probe length to obtain a value between 0 and 1. We call
this quantity Rbij for probe i against the R-genome in
hybridization j. If Rbij = 1 it means an exact copy of the
probe sequence is found in the R-genome, while if probe
i has no significant hits in R-genome j we set Rbij = 0 even
if all probes will of course have some very short subse-
quences in common with any genome.

The categorical response Present or Absent is coded as 1 or
0, respectively. This require, however, that intermediate
Rb-values must be rounded to either 1 or 0, i.e. we need

some a priori threshold that specify the sequence identity
needed to be Present. Our analysis approach does not
require categorical responses, and intermediate Rb-values
can be used as is. However, if the ultimate goal is to clas-
sify between Present and Absent, the analysis is usually
favored by having only 1 and 0 as responses from the start.

A sampled, un-sequenced, genome we call a sample-
genome or S-genome. Corresponding to Rbij for the R-
genome, we also have a similar Sbij for the S-genome. The
motivation behind the entire bCGH experiment is to say
something about this Sbij, i.e. the sequence identity
between probe i and the S-genome in hybridization j.

Preprocessing
For each array in the experiment, we assume background
correction and within-array normalization has been done.
We have employed standard methods in the LIMMA pack-
age [8] in R [9], available from the Bioconductor [10].
Normalization of CGH arrays has recently been discussed
by [11] and [12], and nothing in our downstream analysis
prevent the use of these or other approaches.

The flagging of low quality spots should be done very
careful for bCGH analyses. In standard procedures for
expression data, spots with low signals are removed. For
bCGH data these spots turn out informative, because they
span the range of array signals. Especially negative control
probes, e.g. spots with alien or no DNA, are important
since they carry information about which signals to expect
when no hybridization takes place.

On microbial arrays probes are usually spotted multiple
times (replicates). We will only consider the median value
of these replicates on each array, but the number of repli-
cates for each probe is kept as a weight in the final predic-
tion, i.e. probes with more replicates have larger impact.

Let  and  be the median preprocessed log-trans-

formed signals from the R- and S-genome channel for
probe i in hybridization j.

In most cases a bCGH experiment will consist of a batch
of several hybridizations to be analyzed simultaneously.
For our downstream analysis some between-array nor-
malization within this batch is beneficial. Let Ij0 = {i|Rbij <
0.1}, i.e. the set of probes with R-genome sequence iden-
tity less than 0.1. Also, let Ij1 = {i|Rbij > 0.9}. Let Raj0 and
Raj1 be the median of the Raij values for the probes in Ij0
and Ij1, respectively. Then the between-array normalized
R-signal is

Raij′ Saij′

Ra
Raij Ra j
Ra j Ra j

ij =
′ −

−
0

1 0
(1)
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The signals from the S-genome channel is treated the same

way, only replacing  with , obtaining the normal-

ized signal Saij. Notice that this procedure requires a sig-

nificant number of probes to have low (less than 0.1)
sequence identity with the R-genome, i.e. negative control
probes are essential here. The effect of this normalization
can be seen in Figure 1.

Probe bias
Given a sequence identity Rbij, the corresponding array
signals Raij will in general correlate in a positive way, i.e.
stronger sequence identity yields stronger array signal,
and a similar relation we assume also holds between Saij
and the the unknown Sbij. However, probes with similar
Rb-value may show consistently different Ra-values. This
reflects a variable signal potential for the different probes
due to sequence composition and/or bias during con-
struction of the arrays. We refer to this as the probe bias.
The same probe bias we assume is also present in the rela-
tion between Sbij and Saij.

The Rb-values take on L discrete values between 0 and 1,
and consider subsets of probes with similar Rb-value, i.e. l
= {i|Rbij = l} for l = 0,...,1. We assume for all i ∈ l and
hybridization j the linear model

Raij = μlj + Bij (2)

where μlj is the unconditional expected array signal at Rb-

value l and Bij is the probe bias for probe i in hybridization

j. From this we get estimates of the probe bias for each

hybridization .

For probe i we can get a pooled estimate of probe bias by
averaging over the J hybridizations, i.e.

If arrays are similar with respect to this bias the estimate

 is less variable than . On the other hand, if some

arrays differ substantially with respect to this bias, the
pooled estimate is poor. To cope with all situations we

introduce a weight ω ∈ [0,1] and use as the final estimate
of probe bias

Choosing ω close to 1 means information is 'borrowed'
across hybridizations.

Raij′ Saij′

Bij

B B Ji ij

j

J

=
=

∑ /
1

(3)

Bi Bij

ˆ ( )B B Bij i ij= + −w w1 (4)

Predicting sequence identityFigure 2
Predicting sequence identity. An illustration of how an 

estimated function  maps bias-corrected normalized array 

signal Raij -  onto sequence identity Rbij. Gray circles are 

data, black curve indicate the function . In the left panel 

the sequence identities are used as is, while in the right panel 
all Rb values above 0.7 have been set to 1.0, and all below 0.7 
to 0.0, corresponding to Present and Absent, respectively.
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Effect of between-array normalizationFigure 1
Effect of between-array normalization. Plots show log-
transformed array signal from S-genome (Sa) against R-
genome (Ra) for two arrays before (upper panels) and after 
(lower panels) between-array normalization.
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Predicting sequence identity
The basic idea is, for each array, to fit a function that
describes how Rb-values depend on bias-corrected Ra-val-
ues, and then use the same function to predict Sb-values
from bias-corrected Sa-values.

First, we assume there is a function fj for hybridization j
such that

We will make few assumptions about the shape of the
function fj, but we will require it to be monotonously
increasing, since an increased array signal should always
indicate stronger sequence identity.

We have chosen to estimate fj by a weighted running

mean, where probes are weighted by their number of
within-array replicates. For notational simplicity, let xij =

Raij - . The range of the function is divided into N

equally spaced knots, x1,...,xN, and let D be the width

between two knots. For knot n, let Cn be the data subset

{xij, Rbij} whose value of xij falls within xn ± 3D/2. Finding

fj(x1),...,fj(xN) leads to the constrained optimization prob-

lem

This problem can be solved by first computing the uncon-
strained optimum (weighted running mean), and then
resolving the violated constraints in a recursive way. If the
initial estimate of fj(xn+1) is smaller than that of fj(xn),
both are replaced by the weighted average of them,
weighted by the number of data points behind each initial
estimate. This may again violate the constraints on the
estimates of fj(xn+2) and/or fj(xn-1), and hence the recur-
sion.

Given the estimates of fj(x1),...,fj(xN) the estimated func-

tion value at any point within the range is found by linear

interpolation between the knots. Let  denote this esti-

mated function for array j. Figure 2 illustrates how  fits

a typical data set.

For the given S-genome in hybridization j, the prediction
of the sequence identity for probe i is now given as

It is not uncommon to repeat experiments, i.e. hybridize
the same S-genome to several arrays. In this case it is nat-
ural to first analyze each array separately, obtain predic-

tions from each array, and in the end average these 

for each S-genome. A description of uncertainty in the pre-
diction is best achieved by constructing a confidence
interval for Sbij. Since this variable is trapped between 0

and 1 it seems reasonable to avoid inference based on spe-
cific distributions, and instead rely on some non-paramet-
ric approach. In case of a categorical response (Present/
Absent), majority vote should be used instead of average,
and statements concerning uncertainty should be put for-
ward as some estimate of posterior probability of Present.
The proportion of Present-votes for each probe is the max-
imum likelihood estimate of this probability, assuming
the repeated experiments are independent.

Data
In order to test methods we performed bCGH experi-
ments using only sequenced genomes, i.e. the Sb-values
are, contrary to a real situation, all known. Two different
arrays were used, one representing 6 genomes of Staphylo-
coccus aureus available from J. Craig Venter Institute [13]
(JCVI), and one representing the genome of Enterococcus
faecalis strain V583. In both cases probes are 70-mer oligo-
nucleotides. The S. aureus array contains 5057 different
probes spotted six times, where 4515 are ordinary probes
representing genomes, and the remaining 542 negative
control probes include various alien DNA and the 'empty
probe' (no DNA). The E. faecalis array contains 3218
probes representing genes in the genome of V583, 10
probes representing the enterococcal pathogenicity island
of strain MMH594 and 15 negative controls, giving a total
of 3243 probes, spotted three times each.

Experiments were conducted using the S. auerus strains
COL, N315, Mu50, NCTC8325 and RF122 and E. faecalis
strains V583 and OG1RF, whose genome sequences are
available at NCBI [14]. For the S. aureus experiments seven
different pairs of genomes were selected for hybridization,
and for each pair a dye-swap was performed. For each of
these 14 hybridizations both genomes involved can play
the role as R-genome and S-genome, hence there are alto-
gether 28 different S. aureus data sets where we can com-
pare predicted and true sequence identity. Two
hybridizations of V583 versus OG1RF were conducted
(dye swap), and again both genomes can play the role as
R-genome and S-genome, giving 4 additional E. faecalis

E Rb f Ra Bij j ij ij( ) ( )= − (5)

Bij

min ( ( ))
( ),..., ( )f x f x

ij j n

Rb Cn

N

j j N
ij n

Rb f x
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−
∈=
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constrained  to f x f xj n j n( ) ( )≤ +1

f̂ j
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data sets. In order to compare our method against other
methods we use a categorical response, i.e. each probe is
classified as Present (1) or Absent (0). This means we have
assigned a threshold to the Rb- and Sb-values in order to
round each value to 1 or 0. We have used the threshold 0.7
(70% identity), i.e. an Rb- or Sb-value above 0.7 corre-
sponds to Present and is rounded to 1 and values below
0.7 is rounded to 0. The threshold is chosen on the basis
of the histogram in Figure 3. The S. aureus arrays contain
probes representing genes in 6 different strains. By BLAST-
ing the probe sequences against the genome sequences of
these strains, the identities distribute as indicated in Fig-
ure 3. Thus, it seems that probes matching with approxi-
mately 70% identity or more are considered Present in the
genome by JCVI who designed the arrays. This also corre-
sponds well with our experience regarding the degree of
match giving hybridizations. This threshold will in gen-
eral depend on array design and hybridization conditions,
and a proper value must be decided upon for each exper-
iment separately. Our method is independent of this
choice as long as it is a reasonable value for the experi-
ments analyzed. Table 1 show the percent of truly Present/
Absent probes in each of the genomes using our probe set
and threshold.

As previously mentioned, we advocate a weak flagging of
array spots during the preprocessing of the data. This

means only truly damaged spots should be flagged, and
spots with weak signals or negative controls, should be
part of the data set through the entire analysis. When com-
paring our proposed method against other approaches,
we used both 'hard' and 'weak' flagging of spots to illus-
trate the differences between these strategies. By 'hard'
flagging we mean removing all negative controls as well as
all spots flagged by the image analysis software, i.e. in our
case all spots with negative flag value from GenePix. In the
'weak' flagging only manually discarded spots were
removed, i.e. only spots with flag value -100 from Gene-
Pix.

Results
Our proposed method predicts probe sequence similarity
to a sampled genome based on a biased-corrected array
signal. Based on observed array signal and probe sequence
similarities to the reference genome, we estimate a probe
bias for each probe. Then, correcting for this probe bias,
we fit a non-parametric function describing the relation
between array signal and probe sequence similarity for the
reference genome. Finally, we use this function to predict
probe sequence similarity from observed array signals for
the sampled genome. If a categorical response (Present or
Absent) is desired this is coded as Present = 1 and Absent
= 0. Comparison to other approaches are here made on
data sets where true sequence similarities (Present/Absent
status) are known.

ROC-analysis
Most bCGH analyses are based on the ranking of probes
according to log-ratios. In our approach the correspond-
ing ranking is according to predicted sequence similarity.
The potential for correct classification was examined by
ranking all ordinary probes by both criteria, and the Area
Under Curve (AUC) statistic from a ROC-analysis [15]
was computed for the data sets. Under the hard flagging
regime, two of the E. faecalis data sets completely lacked
absent probes, and hence no AUC-values could be com-

Distribution of Rb valuesFigure 3
Distribution of Rb values. The histogram shows the distri-
bution of Rb-values when BLASTing the probe sequences 
against four of the genomes they are designed to represent. 
A majority of alignments show either Rb = 0 or Rb = 1, but a 
large proportion of probes also have 0.7 <Rb < 1.0. By 
choosing the threshold between Present and Absent at 0.7 
these probes are defined as Present.
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Genome Size (Mb) Present Absent

S. aureus COL 2.81 74% 26%
S. aureus N315 2.84 74% 26%
S. aureus Mu50 2.90 76% 24%
S. aureus NCTC8325 2.82 74% 26%
S. aureus RF122 2.74 70% 30%
E. faecalis V583 3.36 99% 1%
E. faecalis OG1RF 2.73 73% 27%

Overview of the genomes used in the test data sets. The Present/
Absent numbers indicate the percentage of probes on the arrays 
having sequence identity above (Present) or below (Absent) the 
threshold of Rb = 0.7. Percentages refer to the total number of 
probes, i.e. 5057 on the S. aureus array and 3243 on the E. faecalis 
array.
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puted for these data sets. Thus, only 2 of the 4 E. faecalis
data sets were included in the ROC-analysis. Figure 4
shows the AUC-values for both ranking criteria. An AUC-
value of 1.0 means perfect separation of classes, while a
value close to 0.5 means ranking is completely random,
i.e. both classes are mixed in the ranked list. In this analy-
sis we used the weight ω = 0.75 to compute the probe bias
effect. Other choices of these weights produced very simi-
lar AUC-values, and did not alter the big picture.

Effect of bias weight ω
Our proposed method depends on the choice of the
weight ω from (4). A weight close to 1 means information
is borrowed between arrays when it comes to estimating
the probe bias. To get an impression of the effect of this
constant, we varied it systematically over the interval [0,
1], and for each weight classified all probes in all data sets.
For each data set we computed the classification error as
the geometric average [16]. This is the square root of the
product of sensitivity (probability of classifying as Present
when truly Present) and specificity (probability of classi-
fying as Absent when truly Absent). Figure 5 illustrate how
the geometric average varies for different choices of ω over
the S. aureus and E. faecalis data sets.

Comparing classification results
In the review by [4], the best classification was obtained
by fitting a gaussian mixture model to the log-ratio distri-
bution on each array separately. Using a two-component
mixture, interpreted as the Present and Absent compo-
nent, probes are then classified into Present/Absent based
on the posterior probabilities [17]. Hence, we have cho-
sen this as a standard method for comparison. We classi-
fied probes in all 32 data sets with a log-ratio based
mixture model as well as our proposed method, which we
here refer to as bias-corrected S-signal prediction (BCSP).
Log-ratios were within-array normalized using the
LIMMA-package, as described in the Methods section. For
each data set, and each method, we computed the sensi-
tivity, specificity, positive predicted value (PPV) and neg-
ative predicted value (NPV). PPV is the estimate of the
probability of a probe being truly Present when classified
as Present, and NPV similar for Absent. The exercise was
done for both hard and weak flagging. In all cases the neg-
ative control probes were removed before classification
error was computed, i.e. classification quality was only
measured on ordinary probes. Table 2 summarize the
results.

Prediction error

Using our BCSP method, we can in principle predict the
degree of Presence of a given probe. In order to do this Rb-
values should not be rounded to 0 or 1, but used as is, as
illustrated in the left panel of Figure 2. However, since the
large majority of probes are either completely present or
absent, predicting an intermediate sequence identity is
usually a sign of uncertainty of the probes actual status.
This is reflected in Figure 6, where we have indicated the

average absolute error |  - Sbij| for the different pre-

dicted values .

Discussion
There is at present no standard approach for analyzing
bacterial CGH data, and the methods reviewed by [4] are
only a selection of approaches employed in recent bCGH-
publications, e.g. see [18] and [19]. Common to the large
majority of these methods is the use of the log-ratio for
ranking and classifying probes. In our notation it means
sequence identity Sb is predicted from array signal Sa - Ra.
This is a paradigm inherited from the analysis of expres-
sion data. However, for bCGH data it is actually possible
to test how informative this quantity is, since we can per-
form experiments with one sequenced genome against
another. This was done by [6] and [7], and from both pub-
lications we may conclude that combining Sa and Ra in
other ways than just subtracting one from the other, is
superior. In this paper we have a much larger data set, and
the results from Figure 3 clearly show the same picture.

Ŝbij

Ŝbij

ROC analysisFigure 4
ROC analysis. The plots show AUC statistics for the 28 S. 
aureus data sets and 2 of the 4 E. faecalis data sets. Only ordi-
nary probes (negative control probes excluded) are ranked 
either by log-ratio (blue dots) or bias-corrected S-signal (red 
squares). In the upper panel we have used weak, and in the 
lower panel hard flagging, i.e. in the lower panel fewer probes 
are ranked.
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For both weak and hard flagging ranking by the bias-cor-
rected S-signal produce larger AUC values than ranking by
log-ratio. Hence, we can extract more information from
array-signals than just the log-ratios.

In our present approach we have also utilized the
sequence information Rb directly in the prediction of Sb.
This seems like a new idea, even if [20] has utilized
sequence information in the analysis of single-channel
CGH data. When predicting the sequence identity of the
S-genome, Sb, we first consider how sequence identity Rb
and array signal Ra relates to each other, and then use this
to predict Sb from Sa. The reason a rather obvious
approach like this has not be tried out long ago must be
due to the tunnel-vision imposed by the log-ratio para-
digm. In our approach we treat signals from dual-dye
arrays almost as if they were from two single channel
arrays, and then use the signal-genotype relation on one
array to predict the signal-genotype relation on the other.
For this reason the implementation of our method for sin-
gle channel arrays is straightforward. The only require-
ment is that for each sample-genome investigated there is
also a set of reference signals, i.e. at least one array must
be used to hybridize an already sequenced genome to
obtain these reference signals.

An argument for using log-ratios is that probe signal
biases are canceled. Since we do not use log-ratios, we
compensate for this effect by estimating a probe bias from
Eq. 4 and then subtract it in Eq. 6. Figure 4 indicates that
the weight ω should be large, somewhere between 0.7 and
1.0. However, the differences in geometric average are
small for various choices of ω, and even at ω = 0 it is well
above 0.9. The values at ω = 0 also indicates the precision
we get for analyzing a single array, because here we do not
borrow any information across arrays. Hence, these
results indicates only a small gain in performing a batch
of hybridizations, and analyze all arrays together com-
pared to doing it array-by-array.

In Table 2 the results for classification in all 32 data sets
are displayed. For the 28 S. aureus data sets the picture is
clear: Our proposed method, denoted BCSP, performs
better than the log-ratio-based mixture model, which is
the 'winner' in [4]. For all four criteria sensitivity, specifi-
city, positive predicted value and negative predicted value,
the BCSP method gives significant improvement to the
mixture model method (small p-values). Noticeable is
also the difference between weak and hard flagging. By
hard flagging around 1000 ordinary probes are removed
from the data set (in addition to all negative control
probes), while with weak flagging none are removed. Sen-
sitivity is always improved by hard flagging, but specificity
is poorer. The latter means Absent probes become more

Prediction errorFigure 6
Prediction error. The distribution of absolute error of pre-

diction |Sbij - | over predicted sequence identity  for 

all data sets. Each bar is the average prediction error in the 
corresponding interval.
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Optimal choice of ω. The curves indicate geometric aver-
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difficult to detect after hard flagging. This is natural for the
BCSP method, since the informative negative controls are
no longer available. In general, hard flagging means there
are fewer data with small Ra and Rb-values, and the shape
of the functions displayed in Figure 2 become more uncer-
tain and difficult to estimate. Given the excellent results
for weak flagging, we can think of no good reason to
throw away a large proportion of the probes in a hard flag-
ging procedure. For the E. faecalis data the results are more
unclear. For weak flagging the BCSP method gives better
sensitivity, specificity and NPV, but slightly poorer PPV.
No differences are significant, basically because there are
only 4 data sets. For hard flagging BCSP produce absolute
no specificity, i.e. no truly Absent probes are classified as
absent! This illustrates the dramatic effect of losing all
information about negative controls and other probes
with Rb-value equal to 0. Also the mixture model behaves
poorly for hard flagging, and again this support a weak
flagging strategy.

A difference between the S. aureus and E. faecalis data is
that the S. aureus array contain probes representing fea-
tures in several genomes, a multi-genome array, while the
E. faecalis array contain little more than what is found in
the strain V583. Hence, in the S. aureus case there is always
a large number of probes that should not hybridize
against a specific S. aureus genome used for reference. This
situation is ideal for our proposed method because there
will always be a good balance between probes with small
and large Rb-values. In a recent publication [21] argues
that for multi-genome arrays a mixture of all genomes rep-
resented on the array should be used as the reference DNA

pool. Their conclusion is based on an analysis of log-
ratios. For our supervised learning approach, this strategy
should clearly be avoided. If you want to discriminate
between Present and Absent in the S-genome channel,
you must make certain you have data that show the differ-
ence between Present and Absent in the R-genome chan-
nel as well. Hence, there should always be a substantial
amount of probes against which a reference does not
hybridize. Figure 6 illustrate that reliable predictions of
sequence identity can only be given for very low or very
high identities, i.e. for probes who are either more or less
completely Absent or Present. Thus, even if our proposed
method opens up the possibility to use and predict any
sequence identity, intermediate identities always intro-
duce difficulties. Thus, predicting an identity around 0.5
can be seen as an indication of a large uncertainty.

Conclusion
We have proposed a method for analyzing bacterial CGH
data that seems to be a significant improvement com-
pared to any log-ratio based approach, as indicated by the
ROC-analysis. For actual classification we also tend to get
improved results compared to the log-ratio based mixture
model approach, which was the 'winner' in the survey of
[4]. Instead of forming log-ratios, we employ a supervised
learning approach where sequence identities are predicted
from bias-corrected array signals in each channel sepa-
rately. The proposed method require a substantial
number of probes with little or no sequence identity to
the reference genome used in the hybridization. Thus, the
method is particulary well suited for data from multi-
genome arrays.

Table 2: Classification results

Array Flagging # probes Method Sens. Spec. PPV NPV

S. aureus Weak 4515 BCSP 0.968 0.938 0.987 0.861
Mix.mod. 0.945 0.901 0.979 0.776
p-value 4.1·10-7 7.4·10-4 1.7·10-4 2.5·10-7

Hard 3539 BCSP 0.977 0.864 0.989 0.754
Mix.mod. 0.960 0.825 0.985 0.607
p-value 3.2·10-8 0.02 0.003 3.7·10-8

E. faecalis Weak 3228 BCSP 0.989 0.953 0.983 0.560
Mix.mod. 0.946 0.890 0.989 0.458

Hard 3145 BCSP 0.992 0.0 0.869 0.0
Mix.mod. 0.955 0.474 0.990 0.409

Classification of probes into Present/Absent was done after both weak and hard flagging, see text for details, and using both our bias-corrected S-
signal prediction method (BCSP) and the gaussian mixture model method. The number of probes indicate the median number of ordinary probes in 
a data set after flagging. All the results shown (Sens., Spec., PPV and NPV) are averages over the 28 S. aureus or 4 E. faecalis data sets. The p-values 
listed for the S. aureus results are the outcome of a Wilcoxon signrank test of wether the BCSP-method is a significant improvement of the mixture 
model method. A smaller p-value indicate a significant improvement. For the E. faecalis results all p-values were large (> 0.10) and they are not 
listed.
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