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Abstract
Background: DNA repair is the general term for the collection of critical mechanisms which
repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has
mainly been studied in experimental and clinical situations, and relatively few information-based
approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of
DNA repair proteins in genomes via informatics techniques is desirable; however, there are many
forms of DNA repair and it is not a straightforward process to identify and classify repair proteins
with a single optimal method. We perform a study of the ability of homology and machine learning-
based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for
the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency,
secondary structure, and homology information are used as feature information for input to a
Support Vector Machine (SVM).

Results: We identify that SVM techniques are capable of identifying portions of DNA repair
protein datasets without admitting false positives; at low levels of false positive tolerance, homology
can also identify and classify proteins with good performance. Secondary structure information
provides improved performance compared to using primary structure alone. Furthermore, we
observe that machine learning methods incorporating homology information perform best when
data is filtered by some clustering technique. Analysis by applying these methodologies to the
scanning of multiple vertebrate genomes confirms a positive correlation between the size of a
genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously
suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan
result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also
identifies several functionally unconfirmed proteins that are highly likely to be involved in the repair
process. A new web service, INTREPED, has been made available for the immediate search and
annotation of DNA repair proteins in newly sequenced genomes.

Conclusion: Despite complexity due to a multitude of repair pathways, combinations of sequence,
structure, and homology with Support Vector Machines offer good methods in addition to existing
homology searches for DNA repair protein identification and functional annotation. Most
importantly, this study has uncovered relationships between the size of a genome and a genome's
available repair repetoire, and offers a number of new predictions as well as a prediction service,
both which reduce the search time and cost for novel repair genes and proteins.
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Background
The DNA in cells of living organisms continually suffers
endogenous and exogenous damage. For example, cyto-
sine will sometimes spontaneously change into uracil
because of the loss of an amino group, and UV-A rays
found in sunlight at the surface of the Earth cause DNA
single-strand breaks, just two of the many documented
sources of DNA damage [1,2]. Endogenous damage is
more frequent and largely unavoidable [1]. In response to
the many types of damage that DNA suffers, there are
equally a myriad of methods to reverse the changes
incurred. DNA repair is believed to exist in any organism
with metabolic activity, and recent evidence suggests that
even ancient bacteria from as many as tens of thousands
of years ago was capable of DNA repair [3]. Of the many
forms of DNA repair, nucleotide excision repair, or NER,
is a critical repair system because of its ability to repair
bulky lesions that consist of more than one nucleotide [1]
and its complexity in utilizing at least 25 different
polypeptides [4]. Another key mechanism is the mis-
match repair system, which improves the error rate when
copying DNA from one mistake per 107 nucleotides to
one mistake per 109 nucleotides [5]. However, there are
some subtopics of DNA repair, such as translesion DNA
synthesis (TLS), which are still at a primitive level of
understanding [2].

Much of the knowledge on DNA repair that has been accu-
mulated is the result of biological experiments and clini-
cal trials, and there exist only a few bioinformatics-based
approaches to extract additional knowledge on DNA
repair. One such approach is the Repair-FunMap, a func-
tional database of proteins of the human DNA repair sys-
tems [6], which leverages a portion of its knowledge on
the list created by Wood and his colleagues for annotation
of human DNA repair genes [7]. The list created by Wood
et al. provides accession numbers so that genes can be ref-
erenced electronically. Only recently have a few other
repair-related analyses appeared utilizing bioinformatics,
such as to identify sites of phosphorlyation [8] or study a
particular gene [9].

The two aforementioned databases are limited to knowl-
edge based on human repair pathways, and are largely the
result of manual observation. However, with an increas-
ing number of genomes being sequenced, manual obser-
vation for DNA repair patterns across all species is costly.
For example, the Japanese medaka fish has 548 function-
ally "known" proteins but 24,113 proteins in its genome
are still classified as "novel" in the March 2008 version of
the ENSEMBL genome database [10], where novel in this
context means that they cannot be mapped to any species-
specific entry in several well known protein annotation
databases. ENSEMBL's 2008 estimate of a combined
19,686 genes in the medaka genome, including genes

with multiple protein transcripts, is in close agreement
with other medaka documentation [11]. It would be use-
ful to have a computational tool available to automati-
cally identify potential DNA repair proteins in new
genomes, to support or suggest further review of existing
annotations, and to additionally characterize the function
of new repair proteins. We have created a unique web-
based tool to do such tasks (see Results:Web Service sec-
tion for more).

Automated sequence analysis for determining the roles of
proteins is not a new concept. There have been a variety of
methods proposed, from simple to complex, for deter-
mining proteins of differing types. A simple method that
uses only amino acid or dipeptide frequency was used to
detect and classify histones [12]. Specific sequence pat-
terns or profiles resulted in a subcellular localization pre-
dictor that outperformed a homology-based method [13].
Amino acid composition combined with periodicity is a
technique competitive with other methods for predicting
DNA- and RNA-binding proteins [14].

We hypothesize that using machine learning can yield
predictions of unannotated proteins that are involved in
DNA repair with high likelihood, and with improved reli-
ability compared with existing and often-used homology
searches. We further clarify that the objective of this paper
is not to study any specific repair gene in a particular
organism, but rather to establish that several general
repair patterns exist in all organisms, to provide new com-
putational tools for DNA repair research, to use those
tools to identify more proteins involved in repair, and to
convey the computational complexity of repair protein
prediction analogous to its real world complexity.

We use a series of conceptually simple data transforma-
tion techniques incorporating combinations of primary
sequence, predicted secondary structure, and homology
search information to create feature vectors for input to a
Support Vector Machine (SVM). We include homology
information in our feature vectors since it is already estab-
lished that homology search is useful for identification
and classification of proteins (e.g. [13,15]). The transfor-
mation-based SVM experimental results are compared
with independent BLAST [16] trials.

Using the Protein Data Bank [17] (PDB) and UniProt
[18], two identification experiments are performed to dis-
tinguish between proteins that contain the Gene Ontol-
ogy [19] (GO) categorizations "DNA Repair" and
"nucleus" (see Datasets for details). Since using BLAST-
clust would introduce a bias, we use the program CD-HIT
[20] for generating data subsets of increasing dissimilarity.
Experiments are performed using originally obtained
datasets as well as datasets clustered at 90% (non-redun-
Page 2 of 22
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:25 http://www.biomedcentral.com/1471-2105/10/25
dancy) and 50% sequence similarity, the latter similarity
threshold used due to software limitations. The area
under the ROC curve (AUC) and the rate of true positives
(TPR, or sensitivity) allowing no false positives, two statis-
tics often used in data-based inference (c.f. [21,22]), as
well as true positive rates allowing maximums of 1% and
5% false positives are used as the statistical metrics to
gauge our experimental results. We choose 1% and 5%
false positive rates because statistical tests typically use
Type-I (false positive) error cutoff rates of 1% or 5% (c.f.
[23]).

In the same fashion, we use the data transformations in
DNA repair protein classification experiments. For these
experiments, we use the 20 GO-based DNA repair path-
way classifications and extract proteins from UniProt
which have such classifications. Here, classification is the
ability to distinguish between proteins belonging to a spe-
cific repair pathway and proteins not belonging to that
repair pathway. Finally, based on the results of the repair
protein identification experiments, we use both the dis-
ciminators resulting from machine learning and the gen-
erative model from homology to scan for the presence of
DNA repair proteins in 31 vertebrate genomes available
from ENSEMBL.

Results
Repair protein identification
We emphasize our prediction performance metrics by
showing ROC curves in Figures 1 and 2 only up to a max-
imum of 10% Type-I error, adding faint vertical bars at the
1% and 5% Type-I error levels for easy visualization. The
faint diagonals in the figures are the customary random
guess performance lines. In the figures, each method
name indicates the types of information used in the clas-
sifier, the training/testing dataset creation method, and,
except for BLAST, spectrum kernel and SVM parameters
used (see Methods). All methods are listed in Table 1 for
quick reference.

For experiments to identify repair proteins, Figure 1 and
Table 2 respectively show the results of 5-fold cross-vali-
dation experiments using datasets extracted from PDB
and clustered at 50% (Figure 1), 90% and 0% (unfiltered)

similarity. Examining Figure 1, the results indicate that
BLAST cannot detect DNA repair proteins without first
making several mistakes, though the BLAST method
exhibits a higher true positive rate at the 1% error rate for
clustered data. Contrastingly, the SVM methods could all
detect some portion of the DNA repair dataset without
allowing false positives. Despite pre-experiment anticipa-
tion that inserting (amino acid frequency) prior knowl-
edge into the feature vector would be successful (see
Methods:Method PF for details), Method PF typically is
the least successful. The addition of secondary structure
(Method PS) considerably improves prediction results
over using primary sequence information alone (Method
P), as does the proposed feature vector transformation
using primary sequence data and homology information
(Method PH). Despite the reduction of training data by
60%, both of the one-versus-one-versus-rest methodolo-
gies described in the Feature Vector Methods section pro-
vide higher performance than the one-versus-rest primary
spectrum transformation. In particular, the SVM combin-
ing primary structure, secondary structure, and homology
information (Method PSH) provides the highest number
of true positives when allowing no false positives to occur
in clustered data. As can be seen in Table 2, when utilizing
all of the original data in the PDB dataset, which would
include multiple chains that may have identical or similar
sequences, primary sequence data alone may be adequate
to make an accurate DNA repair decision, as Method P can
successfully detect 57% (318) of the DNA repair dataset
proteins before making a false decision. Furthermore,
allowing 1% Type-I error, the primary structure method
can find 76% (425) of the DNA repair proteins. Generally
speaking, we found that the SVM methods typically could
complete detection of all proteins in the DNA repair pro-
tein dataset with a lower false positive rate than that of
BLAST (graph and tables not extended to show this,
though this is demonstrated by the AUC scores). Unfortu-
nately, such false positive rates at 100% TPR using clus-
tered data are unacceptable for any sort of inference
application (more in Discussion section).

It is important to establish whether the different method-
ologies have a statistically significant difference (the alter-
native hypothesis) in terms of their performance, because

Table 1: Data transformations

Method Feature Vector Representation Data Used

P < s( k, Q) > Primary Sequence
PS Primary Sequence and Secondary Structure
PF Primary Sequence and Frequency Priors
PH < s( k, Q), H (Q) > Primary Sequence and Homology
PSH Primary Structure, Secondary Structure, Homology

BLAST BLAST Homology

A summary of the six data processing methods used to identify and classify DNA repair proteins.
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results may contain variance based on the selection of the
test and training datasets [24]. Since we cannot assume
that the AUC scores or other metrics used in this paper are
normally distributed [25] (though this assumption is
often allowed, e.g. [26]), we resort to the non-parametric
Kruskal-Wallis test [27] to identify whether there is a sta-
tistically significant difference amongst the methods. As
can be clearly understood from Table 2 and Additional
files 1 and 2, we eliminate the results of Method PF when
calculating the likelihood of classifier equality. For the
unfiltered GO-PDB dataset, we used the 5 sets of AUC val-
ues from each fold of cross-validation and found a signif-
icant difference amongst the methods (P-value 0.0191).
The result means it is statistically very unlikely that all
classifiers used in this paper are equivalent on average,

and therefore, we perform additional pairwise compari-
son of methodologies in Table 3. For pairwise compari-
son, we use both the parametric t-test which assumes data
is normally distributed and the non-parametric Wilcoxon
signed-rank test (c.f. [25,27]), and find that the conclu-
sions are similar. Combining the information from Tables
2 and 3, we can say that there is a statisically significant
improvement when using Methods P and PS to analyze
GO-based DNA repair proteins in the unfiltered GO-PDB
database. Results of Kruskal-Wallis tests for the remaining
GO-PDB and GO-UniProt datasets are given in Additional
file 3, including methodology pairwise comparisons.

Figure 2 and Table 4 show similar experiments using data
from the UniProt database. Experiments again show that

GO-PDB identification experiments at 50% sequence similarityFigure 1
GO-PDB identification experiments at 50% sequence similarity. In each line at the bottom of the graph, the computa-
tional method (see Table 1 for abbreviations) used to identify DNA repair proteins is given. Methods other than BLAST used 
SVMs, and the value(s) of the primary sequence and (where applicable) secondary structure spectrum kernels, as well as exper-
imentally optimal SVM parameters are listed after the transformation method (e.g., 11R PSH-3–8 means that method PSH used 
a primary sequence 3-spectrum kernel, a secondary structure 8-spectrum kernel, and homology with 11R cross-validation; see 
Methods for the 11R method). To the right of each method, AUC values and true positive rates when allowing maximums of 
no false positives (FPs), 1% FPs, and 5% FPs, respectively, are shown.
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1vR BLAST (AUC 0.63) ( 0.00/31.58/39.47)
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the SVMs can detect some portion of the DNA repair data-
set before making a false decision, in contrast to BLAST
which unfortunately cannot detect any DNA repair pro-
teins without first loosening its threshold and accepting
some false positives. This is an unexpected result because
as mentioned in the Datasets section, UniProt proteins are
sometimes inferred from homology, and despite our fil-
tering process to remove as many of these putative pro-
teins as possible, we anticipated that some homologs
would remain, and hence that BLAST would produce
superior results. In terms of the AUC score, the SVM meth-
ods and BLAST produce similar results, though the SVM
methods have higher rates of DNA repair protein identifi-
cation when allowing no false positives or only 1% of
false positives in the UniProt dataset. At the 5% Type-I
error acceptance level, all of the methods except for the
prior knowledge method (Method PF) produce approxi-
mately similar results. The additions of secondary struc-
ture information and homology again provide boosts in

predictive power when data is clustered. The results
shown in Table 4 for the identification experiments with
the GO-UniProt data suggest that the optimal method is
dependent on the amount of Type-I error tolerance and
sequence similarity used. ROC curve figures for identifica-
tion experiments performed at 90% and 0% similarity are
provided in Additional file 1.

Repair protein classification
We performed classification experiments in the same
manner as identification experiments by extracting pro-
teins from the UniProt database which contain each of the
Gene Ontology DNA repair subtypes (Kruskal-Wallis
analysis is given in Additional file 3). Tables 5, 6, 7 show
the results of classification experiments for identification
of proteins involved in double strand break repair (GO
ID:0006302), nucleotide excision repair (GO
ID:0006289), and regulation of the DNA repair process
(GO ID:0006282). Results of additional repair pathways

GO-UniProt identification experiments at 50% sequence similarityFigure 2
GO-UniProt identification experiments at 50% sequence similarity. Shorthand notation for computational methods is 
the same as in Figure 1. The SVM methods can find larger portions of the repair dataset while making few or no mistakes. Pre-
diction performance is boosted through the use of secondary structure and homology.
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are given in Additional file 2. Each table shows the results
of the top performing feature vector methodology
(regardless of detailed parameters) and BLAST, at the
same sequence similarities as in identification experi-
ments. The results further underscore the difficulty of the
repair identification and classification problem, as no
method is superior in all evaluation metrics.

For DSB repair, inclusion of secondary structure produces
the best classifier when not accepting false positives,
regardless of sequence similarity. The power of homology
search is evident when we allow a few false positives to
occur, as BLAST produces the best true positive rates at 1%
or 5% Type-I error levels. Method PS also produces good
true positive rates when allowing a small number errors to
occur. For NER, the repair pathway discussed in the Intro-
duction, BLAST is clearly the classification method of
choice, producing top results in terms of all four metrics
for most of the sequence similarity datasets we created.
The only drawback to BLAST is that it suffers from a prob-
lem similar to the identification problem, where it often
cannot detect NER proteins without first admitting a few
false positives. SVM Methods P and PS fill that niche by
detecting large portions of the NER dataset without mak-

ing a wrong decision. For experiments classifying proteins
related to regulation of the repair process, a combination
of primary sequence, secondary structure, and homology
produces the top AUC scores as well as almost 100% true
positive rates at 5% Type-I error acceptance. Experiments
using only primary and secondary structure produce top
TPR rates when allowing no false positives.

The classification results show how each method has its
strengths and weaknesses. Nucleotide Excision Repair, a
critical repair system, is best detected through BLAST,
whereas proteins related to regulation of the repair proc-
ess are best found via SVMs including either secondary
structure information, homology, or both. It is difficult to
decide a superior technique for Double Strand Break
repair, because the superior method depends on the met-
ric used. For future large-scale applications to scan and
classify genomes, an expert in each repair pathway would
be able to suggest the best criteria for optimal prediction.

Genome scanning
As the first of three main objectives, we investigated a rela-
tionship between the size of a genome as reported by
ENSEMBL (version 48, December 2007), and the number

Table 2: Identification experiments using GO-PDB data

Seq. Similarity Pos/Neg
(% Pos)

Methodolgy AUC TPR-0 TPR-1% TPR-5%

P-1 0.67 1.32 1.32 23.68

PS-1–8 0.75 7.89 15.79 36.84
50%

(Figure 1)
76/215
(21%)

PF-1 0.53 1.32 5.26 9.21

BLAST 0.63 0.00 31.58 39.47
PH-3 0.70 7.89 10.53 30.26

PSH-3–9 0.64 11.84 18.42 31.58

P-3 0.68 12.28 14.04 30.70

PS-1–9 0.77 5.26 7.89 41.23
90% 114/353

(24%)
PF-3 0.64 0.00 7.02 19.30

BLAST 0.59 0.00 33.33 46.49
PH-3 0.70 8.77 20.18 39.47

PSH-3–8 0.74 15.79 19.30 36.84

P-3 0.96 57.27 76.48 83.12

PS-3–9 0.96 53.14 64.99 82.76
0% 557/1443 

(28%)
PF-3 0.89 25.85 32.50 63.38

BLAST 0.73 0.00 60.14 66.97
PH-1 0.90 17.59 25.49 66.07

PSH-3–8 0.91 39.50 55.30 71.10

The results (including Figure 1) of DNA repair protein identification experiments using proteins drawn from the Protein Data Bank containing the 
DNA repair Gene Ontology. "Pos/Neg" shows the respective numbers of repair proteins and nuclear non-repair proteins. Column meanings are 
similar to Figure 1. For each sequence similarity dataset, the top performing method for each metric is underlined (unless a tie exists in more than 
half of the classifiers).
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of DNA repair proteins we detect in its resulting protein
transcript. We chose the GO-based PDB repair and non-
repair datasets to use as our training data, because PDB
data has been experimentally observed, and because the
highest percentage of repair protein identification allow-
ing no false positives to occur was obtained using the PDB
dataset.

First, we scan a single genome divided into its known and
novel protein transcripts using Method P, Method PSH,
and BLAST, and evaluate the number of potential repair
proteins as a function of detection threshold (SVM: score;
BLAST: e-value). Thresholds for analysis of results are cho-
sen based on the GO-PDB identification experiments: for
Method P, we select the thresholds 0.151 and 0.001,
respectively corresponding to 0 FP/57.2% TP and 0.1%
FP/64.6% TP; for BLAST we use the threshold 10-3 which
resulted in 1.7% FP/63.3% TP in identification experi-
ments, and is often used as a threshold in other homol-
ogy-based research (e.g. [12,15]). Figure 3 shows a
graphical result from scanning the cattle genome Bos Tau-
rus, where only the novel and combined protein dataset
scan results are shown. To overlay with SVM results, e-
value thresholds used with BLAST are adjusted to fit in the
graph using the conversion

Table 3: Pairwise comparison of classifiers.

Methodology Test P PS PH PSH

PS T 0.7153
W 0.8413

PH T 0.0844 0.1287
W 0.0952 0.1508

PSH T 0.1006 0.1705 0.7109
W 0.1508 0.2222 0.8413

BLAST T 0.0094 0.0104 0.2442 0.0193
W 0.0159 0.0159 0.0952 0.0556

Using both the (parametric) t-test (T) and the (non-parametric) 
Wilcoxon Signed-Rank Test (W) on the original GO-PDB dataset, the 
probability that each pair of classifiers produces the same AUC score 
on average is listed. The results indicate that the various SVM 
formulations are not significantly different statistically, though there is 
a statistical contrast to BLAST (indicated in bold), and SVM 
formulations including BLAST result in lower probabilities of 
producing results identical to non-homology feature vector 
formulations. Bold values indicate the statistical difference is 
significant at the 0.05 confidence level and we can reject the null 
hypothesis that the classifiers are equivalent on average.

Table 4: Identification experiments using GO-UniProt data

Seq. Similarity Pos/Neg
(% Pos)

Methodolgy AUC TPR-0 TPR-1% TPR-5%

P-3 0.91 5.04 51.55 68.76

PS-1–9 0.91 8.58 56.29 72.99
50%

(Figure 2)
4580/9043 

(34%)
PF-1 0.85 0.33 29.06 48.84

BLAST 0.94 0.00 33.41 83.34
PH-1 0.94 3.86 54.96 77.84

PSH-1–9 0.94 7.40 55.07 80.41

P-3 0.96 14.70 72.29 84.57

PS-1–8 0.95 17.41 74.15 84.85
90% 11267/14257

(44%)
PF-3 0.86 3.83 37.13 50.30

BLAST 0.97 0.00 47.56 92.36
PH-3 0.97 20.13 67.81 84.49

PSH-1–9 0.97 11.08 74.14 88.42

P-3 0.98 23.40 82.09 91.12

PS-3–9 0.97 24.23 81.38 89.63
0% 17828/19348 

(48%)
PF-3 0.87 3.48 46.42 56.46

BLAST 0.98 0.00 52.88 92.69
PH-3 0.98 8.46 78.00 91.18

PSH-1–9 0.98 4.31 80.45 92.06

The results (including Figure 2) of DNA repair protein identification experiments using proteins drawn from UniProt containing the DNA repair 
Gene Ontology.
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where B is the BLAST threshold used for evaluation, L is
the coordinate of the left end of the graph, Msvm is the
maximum SVM threshold used, msvm is the minimum SVM
threshold used, Mblast is the maximum BLAST threshold
used (small e-value), and mblast is the minimum BLAST
threshold used (large e-value). As can be seen from the
graph, the number of predicted repair proteins decreases
exponentially as a function of the threshold, for both
BLAST and Method P. The inclusion of secondary struc-
ture information appears to induce a number of false pos-
itives, which is an unexpected result given the merits of
secondary structure observed in identification and classi-
fication experiments. The result of the scan suggests that
there are still a number of repair proteins to be experimen-
tally observed and annotated into databases, because a
number of proteins are detected in novel portions of the
cattle genome at thresholds above (for BLAST, below) the
thresholds stated at the beginning of this section which
produce, if any, minimal false positives.

We apply the same process to the scanning of an addi-
tional 30 genomes in ENSEMBL, and find that there is a

similar pattern overall in most genomes, as seen in Figure
4. In the case of known human repair proteins, the
Method P threshold of 0.151 corresponds to detection of
49 DNA repair proteins, while the threshold of 0.001 pro-
duces 184 detections. A BLAST threshold of 10-3 results in
114 detections. The result is consistent with identification
experiments where the higher SVM threshold produced a
lower number of true positives with no false positives, and
the minimally positive threshold produced relatively few
false positives but with more true positives (see "Finding
new candidates" section for examples of true positives).
More importantly, the BLAST and averaged SVM results
concur with experimental observation in which at least
138 DNA repair proteins are known to exist in humans
[1,7]. Additional scanning of the novel human dataset
yielded 11 potential proteins via SVM and 16 potential
proteins via BLAST (threshold 10-2), which is in agree-
ment with the unknown status of existence in several
human repair pathways [1]. This experiment interestingly
resulted in clustering of humans, chimpanzees, and mon-
keys. At the threshold of 0.151, the results also cluster
together the four-legged species cattle, dog, frog, and rat.

To answer the question as to whether or not there exists a
correlation between the size of a genome and the (pre-
dicted) number of repair proteins, in Figure 5, we plot the

f L
Msvm msvm

Mblast mblast
B B( ) log( )

log( ) log( )
,q q= + ∗ −

−

Table 5: Classification: Double Strand Break Repair

Seq. Similarity Pos/Neg
(% Pos)

Method AUC TPR-0 TPR-1% TPR-5%

P 0.82 9.77 24.71 40.23

PS 0.89 25.86 54.02 66.67
50% 174/1656

(10%)
PF 0.80 9.77 17.82 35.63

BLAST 0.88 15.52 64.37 73.56
PH 0.83 5.75 17.82 47.70
PSH 0.89 1.72 25.29 64.94

P 0.92 16.92 55.64 71.05

PS 0.94 27.44 69.92 77.82
90% 266/4379

(6%)
PF 0.90 27.44 46.62 67.29

BLAST 0.92 13.53 76.69 83.08
PH 0.89 0.38 19.92 40.23
PSH 0.93 7.14 34.59 67.67

P 0.94 26.65 63.19 75.82

PS 0.94 34.62 73.90 83.24
0% 364/6983

(5%)
PF 0.91 26.65 58.24 69.51

BLAST 0.93 0.00 78.30 86.81
PH 0.87 2.47 10.71 29.12
PSH 0.93 2.75 29.12 60.71

Experiments using Double Strand Break repair (GO:0006302) as the type of protein to identify. "Pos/Neg" shows the number of DSB repair-related 
and non-related proteins for a particular sequence similarity.
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size of each of the 31 genomes against the resulting
number of repair proteins, using Methods P, PH, and
BLAST. From our predictor, we additionally extracted the
number of unique genes (sub-plot), to analyze the results
in terms of both protein transcripts and originating genes.
Data is smoothened using Bezier curves to convey general
trends about the data. In Figure 5 and its sub-plot, we
tested thresholds corresponding to the basic decision
nature of the technique (10-3 for BLAST and 0.001 for SVM
methods), as well as thresholds (10-9; 0.151) which pro-
duced few (BLAST) or no (SVM) false positives in identifi-
cation experiments.

From the figure, we can see a very small increase in the
number of protein transcripts as the length of the genome
grows, indicated by additional dotted linear approxima-
tions to the data. This trend is consistent through all three
methods, though Method P produces a result with a larger
slope as a result of its inability to find proteins in several
smaller genomes such as S. Cerevisiae and Drosophila Mel-
anogaster. The smaller figure located within Figure 5 shows
a plot of the genome size versus the number of unique
genes, and results here suggest that the number of funda-
mental genes involved in DNA repair is fairly consistent
through many species, with a very minimal positive slope

and some small degree of fluctuation among species of
similar genome size. Though we are not directly implying
a linear relationship between the size of a genome and its
number of repair genes/transcripts, the linear approxima-
tions all being positively sloped on the order of 10-9 sug-
gest a non-negative and non-constant relationship, along
with non-zero intercept values suggesting that there are
some basic repair genes present in all organisms, a sugges-
tion that is consistent with [3]. Counting the known and
unknown status of over 150 repair genes listed in [1]
which includes humans and four other species, and
assuming that some portion yet not all unconfirmed gene
statuses in [1] will turn out to have repair genes, then
these findings of a slow increase in repair genes/tran-
scripts in relation to a genome size are consistent. For
repair protein transcripts, we can think of our two thresh-
olds as upper bounds (a few false positives) and lower
bounds (no false positives), and we estimate that the true
nature of the number of protein transcripts is a slowly-
increasing relationship lying somewhere in between the
two bounds. Datapoints in the outer plot of Figure 5 again
confirm the consistency of the result with evolution, as
humans, chimpanzees, and monkeys result in points on
the right side of the graph in the cluster above the curves,
and animals such as hedgehogs, shrews, and armadillos

Table 6: Classification: Nucleotide Excision Repair

Seq. Similarity Pos/Neg
(% Pos)

Method AUC TPR-0 TPR-1% TPR-5%

P 0.90 37.47 50.69 66.12

PS 0.91 35.54 56.75 71.07
50% 363/1467

(20%)
PF 0.86 22.04 41.60 56.47

BLAST 0.95 53.99 84.85 88.43
PH 0.94 2.75 43.25 79.89
PSH 0.95 4.68 56.75 87.88

P 0.98 81.58 87.55 92.23

PS 0.98 80.23 88.83 92.45
90% 1325/3320 

(29%)
PF 0.88 25.89 39.77 63.77

BLAST 0.98 0.00 94.19 97.13
PH 0.98 4.15 75.02 95.25
PSH 0.98 1.43 84.53 96.45

P 0.98 37.65 89.27 94.16

PS 0.98 65.19 90.41 93.16
0% 2106/5241 

(29%)
PF 0.88 21.13 39.55 54.37

BLAST 0.97 0.00 90.03 96.96
PH 0.97 3.23 64.15 82.15
PSH 0.98 11.49 79.49 91.36

Experiments using Nucleotide Excision Repair (GO:0006289) as the type of protein to identify. "Pos/Neg" shows the number of NER-related and 
non-related proteins for a particular sequence similarity.
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are clustered together in the middle slightly below the
curves.

We scanned previous versions of ENSEMBL (versions 43
and 46) to validate the consistency of our result, and
found relatively little change in the number of predicted
repair proteins. Table 8 shows the correlation between the
size of a genome and number of repair protein transcripts
we predict it to contain. As shown in the table, the corre-
lation is fairly strong, especially in the latest revision of
the ENSEMBL database used.

After combining predicted novel and known proteins in
each genome, we investigated the extent to which multi-
ple methods overlapped in their detections. Using data
from Homo Sapiens, Mus Musculus, Bos Taurus, Gallus
Gallus, and Drosophila Melanogaster, sizes of overlap-
ping protein identifier sets are given in Table 9. It is clear
from the results that the inclusion of homology influences
the Method PH predictor, as the numbers of detected pro-
teins are similar to BLAST, and overlaps are large. These
results also indicate that despite the different approaches
of Method P and BLAST, several proteins exhibit multiple
features that clearly distinguish them as DNA repair-
related. For example, the transcripts

ENSBTAT00000000276 and ENSBTAT00000003559 in
Bos Taurus, corresponding to DNA polymerase beta and a
DNA lyase (c.f., [1]), produce high scores in both meth-
ods.

Another interesting trend we found is shown in Table 10.
The table shows the scanning methodology, scan thresh-
old, total number of detected repair protein transcripts in
both novel and known portions of all genomes, total
number of unique genes, and the ratio of unique genes to
transcripts. As mentioned in the Methods section, it is
known that a small number of genes are involved in mul-
tiple repair activities. The list created by Wood et al. [7]
lists 86% of the genes to have a single repair function. Our
results, averaged over all 31 species and including Method
PS, estimate that 83% (std. dev. 2.9%) of genes have a sin-
gle repair function, which is in close agreement with
Wood et al.'s human documentation. The values of 86%
and 83 ± 3% are also close to the ratio in the medaka fish
mentioned in the introduction, as the medaka ratio of
genes to transcripts is 80%.

We additionally analyzed the collection of datasets pro-
duced by Method P to confirm to what extent they are
similar in terms of their sequences. From the 3330 tran-

Table 7: Classification: Regulation of DNA Repair

Seq. Similarity Pos/Neg
(% Pos)

Method AUC TPR-0 TPR-1% TPR-5%

P 0.97 57.02 92.98 94.74

PS 0.98 87.72 93.86 95.61
50% 114/1716 

(6%)
PF 0.96 51.75 92.11 93.86

BLAST 0.96 85.96 94.74 94.74
PH 0.99 50.88 93.86 97.37
PSH 0.99 76.32 93.86 97.37

P 0.98 62.64 94.83 97.13

PS 0.99 90.80 95.40 97.70
90% 174/4471

(4%)
PF 0.97 52.30 93.68 94.83

BLAST 0.99 82.76 97.13 97.13
PH 0.99 62.07 97.13 98.28
PSH 0.99 83.33 95.98 97.70

P 0.99 69.70 97.35 98.48

PS 0.99 88.26 96.97 99.24
0% 264/7083 

(4%)
PF 0.99 36.74 95.83 97.35

BLAST 0.99 21.97 98.48 98.48
PH 0.99 36.74 98.86 99.24
PSH 0.99 80.68 98.11 99.24

Experiments using "Regulation of DNA repair" (GO:0006282) as the type of protein to identify. "Pos/Neg" shows the number of regulation-related 
and non-related proteins for a particular sequence similarity.
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scripts produced (Table 10), clustering down to 50% sim-
ilarity using CD-HIT resulted in 1774 proteins. This
diversity again confirms the challenge in building a single
superior repair protein predictor. We then further took the
(human/chimpanzee/monkey), (cow/dog/frog/rat), and
(hedgehog/armadillo/opossum/shrew) clusters that we
discussed above, and searched for the presence of identi-
cal proteins, where identical was thresholded as each of
100%, 99%, or 98% sequence similarity. The results in
Table 11 show that a number of repair proteins in the pri-
mate cluster and four-legged species cluster are completely
identical, and that more than 10 repair proteins per cluster
are over 98% similar. For the third cluster which includes
a number of animals that live in desert-like environments,
there are no overlaps in the known portions of detected
repair proteins, though the total number of detected
known proteins in this cluster is less than 5 for each of

Methods P, PH, and BLAST. In the case of novel proteins,
a few overlaps are found for nearly-identical repair protein
sequences. Detailed overlap results for each of the species
in the three clusters can be observed in Additional file 4.

Finding new candidates
We examined the outputs of our genome scans to identify
what types of proteins were being detected, and as our sec-
ond main objective, to use this information to ascertain
how well they can identify novel repair candidates. A
number of high scoring proteins from well-studied
genomes are listed in Table 12 and elaborated upon here.
DNA glycosylases, which are important in the BER path-
way [1,28], produced high scores and were found in mul-
tiple genome lists. The predictors also identified a number
of DNA polymerases [1], as well as Rad51 proteins which
are critical to the homologous recombination pathway

Genome scan of the cattle genome Bos TaurusFigure 3
Genome scan of the cattle genome Bos Taurus. A plot of the number of repair proteins as a function of methodology 
threshold. Despite different technique formulations, both BLAST and SVM (Method P) show an exponential decrease in the 
number of proteins likely to be related to DNA repair as the decision threshold is tightened. The BLAST approach has had e-
values adjusted to fit in the graph. At a Method P threshold of 0.151 which resulted in no false positives and 57% true positives 
in GO-PDB identification experiments, several proteins of unknown function are predicted to be DNA repair related.
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[1,7,29,30]. Tdp1, whose failure has been linked to neu-
rodegenerative disease [31], is a critical participant in
repairing DNA damage [32] and is being investigated for
its anticancer activity [33].

These types of proteins all have high scores above the
thresholds that produced no false positives in identifica-
tion experiments, and next we focus on the high-scoring
proteins existing in novel datasets. Table 13 lists a handful
of proteins that our predictor strongly suggests to be
related to DNA repair. We are hopeful that these results
can be either confirmed or disconfirmed in future labora-
tory experiments. In Additional file 5, we include high-
scoring candidates for all 31 genomes used in this report.

Web Service
Based on the high performance obtained using original
datasets of known repair proteins, as our third and final
objective, we have implemented a web service which uses
the processing techniques in this report to predict whether
or not a protein is DNA repair related. The INTeractive
dna REPair prEDiction server, or INTREPED, is a free serv-
ice for research use, and we hope that it can assist research-
ers around the world working on genomes which are
either unannotated, newly sequenced, or under revision.
Though the human genome has largely been mapped out
and those genes involved in DNA repair in humans are
mostly known [1,6,7], there still exist many more
genomes to be annotated, and this is where we believe
INTREPED can be a valuable research tool.

Genome scans of 31 organismsFigure 4
Genome scans of 31 organisms. A plot of the number of repair proteins detected in 31 vertebrate genomes as a function 
of Method P threshold. In all organisms, the predicted number of repair proteins decays exponentially with increasing detec-
tion threshold. Several genomes have been removed from the figure to prevent genome names from overlapping the results. 
At thresholds greater than 0, all organisms are predicted to have proteins related to DNA repair, consistent with the findings 
in [3].
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The INTREPED web server is accessible from the "Predic-
tion Servers" page at http://sunflower.kuicr.kyoto-u.ac.jp/
. The user simply inputs a series of FASTA-format
sequences. Users have two options for processing: they
can immediately obtain a result in their web browser
using Methods P, PH, and BLAST, or they can submit a
request to a queue along with an e-mail address to return
results, and analysis will additionally include use of sec-
ondary structure (Methods PS and PSH) which was shown
to be effective in identification experiments. In Table 14
we list the expected prediction accuracy of each method-

ology and how to intepret the results. An example of an e-
mail response from INTREPED is shown in Figure 6.

If the protein is predicted to be DNA repair related, an
additional prediction using specialized per-pathway mod-
els occurs for classification, and resulting scores rank the
repair protein's most likely functions.

INTREPED uses a rapid spectrum kernel implementation
(see Additional file 6) to ensure quick prediction response
and support large queries. The binary frequency kernel

Correlation of genome size to number of repair proteins and repair genesFigure 5
Correlation of genome size to number of repair proteins and repair genes. The outer plot shows the relation 
between the size of a genome (horizontal axis) and the number of predicted repair-related protein transcripts in that genome 
(square points). Dual thresholds are used for Methods P (red), PH (green), and BLAST (blue), where one threshold produced 
no false positives in identification experiments (lower three curves), and another threshold produced a small percentage of 
false positives while admitting more true positives (upper curves). In the small inner plot, we reduce the number of detected 
proteins to the number of unique genes (vertical axis), and again plot versus the genome size (triangular points). The following 
thresholds are used for each detection technique: Method P: 0.001/0.151; Method PH: 0.001/1.015; BLAST:10-3/10-9. Data is 
smoothened by using bezier curves. Correlations between the size of a genome and the number of repair transcripts are listed 
in Table 8 for both of the Method P thresholds used. Though the tighter threshold dataset of the inner plot visually appears to 
be approximated by a constant for methods PH and BLAST, the slope of the approximation is positive.
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(Method PF) is not used in INTREPED, as its performance
in its current design is not warranted.

Discussion and Conclusion
When scanning genomes, the number of proteins pre-
dicted to be DNA repair-related as a function of the pre-
diction threshold follows an exponential distribution
(Figures 3 and 4). Despite the lower performance of
Method PF, its intuition is validated by this result. If the
amino acid distribution of DNA repair proteins was ran-
dom, the resulting feature space would be uniformly pop-
ulated, and we would be able to see a linear gradation in
the number of predicted proteins as a function of predic-
tion threshold. Since this is not the case, we are led to
believe that DNA repair proteins are richer in some amino
acids and tripeptides, and that we can rapidly segregate
those proteins that do not have a similar distribution of
tripeptides. For example, in the GO-based PDB dataset
that we created (557 proteins), the tripeptides LEK, GAE,
and ARK appear 314, 209, and 195 times, respectively. In
the GO-UniProt dataset (17,828 proteins), the tripeptides
ALA, EAL, and LLE occur respectively 9501, 8379, and
7511 times. Both datasets indicate that alanine, leucine,
and glutamic acid are abundant in repair proteins. How-
ever, subsequences of length 4 or greater occurred with
low frequency relative to the sizes of the datasets (see
below for additional comments).

The size of a genome has been shown to have a high cor-
relation with the number of repair protein transcripts.
High Pearson correlations (Table 8) suggest that this
approximation is reasonably accurate, and high Spearman
coefficients suggest that even if the true nature of the
number of repair proteins as a function of genome size is
not linear, it is well correlated to a non-decreasing func-
tion of genome size. Since it is known that growth temper-
ature affects metabolic network structure [34], and DNA
repair is thought to exist in any organism with metabolic
activity [3], comparison of this study to a similar work
using archea or bacteria would further clarify the relation-
ship between evolution, environment, genome size, and
repair ability.

It remains an open question whether or not there is one
ideal prediction method that can adapt to all forms of
repair. To this end, we have shown statistically that not all
methods are equivalent, which suggests that it may be
possible to build a better sequence-based predictor specif-
ically for DNA repair protein detection and recognition.
We have not discussed the possibility that our source data-
sets used in classifier comparison and genome scanning
may contain improper Gene Ontology labelings. As Diet-
terich has pointed out, if some small percentage  of our
source data is in fact mislabeled, then our results herein
can be have no less than an error rate of  [24], and the
ideal classifier will remain elusive. Therefore, though our

Table 8: Correlation between size of a genome and number of DNA repair proteins

ENSEMBL version SVM threshold Pearson correlation p-value Spearman correlation p-value

v43 10-6 0.7165 5.8e-06 0.7269 3.6e-06
v46 10-6 0.6876 1.9e-05 0.7252 3.9e-06
v48 10-6 0.7206 4.8e-06 0.748 1.3e-06

v43 0.151 0.6776 2.8e-05 0.7660 5.1e-07
v46 0.151 0.6730 3.3e-05 0.7661 5.0e-07
v48 0.151 0.7000 1.1e-05 0.7974 7.9e-08

The correlation is based on scanning of 31 vetebrate genomes in ENSEMBL using Method P. Scan results for a minimally positive threshold reflect 
the basic decision nature of the SVM algorithm. A threshold of 0.151 reflects the threshold needed to obtain a maximum true positive rate while 
allowing no false positives, and hence serves as a lower bound and reliable indicator of the positive correlation between genome size and number of 
repair proteins. ENSEMBL versions 43, 46, and 48 were released in February, April, and December 2007, respectively.

Table 9: Overlap in detection datasets.

Species Prot-P Prot-PH Prot-BLAST P-PH P-BLAST PH-BLAST

Bos Taurus 241 174 172 12 13 162
Drosophila Melanogaster 36 119 119 2 2 112

Gallus Gallus 94 179 178 10 11 165
Homo Sapiens 224 125 121 17 17 114
Mus Musculus 126 98 103 5 7 90

The table shows the overlap amongst the sets of protein transcript IDs for proteins predicted to be involved in DNA repair for five species. In the 
second through fourth columns, Prot-X is the number of detected proteins per method X, and the fifth through seventh columns show the overlap 
between each pair of methods.
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datasets have been selected reasonably, it also remains an
important goal in research to establish a "golden stand-
ard" dataset for DNA repair protein prediction.

The methods presented herein are successful at recogniz-
ing and classifying DNA repair proteins, but many exten-
sions and biologically significant improvements are still
possible. First, when the number of sequences available is
small as in the case of the PDB identification dataset fil-
tered to 50% similarity, higher spectrum kernels may not
be as successful because of a lack of data combined with
RBF kernels. This is evident by the fact that we performed
an experiment using unfiltered PDB data and Method P
set to 4-spectrum, and found no improvement in results
(data not shown). Hence filtered data would have an even

more sparse representation that is less efficient, and there-
fore, it is worth pursuing a mathematical formulation for
the optimal values of the primary and secondary spectrum
kernels, as well as the RBF kernel parameter , since these
values work as an interconnected system affecting predic-
tion performance. When the feature space is sparse, the
RBF kernel may indeed be less effective than small degree
polynomial kernels (e.g., linear kernels sometimes pro-
viding better performance than RBF kernels as shown in
Figure 1). Considering these factors, development of a
customized kernel method for further improved identifi-
cation and classification of repair proteins is a topic that
will be pursued.

Table 10: Relationship amongst detected transcripts and unique genes

Methodology Threshold No. Transcripts No. Unique Genes % Unique Genes

P 0.001 3330 2851 85.6%
0.151 555 461 83.1%

PS 0.001 67393 56145 83.3%
0.670 4144 3603 86.9%

PH 0.001 4403 3558 80.8%
1.015 796 689 86.6%

BLAST 10-3 4302 3492 81.1%
10-9 1419 1123 79.1%

Average Percentage of Unique Genes 83.3%
Standard Deviation 2.9%

The total number of detected protein transcripts and total number of resulting unique genes is given for each method using two thresholds derived 
from GO-PDB identification experiments. The average of 83.3% is in close agreement with findings in [7].

Table 11: Multi-genome overlaps

Sequence similarity
100% 99% 98%

Methodology Known Novel Known Novel Known Novel

P Cluster 1 1 4 3 25 5 47
Cluster 2 1 0 6 0 10 1
Cluster 3 0 0 0 0 0 1

PH Cluster 1 6 7 10 36 14 56
Cluster 2 6 0 19 2 25 3
Cluster 3 0 0 0 5 0 6

BLAST Cluster 1 6 7 9 35 13 54
Cluster 2 7 0 20 2 26 3
Cluster 3 0 0 0 5 0 6

Using the clustering software CD-HIT, the number of identical proteins (sequences) found in novel and known portions of multiple genomes is 
listed when thresholding "identical" as each of 100%, 99%, or 98% sequence similarity. The clusters are as follows:
Cluster 1: Human, Chimpanzee, Monkey
Cluster 2: Cattle, Dog, Frog, Rat
Cluster 3: Hedgehog, Armadillo, Opossum, Shrew
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Second, guided by the intuition of Method PF, Principal
Component Analysis as a method for extracting the most
significant polypeptides is likely to improve results. Simi-
lar to the preceeding discussion, when the feature space is
sparse because of a lack of data or a lack of frequently
occurring features, a reduction in dimensionality would
project the sparse space into a more clustered space, which
could then be used by the often-used RBF kernel more
effectively.

Third, the use of sequence motifs in feature vectors would
utilize expert knowledge and create better classifiers (c.f.,
[13]). In preliminary work, we performed multiple
sequence alignments of DNA polymerases, but were una-
ble to find applicable results. Another previous multiple
alignment for analysis in DNA repair has been shown to
produce little overlap [1]. As a result, sequence motif clas-
sifiers for specific repair pathways are likely to be more
successful when based on protein domains rather than on
global sequence alignments. Yet, creation of a bit string
vector representing the presence or non-existence of spe-
cific domains is likely to be difficult to apply to detection,
again because of sparse representation. It was shown in
the Results section that no particular method was superior
for all classification results. Hence, to build improved
applications for repair protein annotation, it may be use-
ful to build per-pathway servers that include per-pathway
domains, and then create a general integrated meta-server
which can incorporate many of the more specific but

more accurate pathway servers. This "subserver-omnis-
erver" approach is in use for subcellular localization pre-
diction [35-39], and may be useful in future analyses of
repair research that are still not understood, such as pro-
teins related to transmission of damage detection signals
or DNA infidelity tolerance (TLS) [2].

Finally, incorporating the proposed relationship between
genome size and repair ability in such a way that it can
improve the accuracy of the INTREPED web server is a
future work.

Methods
Problem Definitions
We first consider the DNA repair protein identification
problem: given the amino acid sequence of a protein, can
we determine whether or not the protein is (directly or
indirectly) involved in DNA repair? Formally, each query
protein Q consists of a sequence s1s2 ... sn, where si ∈  for
1 ≤ i ≤ n. Q is thus of length n, and  is our denotation for
the standard 26-character alphabet excluding the symbols
B, J, O, U, X, and Z.

Proteins using SVM frameworks undergo transformations
as described below, whereas proteins tested with BLAST
require no transformation. In both approaches a value
(SVM score or BLAST e-value) is output. Comparing that
output value to a threshold, we determine whether or not
the technique calculated the protein to be involved in

Table 12: Examples of Repair Detections

Genome Identifier Methodology Pred. Score Description

Homo Sapiens ENST00000339511 P 0.950 N-glycosylase
ENST00000339310 P 0.809 DNA Polymerase kappa
ENST00000382643 P 0.469 Rad51 Homolog
ENST00000357382 BLAST 1e-167 Tdp1
ENST00000354383 BLAST 6e-51 DNA glycosylase

Mus Musculus ENSMUST00000112275 P 0.662 Uracil DNA-glycosylase
ENSMUST00000112723 P 0.143 Rad52 Homolog
ENSMUST00000021594 BLAST 1e-167 Tdp1

Examples of detections in Homo Sapiens and Mus Musculus for proteins known to be involved in DNA repair and that are predicted via Method P 
or BLAST. Protein transcript identifiers are given in ENSEMBL format.

Table 13: Novel proteins predicted to be repair-related

Genome Protein ID Chromosome Base Pair Locations

Homo Sapiens ENST00000383825 3 9767733–9783421
Rattus Norvecigus ENSRNOT00000000872 12 43520629–43529526

Gallus Gallus ENSGALT00000005973 22 2794396–2802220
Pan Troglodytes ENSPTRT00000037442 8 39101917–39137673
Oryzias Latipes ENSORLT00000022300 24 20404058–20406887

Examples of Method P high-scoring repair candidate proteins for several species are given. We list the organism, ENSEMBL protein identifier, and 
chromosome location. A full list of candidates from all 31 genomes used in this report is available as Additional file 5.
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DNA repair. Since an e-value and a SVM score have differ-
ent interpretations, we use a continuum of thresholds in
order to obtain ROC curves and compare different tech-
niques.

The classification problem is the following: given that a
protein is known to be involved in DNA repair, identify
the repair class (pathway) or type that it belongs to. This
means that our consideration is for a single repair class,
and though some proteins are known to be involved in
multiple repair pathways, the majority of repair proteins
are involved in a single repair pathway [1,7] or serve a sin-
gle structural role in DNA repair, which justifies our
approach. The classification problem is hence recast as an
identification problem for one repair protein class versus
all remaining protein classes, and can follow the same
logic above.

Datasets
To perform two identification experiments and a classifi-
cation experiment, we built five protein databases. In
order to ensure the reliability of our data sets, we first
require that proteins from databases be catalogued by
using the Gene Ontology annotation system. We also
remove all proteins which contain the following key-
words in their descriptions: putative, similar, possible/
possibly, probable/probably, theoretical, and hypotheti-
cal.

For our identification experiments, we use two data
sources: PDB and UniProt. The advantage of using PDB
data is that the proteins have been experimentally
observed and confirmed, and we can impose the con-

straint that X-ray crystallography data exists. Despite the
possiblity of homologs, the advantage of using UniProt is
its vast sequence repository, offering considerably more
sequences for analysis, including research literature docu-
mentation for many proteins. Though Wood et al. has
assembled an invaluable list of repair genes which can be
referenced [7], these are restricted to humans, whereas our
assembled databases do not include a restriction on the
species.

Amongst the approximate 49,000 protein structures in the
February 2008 version of the PDB, 245 of them matched
the "DNA repair" GO label (GO ID:0006281), resulting in
557 sequences after extracting multiple chains. We also
extracted 447 protein structures which have the "nucleus"
GO label (GO ID:0005634), and remove those structures
which already match the repair GO label, resulting in
1443 sequences. From the UniProt KB database, 17,828
DNA repair and 19,348 nuclear non-repair GO-based
sequences were retrieved. The PDB sequences we use are
comparitively shorter in length since they are divided into
separate sequences for each chain, and some PDB struc-
tures contain multiple chains. The datasets (protein iden-
tifiers) used in this work are available as Additional file 7.

For our classification experiment, we used the 20 DNA
repair pathway categories listed in Gene Ontology, and
extracted proteins from UniProt with the matching ontol-
ogy IDs. We chose the UniProt database over the PDB
database because the PDB database currently contains
data for only four major repair pathways: base-excision
repair (GO ID:0006284), mismatch repair (GO
ID:0006298), single strand break repair (GO
ID:0000012), and double strand break repair (GO
ID:0006302). For classification experiments, we require a
minimum of 25 proteins in the pathway dataset, and as a
result of insufficient data, some pathways are not used.
Table 15 lists each of the categories used for classification
experiments.

For each protein in each dataset we used SSPro [40] to
obtain a secondary structure role for each amino acid in
the protein in question. The workstation version of SSPro
is a three-class predictor, assigning either alpha helix, beta
sheet, or "other structural function" for each amino acid
in a query. As an example, if we create a short protein with
primary sequence RSYMMLDKF, SSPro will return the sec-
ondary structure CCCEEHCCC.

Data Division Technique

In data-based inference experiments, performance is often
measured by using cross-validation, and in particular,
one-versus-rest (1vR) cross-validation. In such a data divi-
sion scheme (let us assume the division is f-fold), one por-

Table 14: Web Server Accuracy

Methodology Threshold True Positive Rate False Positive Rate

P-3 0.001 64.6% 0.1%
0.151 57.3% 0

PS-3–9 0.001 72.3% 2.4%
0.670 53.1% 0

PH-3 0.001 65.0% 1.7%
1.1015 7.9% 0

PSH-3–8 0.001 61.6% 1.7%
0.727 39.5% 0

BLAST 10-3 63.4% 1.7%
10-9 60.1% 0.7%

Metrics for interpreting the results produced by the INTREPED web 
server. For each of the five methods INTREPED employs, thresholds 
necessary for basic decision making and maximum TPR-0 rates are 
given. Each method and threshold pair provides the true positive and 
false positive rate based on identification experiments.
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tion (size ) of the data is set aside for performance

evaluation (test data) while the remaining f - 1 portions
are used for training data, and the process is repeated f
times using different test and training data each time.
Here, we propose one-versus-one-versus-rest (11R) cross-
validation. The reason for this methodology is homology
and will be explained in further detail in the Feature Vec-
tor Methods section below. 11R differs from the 1vR tech-
nique in that for f-fold validation, one portion is still set
aside for evaluation, but instead of f - 1 portions of data
for training, only a single portion is used for training, and
the f - 2 remaining portions are used as a reference homol-
ogy database for querying training and test data. The

amount of training data is reduced by . The end goal

of the 11R technique is to combine homology and
sequence data in an unbiased way and obtain a realistic
estimate of method performance.

Support Vector Machines and Feature Vector Methods
Support Vector Machines
We consider six methods for processing proteins in ques-
tion. The methods are summarized in Table 1 for quick
reference, and are explained in detail here. The first five of
the methods feed transformed feature vector data into a
SVM to arrive at a decision; the sixth requires no transfor-
mation. In short, SVMs derive decision or regression func-
tions by solving a quadratic programming problem. For
decision problems, the resulting decision function is used
to test whether a new piece of data belongs to a particular
class or not. They have been used in many decision prob-
lems [13,14], are well documented [41,42], and have
been shown to outperform other deterministic techniques
such as artificial neural networks or standalone principal
component analysis [43,44].

The SVM implementation we use is SVMlight [45], and the
only parameter of the software that we manually set is the

gamma value ( ) of the radial basis function (RBF) similar-

1
f

f
f
−
−

2
1

INTREPED web server outputFigure 6
INTREPED web server output. An example of the email response produced by the INTREPED web server. Email 
responses include secondary structure analysis.
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ity metric. The RBF kernel measures the similarity of two
feature vectors x and z using the function

, and the  parameter controls the

learning balance between possibly over-fitting (low ) and

over-generalizing (high ). The effect of this parameter on

prediction performance is shown in the Results and elab-
orated upon in the Discussion section.

Feature Vector Methods
The first method for creating a feature vector from a pro-
tein sequence is to simply count the number of occur-
rences of each amino acid in the protein and divide the
counts by the length of the protein. Simple amino acid fre-

K exp( , ) ( )|| ||x z x z= − − 2

2 2g

Table 15: Classification datasets

Original (unfiltered) data
Statistical Properties

Repair pathway GO ID No.Sequences Ave. Length Median Length Std. Dev

Base excision repair 0006284 2624 276 251 134.7
DNA dealkylation 0006307 25 203 174 106.8

DNA synthesis during DNA repair 0000731 28 996 1103 581.5
Double-strand break repair 0006302 364 616 609 306.4
Error-prone DNA repair 0045020 46 1075 1077 46.8

Mismatch repair 0006298 1777 617 653 317.3
Nucleotide-excision repair 0006289 2106 732 685 261.6

Postreplication repair 0006301 28 449 350 350.7
Regulation of DNA repair 0006282 264 211 172 161.6
Single strand break repair 0000012 40 476 614 297.8

Other pathways N/A 45 592 373 486.9

Total 7347 515 415 321.2

Maximum 90% similarity
Statistical Properties

Repair pathway No.Sequences Ave. Length Median Length Std. Dev

Base excision repair 1721 284 260 135.9
Double-strand break repair 266 603 611 309.8
Error-prone DNA repair 36 1077 1082 51.4

Mismatch repair 1020 710 768 274.9
Nucleotide-excision repair 1325 737 689 268.9
Regulation of DNA repair 174 205 168 153.4
Single strand break repair 25 490 403 316.9

Other pathways 78 579.8 373 539.1

Total 4645 534 516 322.7

Maximum 50% similarity
Statistical Properties

Repair pathway No.Sequences Ave. Length Median Length Std. Dev

Base excision repair 630 321 278 185.7
Double-strand break repair 174 656 655 343.6

Mismatch repair 468 718 710 302.6
Nucleotide-excision repair 363 684 633 360.6
Regulation of DNA repair 114 213 168 185.5

Other pathways 81 659 582 496.2

Total 1830 535 434 349.8

The number of proteins extracted from the UniProt database for each of the DNA repair pathways used in classification experiments is shown 
along with statistical properties regarding seqeuence lengths. Only the types of repair pathways which had sufficient data (minimum 25 proteins) for 
experiments are shown, along with a combined dataset of the types which did not have enough data.
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quency was successful in identifying and classifying his-
tones [12]. This counting scheme can be generalized to
include polypeptides, and is called the k-mer string kernel
or k-spectrum kernel [42,46], which we denote by s().
Normalization in the polypeptide case is the result of
dividing the number of occurrences of each k-mer by the
total number of possible k-mers (= n - k + 1, where n is as
defined in the Problem Definition section). Resulting vec-
tors are of size 20k. Considering all possible subsequences
of length k in the query sequence Q using symbols in , we
write feature vectors using this transformation (referred to
as Method P) as

v = < s( k, Q) >.

We use tripeptides (k = 3) in addition to amino acid fre-
quencies in this paper. Dipeptides were considered in an
unpublished preliminary work [47]. We can extend on
Method P by including secondary structure data as well.
As explained in the Datasets section, we use the software
tool SSPro to predict the secondary structure role of each
amino acid in the query protein. We then consider large
length (k = 8 or k = 9) spectrum kernels on the secondary
structure information. The primary sequence and second-
ary structure spectrum kernels are joined, producing fea-
ture vectors of the form

where k1 and k2 are the spectrum kernel lengths for the
respective primary and secondary sequences Qp and Qs,
and C, E, and H represent the SSPro output indicating
alpha helix, beta sheet, or "other structural function". This
transformation is referred to as Method PS.

Notwithstanding evolution, the role of DNA repair is to
preserve the information coded in a genome, and it there-
fore seems reasonable that DNA repair proteins are richer
in some amino acids that account for their stable function
than in other types of proteins. As a result, if we have a
database of known DNA repair proteins, we can scan it for
the frequencies of each type of amino acid, and use this
information to determine if a query protein not belonging
to the known database has a similar percentage of each
type of amino acid. We need not consider all amino acids,
especially those which are infrequent in the reference
database. For the C most frequently occurring acids that
we consider, if the frequency of occurrence in the query Q
is greater than or equal to the frequency of that acid in the
reference database scaled by some percentage E, then we

mark a positive value  in a feature vector. Otherwise,

we mark a negative value , and the result is a C-length

binary vector. We call this technique the binary frequency

transformation, and denote it by (Q). We call the

combination of the primary structure spectrum kernel and
the binary frequency transformation Method PF, and its
feature vectors take the form

For our experiments, we set the following values: C = 5, E

= 90%,  = 1,  = 0.

Preliminary experiments showed that BLAST and Method
P performed approximately equally in the number of
types of DNA repair proteins they could outclassify rela-
tive to each other. As BLAST considers sequence alignment
and Method P considers the global frequency of short
polypeptides, it would be useful to combine these two
approaches in some way. Additionally, we wish to avoid
the high computation time in a homology-generative
model such as the Fisher kernel [48]. A previous study
reported the use of SVMs as a fallback when homology
searching did not yield a positive result in the search for a
particular type of protein [13]. We alternatively arrive at a
conclusion for a query protein by novelly combining the
result of a homology search for a query against a reference
database with the primary sequence spectrum kernel. In
this technique, it is necessary to have training data and test
data that are unbiased, meaning that they can use the
same reference database, and this serves as the motivation
for introducing the 11R data division method mentioned
earlier. Using a BLAST e-value threshold of 0.001, we
append to the primary spectrum kernel (Method P) the

value  if the returned e-value of the query protein is less

than the threshold, and otherwise append the value  (if

no homologous sequence and e-value is returned, +∞ is

assigned). Let us call this one dimensional output H(Q),

and hence the combination (which we will call Method
PH) of the homology search and spectrum kernel results
in feature vectors

v = < s ( k, Q), H(Q) >.

In practice, we set the values of  and  to 1 and -1,

respectively.

The final SVM-inspired tranformation, named PSH, is
intuitively derived from the previous transformations.
Method PSH is the combination of a primary sequence

v =< >f a fs
k

p s
k

sQ C E H Q( , ), ({ , , } , ) ,1 2
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spectrum kernel, a secondary structure spectrum kernel,
and homology information. By using this transformation,
we can maximize the amount of data (features) available
to the SVM under our experimental conditions, which can
be useful in situations with reduced datasets. Formally,
Method PSH has vectors of the form

These five data transformation techniques are used so that
data can be input into Support Vector Machines. Perform-
ing DNA repair protein recognition and classification
tasks in a generative fashion using BLAST alone is also
possible. In this situation, only DNA repair protein train-
ing data is used as a BLAST reference database. We do not
include the non-repair training data, as we wish for the
result of our BLAST to return an e-value that tells us how
similar the query protein is to other DNA repair proteins.
Testing non-repair query data on a non-repair reference
database would not help us assess the ability of BLAST to
recognize DNA repair proteins.
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